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where 7 = 2m(o/&), y=x2/o, and erf is the error
function.

The integrals in Eqs. (5a) and (5b) are negligible
in a high-temperature approximation and can be
omitted from the remainder of the calculation.

Substituting Eqs. (5a) and (5b) into Eq. (1) and

using the high-temperature approximation that re-
tains first-order terms in Pc and the first-order
quantum correction X/o, yields

Bn(T) = 2 w o [1—pe (R —1 ) + (3/2 v 2 ) (1+pe) X/a ] .

(6)

Equation (6) agrees with Nilsen's result to first-
order terms in Pc, which is a high-temperature
approximation.

It should be noted that Eq. (6) does not reduce
to the hard-sphere result for c c 0 in the limit
R-1. This is a result of the high-temperature
approximation used to calculate Eq. (6) from Eqs.
(1) and (5). In the calculation of Eq. (6) the quan-

tity erf [(R —1)v r ] was approximated by unity.
This assumes 8 4 1.

I wish to thank Dr. Sigurd Larsen of Temple
University for bringing Nilsen's work to my at-
tention.
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Recent indications that R4 is a fairly good symmetry for two-electron atoms are shown

to be unjustified.

Three recent papers'~ have indicated that two-
electron eigenstates of the full Hamiltonian, includ-
ing the 1/r, 2 interaction, are closely approximated

by those linear combinations of configurations that
form irreducible representations of the symmetry
group of real rotations in four-dimensional space.
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This group A4 is well known to be responsible for
the l degeneracy of the nonrelativistic hydrogen
atom. Since it was not clear why it should be rel-
evant to two-electron interactions, we undertook
an investigation to see what physical basis could
be attributed to the results of these authors. %'e

have, however, been forced to the conclusion that
there is no reason to believe that invariance under
A4 is even an approximate symmetry for the two-
electron problem. Furthermore, we uncovered
some sign reversals in the coefficients of the states
described in Refs. 1 and 2, which when corrected
negate the very results that prompted our investi-
gation.

We consider two electrons in the n = 2 shell. Our
attention was primarily focused on this shell be-
cause, even as a mathematical symmetry, it is
precisely here that B4 should best apply. For high-
er n there are arguments' to show that the associ-
ated group is really A (», », i. e. , A„2.

Adopting LS coupling, in the n = 2 shell there are
two 'S statesaridone each of 'P', 'I', P', and 'D.
Since the only multiplicity is in the 'S configuration,
these are the only ones of interest for our study.
The R4 states are

(00)S: —,
l

2s' 'S) + —,
' 0'3

l
2p 'S),

(2o)s: —./3I2s»--l2p"s) .
Comparing with the first two '8 resonances of the

doubly excited states of He as given by configura-
tion interaction calculations makes it immediately
clear that though the numerical ratios are approxi-
mately correct, the phases are wrong. References
1 and 2 had incorrect signs in the coefficients of
these states and hence carne to the opposite conclu-
sion,

This can also be seen by computing matrix ele-
ments of I/x, 2 between these states using hydrogen-
ic orbitals as in Ref. 2. The results are (in a. u. )

(oo)s (2o) s
(00)S 0.1563 - 0.0541
(20)S —0.0541 0.2109

whereas

ments in the R4 basis are slightly smaller than in
the configuration basis, but no systematic behavior
was found. With the signs given in Ref. 2, and even
then only for the 'S states, the matrix is almost
completely diagonalized. This fact that there is a
basis set derived from the A4 set with some sign
reversals, which diagonalizes the configuration in-
teraction, remains as a curious result for which
we have no explanation.

We come next to the question of the reduction in
the number of independent two-electron integrals.
Consider again in Table I the n = 2 shell. The W

are tensor operators defined by Feneuille. ' Note
that

W (OK)(I I )
2-&'~ y &&&(t I )

where the V are defined by Judd.
To get the B4 tensors corresponding to I/r, z,

one has to find all possible A4 states with L=O
arising from the product [(00) +(20)] ~. From Table
II, there are three classes of such states: (00),
(20), and (40). However, there are two kinds of
tensors in each of the first two of these, so the
actual number of irreducible tensors is five, which
is the same as the number of Slater integrals, in-
stead of three as stated in Ref. 2. An exactly simi-
lar situation arises in (s+d)" configurations.
There, in terms of A6 and R„ there are only five
classes, but the actual number of relevant tensors
is seven which is the number of Slater integrals in
that problem.

Consequently, we must conclude that there are no
linear relations between the Slater integrals, the
number of independent two-electron integrals re-
quired remaining the same in the alternative basis.

A complete analysis of the Coulomb Hamiltonian

H= Q (2EO(ss)W,' '(s, s) W„' '(s, s)
f&j

+ 6F,(PP) W,'"'(P, P) W,'"'(P, P) + 12F,(PP)

xWIO'i(p, p) W,'.
"(p, p)+2g3F, (,p)

l2p2 's&

l
2s S) 0.1504 —0.0508

l
2p S) —0.0508 0.2168

Thus, there is no improvement in going from the
ordinary configuration basis to the A4 basis.

We have computed all the I/r, 2 matrix elements
in the n = 3 and n = 4 shells and again come to the
conclusion that the matrix of I/r~2 is not even ap-
proximately diagonalized in the B4 basis. In some
cases, for high n and high L, the off-diagonal ele-

(oo)s

(2o)s

R& states

s
+-2~3 l 2p' 'S)

f 2S2 1$
—2 f2p S)

2 ' (I 2sp) + I 2ps) 'P)

2p2 1D)

tp' 'P)
2-1/2(

t 2sp) —
I 2ps) P)

R& tensors

2 tw ' '(s, s)
+&3W (00) (p, p))
-'- [~3 W (")(s,s)
P (00)

(p p))
2-1/2 t W (01)

(p ) W (01)( p)]

w (02)
( p)

w '")(p,p)
2-1/2 [W (11)( p) W (11)(p ))

TABLE I. Table of R4 states and tensors.
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(00) x (00) = (00)
(«) ~(20) =(20)
(&0) ~ (~0) = («) +(»)
+ (~2) +(3&) +(&9+(40)

E, = 2E,(ss) +12E,(sp) + laE,(pp),

Z, = K3[4EO(ss) + aE(&(sP) —12E()(PP)],
Z, = 2E,(ss) —4E,(.P) .2E,(PP) .a0E,(PP)

—16G,(sP),

E., = fa[ 2E,(ss) —4E,(sP) + 2E,(PP) —40E,(PP)

—aG,(sP)],

x [W(00)( ) .W(oo)(p p) W(00&(p p), W(00&( ) ]

+ 2G, (sp) [W,""(s,p) —W,'"'(p, s) ]

~ [W""(s p) W'"'(p-s) j]
We define the following:

W(00&(. s) .W(0()&(s s)
j&j

[W(00 &(s s) .W (00 & (P P)
I", & j
W(00&(p p) W(00&(s s) ]

( Q W(00)(P P) .W(00)(P P}
k&j., =-.' 2 W,'"'(P, P) W,'"'(P, P),
i&j

[W(01&(s p) W (01&(p s)]
f'& j

[W(01)( p) W(01) (p s) ]

Thus, we find

a=4E,(ss) e, +12EO(pp) e, +4/3EO(sp)e,

+ 24E,(pp) e, +4G,(sp) e, .
The next step is to express the R~ tensors in

terms of e;. We represent [(00) )({00)]' ', [(00)
&((20) ]'"' [(20) )((20))'"' [(20) x(20) ]"" a)1d [(20)
x (20) ] bl&' eo, e)~ e2, eg, a)ld e4, respectively&.
Then, by using the Wigner coefficients for the re-
duction of 84&F4, we have

e, =-,'{e,+ K3e, +3e),
e) =-,'(/3e, + e, —43e,),
ca=a(3eo —&3e)+ e2) -we4+ve31 1

e, =~) 43(3e, —v'3e, + e2} —v1 /ae, -~ 13e, ,

e, =v) v'5(3e, —Kae, + e,)+-s) K5e, +~1 Ae, .

Inverting Eqs. (2) and inserting the result in (1),
one 'finds

&,= /5[2E, (ss) —4E,(sp) + 2E,(pp) + aE,( pp)

+ aG, (sp)] .

Putting in hydrogenic va, lues fox the Slater inte-
grals, one finds that none of the E; vanish. The
sa.me result follows by looking at the E; given by
Feneuille' for (s+ d)" configurations. That some
of the E; are small compared to others is not sig-
nificant, because this is partly an expression of
the fact that E, and G~ decrease rapidly as 0 in-
creases; moreover, it is the differences between
the various Slater integrals that are important:
otherwise, to a first approximation, E,(ss), Eo(sp),
and E,(pp} are equal. Differences between indivi-
dual elements of an energy matrix, even when much
smaller than the trace, have a profound signifi-
cance, because the trace leads only to an energy
shift, whereas it is precisely the differences that
yield a splitting of the levels.

A complete analysis for the n = 3 shell in terms
of R9 tensors e; would proceed analogously. The
Coulomb Hamiltonian would first have to be written
as in Kq. (1) in terms of the e; and the 17 Slater
integrals. Reference 2 considers only 14 two-
electron integrals. ~ile it is true that there are
].4 I's and G's, what is relevant is to consider all
independent two-electron lntegrals) Including the
3A'(at&, cd) which cannot be cast as E's and G's be-
cause three of the four orbitals are diffex ent.

On the question of the number of independent
parameters, the point to be emphasized is this:
Is it sufficient to just consider (000), (200), and
(400), as in Ref. 2 or should one also look at how
these arise from the "single-particle" tensors a,s
in this comment& This is analogous to saying;
Is it enough to sa,y F', or should one differentiate
between E (ss) and E (pp)'P The point of this com-
ment is tha, t diffex'ences between such 8 of same
0, though of the order of 15-25%, are central to
Slater integrals. Since the results of Ref. 2 agree
with the exact values only to this accuracy, there
is not sufficient evidence to ascribe any physical
significance tothe physical" description of R4.

While this paper was being written, Dr. B. G.
Wybourne kindly informed us that he and P. H.
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Butler have come to very similar conclusions dur-
ing the course of a general study of R4 and elec-
tron correlations for (s+p)" configurations. Their
results will be published shortly. These authors
also have an explanation for the sign reversals in
Refs. 1 and 2.
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The two different uses of R,~, one as a mathematical and one as physical group which were
discussed in previous work, are presented. The treatment of Bau is shown to be equivalent
to the mathematical approach. The use of the physical group leads to new relationships not
present in the mathematical approach.

In his thesis this writer derived some results ap-
plying the four-dimensional rotation group to atomic
structure theory. Two different uses of R4 mere
contrasted. These approaches were characterized
as the "mathematical" description and the "physi-
cal" description of R4. The mathematical R4 orig-
inated in the work of Racah, who realized that the
angular parts ot the set ot (2l+ 1) orbitals of orbit-
al angular momentum / transform in the same way
as the generators of R» „. We have called this
use of the group the mathematical description
because Racah made use of the group only to sim-
plify the mathematical analysis of complex config-
urations; he. attributed no physical significance to
the group. Later, it was realized that the angular
parts of the set of 2l + 1. +2k '+1 orbitals of angu-
lar momentum l and l' transform like the genera-
tors of Rp) +»~+ p Agalnq no physical slgnlflcance
was found for these transformation properties.

The physical R4, on the other hand, does have
physical significance; it is a different R4. It is
well known that the hydrogen atom possesses R4
symmetry exactly. It is found that the Fourier
transform of the hydrogen atom wave functions
transforms according to representations of R4.

It must be emphasized that me are dealing with
the entire wave function and not the angular parts
alone. In our previous work me attempted to ex-
tend this physical use of R4 to atoms other than
hydrogen, in particular the first-rom atoms, in
the hope that R4 would be an approximate symme-
try group for these atoms.

To accomplish this end for the 2s 2p" configura-
tions, we expressed all the relevant tmo-electron
wave functions in terxns of tensors transforming
according to irreducible representations of R4.
Again, we emphasize that we treat the entire wave
functions and not just the angular parts. Qfe then
expressed the Coulomb operator in terms of R4
tensors and found that we required three param-
eters rather than the five I and G parameters re-
quired if R4 symmetry is not invoked. Ne then
determined these parameters and found that we
could determine the five F and G parameters from
these three parameters quite accurately, thus
justifying our use of R4 as an approximate symme-
try group for the first-row atoms.

In a recent paper, Rau finds that it is not pos-
sible to reduce the number of parameters in the
Coulomb interaction to three. An analysis of his


