PHYSICAL REVIEW A VOLUME 2,

NUMBER 4

OCTOBER 1970

Equation of State of He® Close to the Critical Point*

Barnie Wallace, Jr., and Horst Meyer

Department of Physics, Duke University, Duvham, Novth Cavolina 27706
(Received 2 March 1970)

We present measurements of the equation of state of He® with an impurity of 250 ppm He!
near the critical point. In these experiments the density is measured by a dielectric-constant
technique. The density cell is a horizontal capacitor to reduce the gravitational effects. The
temperature gradient between the cell and 4 °K occurs along a horizontal capillary. The re-
sults are analyzed in terms of the critical exponents which are found to have values similar to
those of other simple fluids. From the coexistence curve and the compressibility on the crit-
ical isochore above T, we get 8= 0.361, B=1.31, y=1.18, I'=2.48x107* Torr~!, T,=3.3105°K,
P.=0.04145 g/ em?®, and P,=860.5 Torr. From the compressibility along the coexistence curve,
we obtain ¥’ =1.12 and T'’ =6.9x10~° Torr~! for both the liquid and the vapor sides. An anal-
ysis of the critical isotherm using the conjugate variables p and p gives 6=4.21+0.10 and
V=2.77. The critical isobar gives the exponents m,(p>p.) =4.21+0.10 and 7_(p<p,) =4.35
£0.10. The study of the critical isochore shows d°P/dT? to be always positive. Combination
of these data with specific-heat results by Moldover indicate no discontinuity in d?u/dT? within
experimental error. We find at the critical point (P,V,)~* d®u/dT?=—0.22 (°K)"2. The iso-
therms expressed by the conjugate variables u, p are fitted to the scaling equation of state pro-
posed by Missoni et al. A good fit was obtained with the following parameters: E;=2.53,
Ey=0.44, 6=4.23, x,=0.475, and Y=1.17. Results of a less extensive study of He® with an
impurity of 10 ppm are presented. They give critical indices and P,, T, and p, in sub-
stantial agreement with the less pure He'. A comparison of the present data with previous

work is presented.

1. INTRODUCTION

Recently much research, several review papers,
and a number of conferences have focussed atten-
tion on the behavior of fluids and magnetic materi-
als near the critical point, which separates the
inhomogeneous two-phase region from the homo-
geneous one-phase region. -* Description of fluids
by means of the scaling ideas has been discussed
most recently by Missioni*® and by Schofield et
al.® Attention was paid in particular to the proper-
ties of CO,, Xe, and He*, for which good measure-
ments are available.

The research described below is concerned with
the equation of state of He® in the neighborhood of
the critical point. This research constitutes an
improvement and extension of previous work in
this laboratory.” Recent research on He® in other
institutions includes that by Kerr and Sherman, ®
Chase and Zimmerman, ° Moldover and Little!!!
as well as previous work by them. 12~

From our work, which comprises the measure-
ment of the density along isotherms and isobars
and also the pressure versus temperature along
the critical isochore, we present a discussion of
the validity of the scaling ideas using the closed
form of the chemical potential i proposed by
Missoni et al. % A fit of the data to the linear model
of the parametric equation of state® has been made
by Ho and Litster and will be presented elsewhere.'®

2

We find that the experimental results can be well
represented by this theory for densities p such that
Ip-p, I/pcj 0. 25. In another paper we will discuss
the critical isotherm outside this density range
and compare it with the expectations for an “asym-

metric lattice gas”.®

II. BRIEF REVIEW OF SCALING RELATIONS

For the convenience of the reader, we list below
some of the relations used to describe the critical
singularities, where we adopt the notation found in
previous work, !7 extended to isobars and where

AP=[P(p, T)~P(p,, T)]/P,, (1)
8p=[p(T, P)~p,1/pe, (2)
t=(T = T,)/T,. )

We use the variable conjugates i (chemical poten-
tial) and p for the isotherms, since it was shown by
Missoni et al.*® that these are the most suitable

in terms of symmetry arguments for discussing
thermodynamic properties in the region of the
critical point. One obtains the following equations
for cases (a)-(g): (a) coexistence curve

Ap=(pc—pc)/pcN(pL—pc)/pcmB(—t)B ’ (4)

where p; and p, are, respectively, the density of the
vapor and liquid along the coexistence curve; (b)
critical isotherm
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AP [I‘L(p, Tc)'— I‘l'(pca Tc)]/Pc Vc:V ADIAP lﬁ-l;(
5)

(c) critical isobar
t=TAplap|™=t; (6)
(d) compressibility on the critical isochore
kp=Tpt?’7, T>T,; (7

(e) thermal expansion on the critical isochore

1 ) -
pg(b_' (5%‘)1:)””“”’ T>Tes (8)

(f) compressibility along the coexistence curve
in the one-phase region

(/pe)2hp=Th(= "%, T<T.; ©)
(g) specific heat at constant volume on the
critical isochore
~A R
C‘,z07 r*+D*, T>T,, (10)
LA (=t
CV:(—I— ( ) +D-, T<Tc. (11)

The critical indices are connected by various

thermodynamic relations. Griffiths!®'*® RushbrookeZ’

and Fisher!” have derived inequalities that must be
satisfied if the power-law assumptions are to pro-
vide an adequate description of the singularities

at the critical point:

BB +1)+a’=2, (12)
Yp(6+1)/(6-1)+a’>2, (13)
Ye+28+a’'=22. (14)

A useful check on the internal consistency of the
data would be to treat Eqs. (12) and (14) as equal-
ities, in which case one obtains the relation

Bd-1)=vr.

Using reasonable hypotheses (in particular, the
assumption that d*P/dT?> 0 for the vapor pressure
curve near T,, which we later show to be verified
for He®) Griffiths'® has shown that forp>p,, i.e.,
on the liquid side of the critical point, 7 should be
the same as 8. The situation on the vapor side is
not clear at present, and the reader is referred to
the discussion by Griffiths. !® However, it appears
from the experiments on He® that the difference

(15)

between 7 and 0 on the vapor side is only marginal.

We also note the equality (by definition) relating
the compressibility and thermal expansion coeffi-
cients both above and below 7, :

() _(°F) ,
p\oT)p \oT /), " 7"
Following the ideas of Griffiths,  Missoni et al. **

have used the variable
x=t/| ap|'®

(16)

(1m
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and have proposed and discussed a closed-form
approximation for the equation of state:

Ap=plp, t)—plp,, =0p|2p|* n(x).  (18)

From the general properties of such a function®
k(x), as determined by the requirement of ana-
lyticity of the thermodynamic potentials, it follows
that

Yr=B(56-1)=vr.

Based on various requirements, Missoni et al.
assumed the function

X+ X x+xg\ % trr-1)/28
hx)=E, [ —=2) [1+E, [ —=° .
() =By ( %o > [ 2 ( %o ) ] (20)

For x=—x,=B*#, we find h(x)=0. Although
h(x=0) is nonanalytic at this point, its derivative
h'( = xy)=E, is finite, which means that the com-
pressibility on the phase boundary is finite and be-
haves like (—#)T, as has been pointed out by Mis-
soni et al.’

The constants E;, E,, %, B, and ¥y are to be
determined from the experiments. Although this
number of constants is large, some of these
(x, and B) can be determined independently from
the precise measurement of the coexistence curve,
or (as for v, ) from the critical isochore above T,.
As we shall see, the large amount of data provides
a good check of the internal consistency of these
constants.

(19)

III. EXPERIMENTAL

The experiment consisted in measuring the
density of a sample of He® with 250 ppm He* by
means of a capacitive technique. The sample serves
as the dielectric medium between the plates of a
capacitor and determines the dielectric coefficient
via the Clausius-Mosotti relation:

€-1 4m

e = ——— Q
cr2 3mP (21)

where @ is the polarizability and Mis the molecular
mass of He®. The polarizability is assumed to be
constant and equal to 0.1234 cm®/mole. ® Although
the very precise measurements of Kerr and Sher-
man® have shown that there is, in fact, a small
variation of @ with density, the correction to the
experimental data (Sec. V)is smalland comparable
with the uncertainty of the experiment. This will
be discussed below.

The density cell for the measurements with 250
ppm He! is shown schematically in Fig. 1. In
order to reduce the effects of gravity, which have
been discussed by several authors and most re-
cently by Buckingham, %! the cell is essentially a
horizontal-plate capacitor. The two parts forming
the capacitor are of electrolytic copper and are
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electrically isolated from one another by means of
Mylar spacers of 0. 0025 cm thickness. These
parts are cemented together by Stycast epoxy
material. The cross-sectionalarea of the capacitor
is approximately 1.6 cm?. The inner diameter of
the fill capillary is 0. 5 mm, which determines the
minimum height of the assembly. The effective
height of He® in the cell is unlikely to be more than
about 1.5 mm, based on the space taken by the
epoxy. It is estimated that about 90% of the sample
is situated within a height of 0.5 mm. Any
additional height due to possible tilt is negligible.
The measurements with the 10-ppm-He* sample
were carried out with a cell of slightly different
design to test the effect of the cell height. This
new cell had a cross-sectional area of 2 cm? the
fill capillary had an inner diameter of 0.4 mm.
Extra careful horizontal positioning of the cell and
improvement of the design gave then an effective
height of less than 0.5 mm. The times required to
reach equilibrium were not different from those
with the first cell. The results obtained (Sec. VI)
lead us to believe that the two cells gave consistent
results and that gravity effects were negligible.
To avoid any change of the hydrostatic pressure
from the column of He? leading to the cell, the
temperature gradient between the 4. 2 °K bath and
the cell was made horizontal. This was accom-
plished by using thick copper wires to thermally
anchor the He® filling capillary to the 4.2 °K bath
at the height of the sample capacitor. The cell was
made part of the tank circuit of a tunnel diode
oscillator, 2 the frequency of which was measured
by means of an electronic counter, as described
previously. The stability of this oscillator was
about + 2 Hz per day while the frequency v was of
the order of 14 MHz. This stability made it possi-
ble in principle to reproduce the density within a
day and under identical conditions to within about
2x10"*% . The dielectric constant of the sample
is related to the frequency as?

_ (vo/V)?+C[(vo/v)? -1]

€ b
1+BP

(22)

where v, is the frequency of the empty capacitor,
BP is a correction for the distortion of the capac-
itor as the pressure changes, and C is a term due
to the capacity of the condenser part filled with
Stycast and to various other parts in the circuit.
The procedure of calibration is described below.
The temperature of the sample was determined
from a Cryocal germanium resistor thermally
bonded to the capacitor, and used in a two-lead
arrangement with a 200-Hz Wheatstone bridge. To
compensate for temperature effects from the lead
resistance, an identical pair of leads, also mounted
in the cryostat and subjected to the same tempera-

ture profile, was connected electrically in series
with the standard resistor decade boxes. The sen-
sitivity of the bridge was such that temperature
changes of 5 uK near 3.3 °K could be resolved. The
phase-sensitive detector of the bridge was connected
to a heater circuit making possible the temperature
regulation of the sample capacitor. Temperature
stabilities to within 20 uK were thenachievedfor the
various isotherms.

The sample pressure was measured by a Texas
Instruments fused Quartz Bourdon gauge that had
a stated resolution of 0.025 Torr. This gauge was
initially calibrated against a mercury manometer
and periodically checked against it for possible
drifts. The pressure in the system was controlled
by means of the variable volume of a finely adjust-
able piston which allowed very small changes in
P to be made conveniently.

IV. CALIBRATION PROCEDURES AND
EXPERIMENTAL ERRORS

A. Thermometry

Approximately 40 measurements of the germa-
nium thermometer resistance R were taken in the
interval 2.9-3.8 °K by reading the vapor pressure
of He* in the pot of Fig. 1 from the height of a
mercury manometer. The necessary corrections
were made to convert to readings taken under
standard conditions. The external helium bathwas
regulated to a temperature only slightly above
that of the pot, so that there was only a very small
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CAPILLARY
(STAINLESS STEEL) -HEATER
. i g -He* POT
4.2°K COPPER : X
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FIG. 1. Schematic presentation of the cryostat, in-
cluding the density cell. The vacuum jacket is sur-
rounded by liquid He?, usually kept at 4.2°K, except
during the thermometer calibration.



1566

temperature gradient and the temperature drift
with time of the pot was negligible. The vapor
pressure was related to the absolute temperature
by means of the 1958 He* vapor-pressure scale.?
A least-squares-fit technique was applied to the
equation

log (T-F)=C,logR+C,, (23)

where F was determined by iteration. The devia-
tions between the measurements.and the curve so
obtained were random and gave a mean-square
temperature deviation of 0. 3 mK. We estimate
that accuracy of our temperature scale to be with-
in 0.5 mK of the 1958 scale. The temperature
calibration was not subjected to the same uncer-
tainties as those discussed by Missoni for the work

on He* 2*

B. Capacitor

At the beginning of an experiment, after a
thorough check on the stability of the oscillator,
the frequency p, of the empty sample capacitorwas
measured as a function of temperature and the
resulting set of points was fitted with a polynomial

{222, T' with a random deviation of 1 Hz.Imme-
diately after admitting He? into the capacitor, a
calibration at T=2.9 °K of frequency v versus P
in the liquid phase was carried out. Data of the
density at this temperature and pressure were
taken from results obtained with another capacitor 2
This latter cell, calibrated with He* from pyck-
nometric measurements, % had given results for
He® that were approximately 0.15+0. 1% lower
than those at 1.0 atm obtained by Sherman and
Edeskuty. 2’

In our calibration, we have made the reasonable
assumption that the constants C and B are temper-
ature independent in the region 3.8-2.5 °K. We
found B=-1.828x10"* atm™!, which is of the same
order as that for the previous density cell.?

Because of the refilling of the He* pot every two
days and the transfer of liquid helium into the main
bath, there were some unavoidable, small frequen-
cy shifts. These were taken into account by a daily
recalibration of the frequency versus pressure at
2.9 °K and a corresponding shift, when necessary,
was applied to the v,-versus-T curve.

Based on considerations of the long-term stabil-
ity, and on possible systematic uncertainties in our
calibration, as well as those due to the slight den-
sity dependence of the polarizability, we estimate
the uncertainty in our absolute value of the density
to be approximately 0. 5% at the critical density,
while the density resolution, as mentioned before,
is much better, being 6p/p,~ 5% 107*% near p,.
Because of the difficulties inherent in the experi-
ment, a density at a given T and P,. as read by the

5
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resistance bridge and the quartz gauge in the course
of a long experiment, could only be reproduced to
about 5x107% %,

C. Pressure Measurement

As mentioned before, the calibration of the Quartz
gauge was regularly checked against the height of a
mercury column. This height, corrected to stan-
dard conditions, was determined to +0.1 Torr. The
shifts of the calibration curve were of the order of
0.2 Torr over periods of days, in a random way.

We thus estimate the accuracy of the pressure
reading to be about + 0. 2 Torr compared with res-
olution of the instrument, which is 0.025 Torr. The
pressure difference P(4 °K) - P(300 °K) between
room temperature and the cell was calculated to be
about 5x10™*P, assuming the ideal-gas law to hold
and taking a realistic temperature profile in the
cryostat. This systematic correction, although it
increases the absolute value of P near the critical
point by about 0.5 Torr, is too small to affect signif-
icantly the calculation of the quantities of interest
such as AP and Ap and has not been incorporated
into the tabulated results, except for the tabulated

P

c*

D. Experimental Procedure

Isotherm data were taken by changing the amount
of sample in the system by means of the movable
piston and waiting for the frequency » and the
pressure P to reach equilibrium. The time 7 that
elapsed between two data points was usually of
the order of 10-15 min even in close proximity of
the critical point. In half of that time P and v had
reached an equilibrium value, which was then
closely monitored for the remaining 5 min. Hence
the data taking was considerably shorter than it
was with the density cell having a height of 1 cm
and for which 7 could attain 1 or 2 h very close to
T,. " The isobars, obtained by changing the temper-
ature and manually keeping the pressure constant,
took about 20 min per point, because of the more
tedious manipulations. Once the critical density
was determined from an analysis of the isotherms
and isobars, the critical isochore was taken by
changing the pressure and temperature in such a
way that the frequency stayed constant at the value
v, computed for the density p,.

V. RESULTS AND DISCUSSION

Because of the large amount of data taken, both
on isotherms and isobars, that extends over a
region of — 0.1<#<0.05and [Ap|S 0.5, atabulation
appears impractical in this paper and is being sub-
mitted to the National Auxiliary Publications Ser-
vice, sponsored by the American Society for Infor-
mation Science. These tables are also available in
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computer sheet format from the authors. Here we
merely list, in Table I, the temperatures and pres-
sures at which the isotherms and isobars were
taken. A systematic check for internal consistency
was made between both sets of data. For a given

P and 7T, the densities were found to be equal to
within 0. 1%. We have also obtained (by numerically
integrating the isotherms) the normalized chemical
potential Au/P,V,=[ VdP/P,V,. (Tabulations are
also available upon request.) We now describe the
various steps in the analysis.

A. Properties on the Coexistence Curve; Compressibility
and Thermal Expansion along the Critical Isochore

The coexistence data obtained from 18 iso-
therms and isobars and gave p; and p; as a func-
tion of T (Table I). The average value p=3 (p¢
+p) did not change significantly in the temperature
range investigated, being 0.04145 g/cm3. We add
that the limiting value at T=0 is not very different,
being 5 (T=0)=24p . (T=0)=0.0405 g/cm?, where
pr(T=0) has been taken from the work of Kerr and
Taylor. 2% For temperatures above T,, the in-
flection density py,s in the u, p plane for a given
isotherm was determined from the maximum in a
plot of 8p/8u=p%k r=p(8p/3P), versus p. The
Pinny Values so obtained were found to be very close
to p and were taken to be equal to p,. The maximum
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of ky for a given isotherm occurs, of course, at a
density p <pjng. For a discussion of this point,
see the paper by Widom. 3® The inflection density
for a given isobar was obtained from the maximum
of a plot of 1/p(8p/8T)p versus p. It was also
found to be very close to p. Table I gives the ex-
perimental values for p;,s both for isotherms and
isobars. The critical temperature T, was then
located from the data of Table I and from pZ %,
(T>T,) using a least-squares fit to Eqs. (4) and
(7), where the parameters to be determined were
B, B, T, v, and T,. The temperature range over
which the fit was made was 0.0015 | T-T,]50.2
°K. The T, value from both sets of data agreed
within experimental error, which was 0.2 mK for
the coexistence curve and 0.5 mK for the K, data.
No significant difference was found for the values
of the parameters as determined from either the
liquid or the vapor side of the coexistence curve.
Figure 2 shows a plot of (p,—p,) versus T, - T.
We obtained

T,=3.3105+0.0002 °K,
B=0.361+0.005, B=1.31
¥=1.18+0.08, TI'=2.48x10"* Torr-!,
p.=0.04145+0.0002 g/cm®
The quality of the fit is significantly affected if

TABLE I. The values of the liquid and vapor densities p; and p; on the coexistence curve and their average. Above
T, we tabulate pyus as defined in text, which is very close to p,.

A. Isothermal data

T 2 pL o $(og, +pg) T Plp,) Pinty

(°K) (Torr) g/cm?® g/cm? (°K) (Torr) g/cm?
3.04478 648.8 0.063 218 0.019587 0.04141 3.31199 861.4 0.0415
3.19985 766.75 0.057 353 0.025 464 0.04141 3.31500 864.05 0.0415
3.24981 807.75 0.054 214 0.028 564 0.041 39 3.320 00 868.4 0.0414
3.27981 833.25 0.051 437 0.031 545 0.04149 3.330 00 877.25 0.0416
3.294 81 846.15 0.049324 0.033741 0.041 54 3.34501 890.7 0.0415
3.30001 850.80 0.048134 0.034758 0.04145 3.36999 912.8 0.0416
3.30500 855.15 0.046 782 0.036120 0.041 45 3.400 00 940.0 0.0414
3.30801 857.80 0.045 309 0.037642 0.041 47 3.44369 979.35 0.0417
3.310 00 859.7 0.043691 0.039 215 0.04145

B. Isobaric data

P T [ Pe 3(pg +pg) p T Ping1
(Torr) (°K) g/cm? g/cm3 (Torr) (°K) g/cm?
763.9 3.196 16 0.057 533 0.25342 0.04144 860.8 3.31140 0.0415
796.6 3.236 27 0.055216 0.027 688 0.04145 862.8 3.31360 0.0414
824.2 3.269 10 0.052592 0.030 332 0.04146 864.8 3.31590 0.0414
836.8 3.283 74 0.050 941 0.031 986 0.041 46 866.8 3.318 24 0.0414
848.5 3.297 37 0.048778 0.034 242 0.041 51 871.8 3.323 96 0.0414
851.8 3.30116 0.047 927 0.034 965 0.04145 884.4 3.33791 0.0415
854.3 3.304 00 0.047 180 0.035758 0.041 47 904.5 3.360 57 0.0414
856.8 3.306 85 0.046 094 0.036 675 0.041 38 932.1 3.39131 0.0415
858.8 3.30910 0.0446 0.0383 0.041 45 982.0 3.446 59 0.0415
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FIG. 2. Plot of the densities of
liquid at the coexistence curve, ex-
pressed as (pg, — p,) versus (T,— T).
Points for the vapor phase (p,— pg)
versus (T,— T), which are indistin-
guishable from the (og, —p,) plot, are
omitted from the graph.
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the critical parameters are changed more than the
indicated uncertainties. Aspointed out before, the
uncertainties of the absolute values of 7, and p,
are about +0.5 mK and 2.5x10™* g/cm?, respec-
tively. By an interpolation procedure between the
isobars, we then obtain, including the hydrostatic
correction, P,=860.5+0.3 Torr.

From the isobaric data we obtain the thermal
expansion coefficient at the critical density for the
various isobars. A logarithmic plot versus fyields
¥Yp=1.18+0.08 andT'=0. 218 °K!, in good agree-
ment with previous work. "

As will be seen later, (8P/87T), only changes
about 2% for the range T - T,<0. i °K, and hence
can be approximated as a constant. Then, accord-
ing to Eq. (16), we should have

apP
Yp=Y, FP:<5-T-) IR r.

This relation is indeed satisfied by the experiment,
confirming again the internal consistency of the
data.

From a plot of Au versus p —p,. in the one-phase
region below T,, we note the expected symmetry
between the vapor and the liquid side. The deriv-
atives (0p/d ) :p2 kr on the coexistence curve
are hence closely the same. A plot of 8p/8u on
both sides of the coexistence curve versus T is
shown in Fig. 3 and gives ¥'=1.12+0.08 and
I'"=6.9%10"5 Torr-!. We note from Fig. 3 that
there is a tendency for ¥’ to be smaller than v,
although the extreme values, as determined by
the experimental uncertainties, overlap. These
results are in agreement with the findings of Chase
and Zimmerman. ®

The critical parameters are compared in Table
II with those obtained in previous work. There is
a disagreement in T, and P, with the earlier re-
sults” of the cell 1 cm high by amounts that are
somewhat outside the experimental uncertainty;
this is not understood.

(24)

B. Critical Isobar and Isotherm

Although these curves were not measured direct-
ly, they were derived by a graphical interpolation
technique suggested by Coopersmith. 3! In the case
of the isobars, for example, the method consists
in plotting these curves with their inflection points
(for T>T,) and coexistence region (T < T,) coinci-
dent, as shown in Fig. 4. The density values for
each isobar were read off at constant-temperature
intervals and were used to construct Fig. 5.

Using the values of T, and P, obtained before,
the critical isobar was then plotted from Fig. 5.

+ isobors
® isotherms

3
10 F +

g
g%/(cm® Torn)} \

g8y |

\ T>Te

10%-

1 Lol ol

0 — 100
IT-T,! (mK)

FIG. 3. Compressibilities p?kp= (9p/81)p from iso-
therms (open circles) and kaT=p(8p/3T)P(3T/8P)pc from
isobars (black circles) along the isopycknal (¢>0).
Points on this latter curve represent the average for
both liquid and vapor.
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TABLE II. Critical parameters and properties of He®. [For the definition of the symbols, see Egs. (1) - (9).}]
Reference B [ Y Y’ ™
this work 0.361 4.23 1.18% 1.12% {4.21 (p> po
4.35(p<py)
Ref, 7 0.360 1.20 {3.9 (p>pp)
3.7 (p<pp)
3.97 (0 >p,)
. .36 c 1.19 1.08
Ref. 9 0.362 4.27(p<py)
Ref, 12 0.48 3.4
B v r T’ T
this work 1.31 2.77 2.48x1074 6.9%x107° 0.73 (p>p,)
1.00 (p<pg)
Ref, 7 1.31
Ref. 9 1.32
dP
T, P, Pe dT (T, P
(°K) (Torr) (g/cp13) (Torr)K™?
this work 3.3105 860.5 0.04145 882
Ref. 7 3.3095 861.8 0.04134
Ref. 9 3.3094 0.0413
Ref. 12 3.324 873 0.0418

2From the fit to the equation proposed by Missoni et al., Ref. 5, we use y=v'=1.17.

Using Eq. (6), the values of the exponents were
then obtained for |[Ap| < 0. 25:

p>p,, T,=4.21%£0.1, II,=0.73,

p<ps, W.=4.35:0.1, I_=1.00.
To give an idea of the change in the 7’s when a
slightly different value of P, was chosen, we plot-
ted isobars on both sides of the critical isobar,
and derived the effective indices, as shown in

Table III. We see that a change of P, by 0. 2 Torr
would cause a change in the s by about 0.08. The
7_ values, however, were always found to be con-
sistently higher than those for 7,, showing the
expected departure from antisymmetry in the
isobars, when T and p are chosen to be conjugate
variables.

Similarly to the above procedure, we plot a
compressed representation of the isotherms as

10*(P-£%)
(g/cm?)
8
6 x 836.8 Torr
* 8543
4 * 8608
® 8648
, . 8844 FIG. 4. Compressed plot of

five representative isobars as
(p—p) versus (T-T,).

-'O\\
_[20 L |2 L L 8‘

45 8
(T"Tinﬂ)(mK)

L
7
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10°(0-4) 6]
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==
— e \

T
8S(mK)

4.0

FIG. 5. Plot of (p—p,) versus
P for a family of curves at con-
stant T— T,, as constructed from

—
T —— wAPOR

all the available isobars, repre-
sented as shown in Fig. 4.

A S
860

P (Torr)

(p —p,) versus (P - P,) (Fig. 6) and construct Fig.
7 which supplies (p —p,) for constant pressure
intervals as a function of T. At T=T,, we obtain
the critical isotherm, and from a logarithmic
plot of P - P, versus p—p,, we obtain

5,-4.20£0.1, V,=2.97,
p<p,, 0.=4.06+0.1, V_=1.85.

A change of T, by 0.2 mK causes a shift in 6 by
about 0.06. Furthermore, we find 0, =, within

p>pe,

TABLE III. Variation of the critical exponents 6 and
7 of the critical isobar (T'— T, |p—p,I") and isotherm
(P—P,x [p—p,|®) for different choices of T,, as ob-
tained from logarithmic plots of (T — T,) versus (p—p,)
(taken from Fig. 5) and from (P —P,) versus (p— p,)
taken from Fig. 7. The hydrostatic pressure correction
has not been applied to P,.

P T T
(Torr) (p<py) (p>pe)
859.5 4.56 4.36
859.75 4.46 4.28
P, g 860 4.35 4.21
860.25 4.24 4.13
860.5 4.14 4.06
T 0 14
(°K) (p<pp) (0 >pp)
3.3101 4.17 4.37
3.3103 4.11 4.27
T, - 3.3105 4.06 4.20
3.3107 4.00 4.12
3.3109 3.94 4.04

experimental error, as expected from the theory
of Griffiths. ® For the vapor phase, we find a
tendency for m_ to be larger than 6_ by an amount
slightly beyond the combined uncertainties. Ac-
cording to the scaling ideas, one should have

=05 on both liquid and vapor sides. It is possible
that in the experiment, the asymptotic region
where this equality holds has not been reached;
this may account for the marginal discrepancy.

C. Critical Isochore

The P-versus-T data along the critical isochore
were taken to determine (8P/87), and to check for
the possibility of a logarithmic singularity in
(azp/aTa)pc and (82/9 Ta),,c. Such measurements
have also been made for He* by Kierstead. ** The
derivative was obtained from a subtraction be-
tween adjacent (P, T') pairs on this isochore, and
the results are shown in Fig. 8. We note that
d?P/dT?> 0 and that it appears to go through a
singularity at T,, although the scatter prevents a
precise study of this.

The thermodynamic expression to be used is

da’p  d*p
C,=TV—5~-T— ist
v e T T coexistence
a2p a2y
TV(E‘T*)T(;T’ b T2 T (29)

The results of Moldover, ! which show an almost
logarithmic singularity in C, near T,, require
then that there be a singularity in either da?p/dT?
or dzu/de or both. This has been discussed by
Missoni et al.® among others.!! From an analysis



o

a‘\*\)‘\"\muo 10*( /O_/;))

EQUATION OF STATE OF He® CLOSE

1571

(g/cm
o .
6 X 327981 K
1 * 3.30500
4 ® 331199 .
® 3,32000 FIG. 6. Compressed plot of five
2 4 3.34500 representative isotherms as (p—p,)

JP I S S

.20 -1.0

- En{'.)(Torr)

versus (P—P,).

M y

g —5

(P-

of data on He*, Ar, and steam, these authors®
conclude that from the meager amount of data
available there is no experimental evidence for

a rapid change or divergence of d?u/dT? in the two-
phase region. Integration of Eq. (25) gives for
P=p

opP 1 [1C,aT
(BT),,(p“ & +Vc[ T
c

opP 1 [Td%
=Q3T) ) (pca Tc) —‘7 de daT. (26)
(3 c T,

Using, in this equation, the numerically integra-
ted results by Moldover, we obtain to good approx-
imation, as shown in Fig. 8:

1 T [d?)
BV, [ (&“T—z) dT=-0.22(T-T,),
(4

|T-T,|<0.1.

(27)

Hence there appears to be no singularity in d%u/dT?
in the critical region. More precise measurements
of dP/dT are necessary, however, to make sure
that with a higher resolution no singularity can

be detected.

D. Fit of the Isotherms to the Expression of Missoni ef al.

In general, the unsmoothed Au-versus-Ap plot
was so close to being antisymmetric around p, for
|Ap | £0.25 and |£]£0.03 that an average curve
Ap versus Ap represented well the behavior on
either side of p, or of the coexistence curve within
the uncertainty of the original data. We applied a
least-squares fit to Eqs. (18) and (20) using 150
such values taken from eight isotherms (3. 2948
< T < 3. 3300 °K). Starting from values of p,, %o, B,

30 40

o) (Torr)

and T, as determined previously, the procedure
was to iterate on 6 while finding E; and E,. Wealso
applied small changes to p,, x,, B,and T, within
the limits of our experimental errors that would
result in only small changes in E;, E,, and 6. We
were able to represent our data with the values
x0=0.475, E{=2.53, E;=0.44, and 0=4. 23 for the
optimum fit. These numbers are similar to those
found for He*, Xe, and CO,, except for 6, which
we believe is definitely less than the value of about
4.5 given for these gases. From the experience
gained in the fitting of experiment to theory, 6 in
He® may not change by over 0. 10 without seriously
affecting the quality of the fit. Any change in 6 will
cause a corresponding change in E, and E,. A plot
of the departure from the theoretical curve, ex-
pressed as Ak(x)/h(x) versus x is shown in Fig. 9.
In this plot, additional isotherms, that were not
used for obtaining the fit, are shown. They are
consistent with the others. The scatter appears to
be almost random around the zero value for Ak(x)/
h(x), with a slight tendency for the departure to
increase with (xq+x)/x,. It should be pointed out,
however, that it would be easy to obtain a truly
random scatter around the horizontal zero axis by
assuming an individual variation of the effective
value of p, for the various isotherms by at most
0.2%, as due to inevitable small shifts, uncertain-
ties in the analysis, etc. This error is entirely
within the limits of our quoted uncertainty. For
instance, a change of the density by 0. 2% causes
Ah(x)/h(x) to change between about 2% and 9% over
the range of the values of log(x +xy)/x,. From our
reanalysis of the data? on He*, and a representation
into a plot similar to that in Fig. 9, we conclude
that the scatter of the data as fitted to theory is
comparable for both isotopes.
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(Y]

COEXISTENCE/
CURVE

FIG. 7. Plot of p—p, versus T
for a family of curves with constant
(P-P,) for all available isobars

- VAPOR

|-

represented in the way shown in
Fig. 6.

T(K)

Using the maximum allowed values for B and 90,
we obtain B(6 +1)=1.95. Therefore Griffiths’s

inequality [Eq. (12)] is satisfied provided a’=> 0. 05.

This is to be related to a graphical analysis of
specific-heat results, which indicates that a’ can-
not exceed about 0.1. Hence it appears that for He®
0.05<a<0.1. As a check, we have integrated the
chemical potential along the critical isotherm con-

R S L
3310 3315

structed from Fig. 7, Table IV, and obtained
8(p>p,)=4.20+0.10 and 8 (p<p,) =4.22+0. 10,
which are the same within the combined uncertain-
ties, and consistent with the results from the fit-
ting procedure to Egs. (20) and (21) as described
above.

VI. EXPERIMENTS WITH He® (10 ppm He?)

We have also conducted aless extensive research

FIG. 8. Top part: plot of the derivative
of the vapor-pressure curve dP/dT versus
T. Above T, plot of (9P/8T)p=p, Versus T.
Solid line in the top diagram is calculated
using Eq. (26) with the specific heat of
Moldover, using the results of Eq. (27) and
normalizing the curve to dP/dT =882 Torr
(K1) at the critical point. Solid line on the
L bottom part curve is the best linear fit to

the experimental points. Bottom part:
plot of (P, V™! [Z¢8%u/8T%T versus T.




Do

EQUATION OF STATE OF He® CLOSE - - 1573

T I |
3.27981 K
3.29481 K
3.30001 K
3.30500 K
3.3080!1 K
3.31199 K
3.31500 K
3.32000 K
3.33000 K
3.34501 K
3.36999 K
3.40000 K

Ah(X)

h(X)
0.2

T i
> X E OO 4 XPOO s

O.11-

-0l

-0.2 L ‘

o.o{@gfﬁ%ég}iiﬁ}ﬂ {H%i {{h§ { }%ﬁ{ 34 |

FIG. 9. Relative deviation,

- Ah(x)/h(x) = [hexpt - htitted (x)]/h(x)
versus logllx +x¢)/xpl. The
vertical error bars represent the
- experimental uncertainties. Al-
though 150 data points were invol-
ved in obtaining the fit, only 41
were plotted here to avoid over-
crowding, especially near

loglx +x¢)/x¢l=0. These points
are a random selection and rep-
resentative of the fit to the

] scaling equation of Missoni et al.

-1.0 0.0 1.0 X XZ{O
+

| 0

og ( X, )

with purer He? than described above, in order to
ascertain whether some of the properties in the
immediate vicinity of T, were substantially modi-
fied by small He* impurities. A series of isotherms
at the same temperatures as in Table I, and the
critical isochore (P, T) were recorded. These re-
sults have somewhat more scatter, due to a slight
instability of the tunnel diode oscillator. Their
analysis, carried out in the same way as described
before, omitting the fit to the theory of Missoni

3.0 4.0

et al., ® does not give substantially different re-
sults. We find T, = 3. 3098 °K, p,=0.04137 g/cm?,
P,=860.2 Torr , (dP/dT) (T,, p,)=880 Torr/K,
B=0.361+0.005 ¥=1.19+0.10, and 6=4.20+0.10.
One expects the critical temperature of He? (250
ppm He?) to lie above the critical temperature for
pure He® by approximately AT, = 2. 5% 10"[T,(He?
- T,(He®) ]~ 5x10"* °K. Since the two samples were
measured intwodifferent series of experiments, with
two different temperature calibrations, sucha small

TABLE IV. Critical isotherm, as obtained by graphical construction from Fig. 7.

p>p, ) p<p, )

" P-P, 103 —p, - -(P-P) —1073u—p)
(107)4p (Torr) PV, 107 4p (Torr) _—}—3—0%/0_&
1.0471 0.2 0.21556 0.90512 0.1 0.11921
1.1617 0.3 0.32029 1.0982 0.2 0.24856
1.2474 0.4 0.42401 1.2116 0.3 0.38007
1.3801 0.6 0.62932 1.2985 0.4 0.51307
1.4791 0.8 0.83278 1.4396 0.6 0.78263
1.5539 1.0 1.0346 1.5470 0.8 1.5607
1.6962 1.5 1.5345 1.6363 1.0 1.3327
1.8169 2.0 2.0291 1.8064 1.5 2.0355
1.9207 2.5 2.5188 1.9343 2.0 2.7510
1.9979 3.0 3.0049 2.0429 2.5 3.4769
2.0703 3.5 3.4881 2.1394 3.0 4.,2121
2.1415 4.0 3.9683 2.2203 3.5 4.9558
2.3623 6.0 5.8644 2.2927 4.0 5.7065
2.6518 10.0 9.5792 2.5485 6.0 8.7792
2.8690 14.0 13.223 2.7415 8.0 11.943
3.0814 19.0 17.702 3.0359 12.0 18.491
3.2551 24.0 22.116 3.2724 16.0 25,290
3.4011 29.0 26.478 3.4679 20.0 32.307
3.5278 34.0 30.795
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shift is within the uncertainty of the absolute tem-
perature calibration, which is about 0.5 mK for
each series of experiments.

VII. CONCLUSIONS

From a detailed study of the equation of state of
He? near the critical point, we draw the following
conclusions. (a) The scaling-law approximation
that uses power laws with critical exponents is well
justified by experimental evidence for He®, at least
for the density range Ap < 0. 25. (b) The relations
between the various critical exponents are all
satisfied by the experiments, provided the exponent
for the specific heat, o', is larger than 0.05, which
is not inconsistent with a cursory graphical analysis
of Moldover’s data. (c) The exponent ¥ is found to
be slightly larger than ¥/, but their combined un-
certainties are such that one can speak of an aver-
age value of about 1.17, representative for regions
both above and below T, . (d) A comparison of the
critical exponents for the critical isotherm and
isobar where (p, P) and (p, T) are, respectively,
the variables shows that on the liquid side m=90.
On the vapor side there is a tendency of 7 to be
larger than 6, but the difference is marginal. The
equality for the liquid is in agreement with the
prediction by Griffiths, '® while there is no such
prediction for the vapor side. (e) Combination of
the P, T measurements along the critical isochore
with the specific-heat measurements of Moldover
show that within the experimental scatter,

1 d%u

—— == -2 <0.
BV dr® 0.22(K)? for |¢[<0.03,

which is the experimental temperature range. Hence
no singularity could be detected. However, since
such a singularity, if any, would have only a small
effect on the vapor-pressure curve, pressure
measurements with considerably higher resolution

BARNIE WALLACE, JR., AND HORST MEYER
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would have to be carried out to obtain complete
certainty. The value of dP/dT at the critical point
is 882+ 5 Torr (K)"L. (f) There is good agreement
in the critical exponents with those obtained in
previous measurements on He3, except for & which
is found to be larger in the present research. The
critical exponents are also in good agreement with
those for He!, Xe, and CO,, with the exception
again of 8, which is slightly smaller for He®, Thus,
on the whole, quantum effects on the exponents for
the helium isotopes appear to be insignificant. (g)
A fit of the isotherm data, expressed as Ay versus
Ap to the proposed equation of state by Missoni

et al. is very satisfactory, as indicated by the
scatter in Fig. 9 which shows the departures from
this fit. In this theory, ¥=%’, but as mentioned
before, the direct analysis of the compressibility
data indicates a tendency for y’ to be smaller than
Y. The parameters E,, E,, and § obtained from

the fit, are reasonably consistent with those for
He* CO,, and Xe. (h) The critical isotherm,
expressed as Au versus Ap, is antisymmetric
within experimental error for |Ap|<0.25. For
Ap=0. 35, we have

[‘A/.L(p <pc)l - IAU(P>pc)H/| (A/-'L>av' ~0.11.

An analysis into an antisymmetric and a symmetric
term as suggested by Grif'fiths16 is too uncertain
for these data and is being carried out at present
for data extending to density values up to about

|Ap | ~0.6. These results will be reported else-
where.
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Virtually all measurable properties of a classical fluid may be determined from the expec-
tation value of the phase-space density operator f(¥H¢) =52, 6(F~F*(¢)) 6(5F —P *(¢)), and
the phase-space density correlation function {f(¥p¢) f(¥'D B t'N = F(EDD) (f(*"” t')), a
matrix with indices (¥Pt). Systematic procedures for approximating this matrix, unhindered
by secular effects, are always based on approximations to its inverse. For a weakly coupled
fluid, the inverse can be expanded in powers of A, the ratio of potential to kinetic energy.
The leading term in this expansion gives rise to a Vlasov equation for the phase-space cor-
relation function. The next term is the first that includes collisions, and results in relaxa-
tion towards equilibrium. This paper is concerned with the detailed study of the resulting
fundamental nontrivial approximation. It is not Markovian and is perfectly reversible. Al-
though the approximation is complicated, it is tractable analytically in various limits, and
numerically for all wavelengths and frequencies. In this paper, only the behavior in certain
limits is evaluated. Particular attention is directed toward its contractions — the density
correlation function, which is measured by inelastic neutron and light scattering, and the
momentum correlation function. Calculation of the former at long wavelengths corroborates
the Landau-Placzek expression for light scattering, and therefore demonstrates that the ki~
netic equation predicts hydrodynamic behavior at long times. Since the correlation function
is correct to order 7&2, it has, in contrast to a solut1on to the Boltzmann equation, the correct
long-wavelength velocity of sound ct=(dp/dmn)g %2 paT/m. 1t also predicts different trans~
port coefficients than those deduced from a Boltzman equation. These include a nonvanish-~
ing bulk viscosity. The transport coefficients reduce to those derived from the Boltzmann
equation at low densities. Some aspects of the short-time behavior are also discussed.

I. INTRODUCTION correlations for an arbitrary state requires a
specification of the initial conditions of all prod-
ucts (f(rpt)--+), since they are all necessary to
characterize an arbitrary state. It has been rec-
ognized for some time, however, that an important
class of problems can be understood from a knowl-
FEDPH=246F - F ) 6@ - p(1), edge of (f(FP ) f(F'P't' )e, in an equilibrium
ensemble. In particular, because of the connec-
tion between fluctuations and linear response, the
equilibrium fluctuation function

The measurable properties of a system of clas-
sical spinless particles are properties which can
be constructed from observables formed from the
field

in which @ extends over all the indistinguishable
particles in the system. Thus, a study of the dy-
namics of such a system is an investigation of

FEPL),(fEDOfE'P' 1), etc. Fundamentally, SE-7',t-t";8P) =((fEP) - S ED))ay)
the equation which governs these products is the

Liouville equation, and the determination of these x(f (*,*, SRRV (-»/-—: ) eu)>eu



