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We present measurements of the equation of state of He3 with an impurity of 250 ppm He4

near the critical point. In these experiments the density is measured by a dielectric-constant
technique. The density cell is a horizontal capacitor to reduce the gravitational effects. The
temperature gradient, between the cell and 4'K occurs along a horizontal capillary. The re-
sults are analyzed in terms of the critical exponents which are found to have values similar to

those of other simple fluids. From the coexistence curve and the compressibility on the crit-
ical isochore above T~, we get P= 0.361, B=1.31, p=1.18, I'=2. 48&10 Torr, T~ =3.3105'K,
p, =0.04145 g/cm, and P, = 860.5 Torr. From the compressibility along the coexistence curve,
we obtain p' =1.12 and I"=6.9&10 5 Torr ' for both the liquid and the vapor sides. An anal-
ysis of the critical isotherm using the conjugate variables p, and p gives 6 =4.21+0.10 and
%=2.77. The critical isobar gives the exponents z, (p& p~) =4.21+0.10 and x (p& p~) =4.35
+0.10. The study of the critical isochore shows d2P/dT~ to be always positive. Combination
of these data with specific-heat results by Moldover indicate no discontinuity in d p/dT within
experimental error. We find at the critical point (P~V~) d p/dT = —0.22 ('K) . The iso-
therms expressed by the conjugate variables p, p are fitted to the scaling equation of state pro-
posed by Missoni et al. A good fit was obtained with the following parameters: Ej = 2.53,
E2=0.44, 6=4.23, xp=0.475, and /=1.17. Results of a less extensive study of He with an
impurity of 10 ppm are presented. They give critical indices and P~, T„and p~ in sub-
stantial agreement with the less pure He3. A comparison of the present data with previous
work is presented.

I. INTRODUCTION

Recently much research, several review papers,
and a number of conferences have focussed atten-
tion on the behavior of fluids and magnetic materi-
als near the critical point, which separates the
inhomogeneous two-phase region from the homo-
geneous one-phase region. ' Description of fluids
by means of the scaling ideas has been discussed
most recently by Missioni4' and by Schofield et
al. Attention was paid in particular to the proper-
ties of CO2, Xe, and He, for which goodmeasure-
ments are available.

The research described below is concerned with
the equation of state of He3 in the neighborhood of
the critical point. This research constitutes an
improvement and extension of previous work in
this laboratory. ' Recent research on He3 in other
institutions includes that by Kerr and Sherman,
Chase and Zimmerman, Moldover and Little' ' '
as well as previous work by them

From our work, which comprises the measure-
ment of the density along isotherms and isobars
and also the pressure versus temperature along
the critical isochore, we present a discussion of
the validity of the scaling ideas using the closed
form of the chemical potential p proposed by
Missoni et al. ' A fit of the data to the linear model
of the parametric equation of state has been made
by Ho and Litster and will be presentedelsewhere. "

%e find that the experimental results can be well
represented by this theory for densities p such that
Ip —p, ~ jp, & 0. 25. In another paper we will discuss

the critical isotherm outside this density range
and compare it with the expectations for an "asym-
metric lattice gas".

II. BRIEF REVIEW OF SCALING RELATIONS

For the convenience of the reader, we list below
some of the relations used to describe the critical
singularities, where we adopt the notation found in
previous work, ' extended to isobars and where

» = [&(p, T) —&(p., ~) ]/I'. ,

~p = [p(T, &) p. ]jp. , —

t = (T r,)/7;. —

(I)

(2)

~p =(p, p~)jp. =(p-& p, )ip, =&(-t)', -(4)

where p& and p~ are, respectively, the density of the
vapor and liquid along the coexistence curve; (b)
critical isotherm

We use the variable conjugates p (chemical poten-
tial) and p for the isotherms, since it was shown by
Missoni et al. ' that these are the most suitable
in terms of symmetry arguments for discussing
thermodynamic properties in the region of the
critical point. One obtains the following equations
for cases (a)- (g): (a) coexistence curve
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P(& +1)+n' ~2,

y.'(~+1)/(~ —1)+ ~' o- 2,

y'r+2p+u'~ 2 .

(12)

(13)

(14)

A useful cileck oIl th6 1nt61'QRl coQslsteQcy of the
data would be to treat Eqs. (12) and (14) as equal-
ities, in which case one obtains the Ielation

&(~-1)=yr'

Using reasonable hypotheses (in particular, the
assumption that de/dTa~ 0 for the vapor pressure
curve near T„which me later show to be verified
for Hes) Griffiths" has shown that forp&p„ i.e. ,
on the liquid side of the critical point, m should be
the same as ~. The situation on the vapor side is
not clear at present, and the reader is referred to
the dlscusslon by Griffiths. However, lt RppeR18
from the experiments on He that the difference
between g and ~ on the vapor side is only Dlarginal.
We also note the equality (by definition) relating
the con1pressibility and thermal expansion coeffi-
cients both above and below T, :

Follo@ing the ideas of Griffiths, ' Missoni et al. '
have used the variable

(17)

» [p(p, T.) —p(p. , T.) j/P. ~.=«p~~p ~' "
(5)

(c) critical isobar

t= II ~pa~p I'

(d) compressibility on the critical isochore

~T Tt ~
~ ~ct

(e) thermal expansion on the critica»sochore

P -— — —I pg" P

(f) compressibility along the coexistence curve
in the one-phase region

p p, @~=I"~ —t "&, T&T„ (9

(g) specific heat at constant volume on the
critical 18ochore

A+
Cy= —t" +D', (10)

Cy:—— +D, 7& 7, .A ( —f)
(11)

The critical indices are connected by various
thermodynamic relations. Griffiths, ' ' Rushbrooke,
and Fisher' have derived inequalities that must be
satisfied if the power-lax assumptions are to pro-
vide Rn RdequRt6 descr1pt10Q of the 81ngulal ltl68
at the cr1t1cal po1nt:

and have proposed and discussed a closed-form
approximation for the equation of state:

~p = p(p, f)- p(p, , f)=~p~~pl' ' &(x). (18)

From the general properties of such a function
k(x) „as determined by the requirement of ana-
lyticity of the thermodynamic potentials, it follows
that

y&=P(& —1)=y&.

Based on various requirements, Missoni et gl.
assumed the function

X+ Xo |x+x,
I(x)=Z, ' 1+E, l- '

(20)Xo

For x= -xo=B '~~, we find h(x) =0. Although

h(x= 0) is nonanalytic at this point, its derivative
k'(- x,) = &, is finite, which means that the com-
pressibility on the phase boundary is finite and be-
haves like ( —f) 'r, as has been pointed out by Mis-
soQ1 et Ql.

The constants Z„E2, xo, P, and yr are to be
determined from the experiments. Although this
number of constants is large, some of these
(xo and P ) can be determined independently from
the precise measurement of the coexistence curve,
or (as for yr ) from the critical isochore above T,.
As me shall see, the large amount of data provides
a good check of the internal consistency of these
coQstRnts.

III. EXPERIMENTAL

The experiment consisted in measuring the
density of R sample of He with 250 ppm He by
means of a capacitive technique. The sample serves
as the dielectric medium between the plates of a
capacitor and determines the dielectric coefficient
via the Clausius-Mosotti relation:

where 8 is the polarizability and %is the molecular
mass of He . The polarizability is assumed to be
constant and equal to 0. 1234 cm'/mole. ' Although

the very precise measurements of Kerr and Sher-
man have shown that there is, in fact, a small
variation of 6 with density, the correction to the
experimental data (Sec. V) is smalland comparable
with the uncertainty of the experiment. This mill

be discussed below.
The density cell for the measurements with 250

ppm He 18 SIlomQ schematically 1Q Flg. 1. IIl

order to reduce the effects of gravity, mh1ch have

been discussed by several authors and most re-
cently by Buckingham, ' the cell is essentially a
horizontal-plate capacitor. The two parts forming
the capacitor are of electrolytic copper and are
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electrically isolated from one another by means of
Mylar spacers of 0. 0025 cm thickness. These
parts are cemented together by Stycast epoxy
material. The cross-sectional area of the capacitor
is approximately 1.6 cm . The inner diameter of
the fill capillary is 0. 5 mm, which determines the
minimum height of the assembly. The effective
height of He' in the cell is unlikely to be more than
about 1.5 mm, based on the space taken by the
epoxy. It is estimated that about 90%%uo of the sample
is situated within a height of 0. 5 mm. Any
additional height due to possible tilt is negligible.

The measurements with the 10-ppm-He' sample
were carried out with a cell of slightly different
design to test the effect of the cell height. This
new cell had a cross-sectional area of 2 cm; the
fill capillary had an inner diameter of 0. 4 mm.
Extra careful horizontal positioning of the cell and
improvement of the design gave then an effective
height of less than 0. 5 mm. The times required to
reach equilibrium were not different from those
with the first cell. The results obtained (Sec. VI)
lead us to believe that the two cells gave consistent
results and that gravity effects were negligible.

To avoid any change of the hydrostatic pressure
from the column of He' leading to the cell, the
temperature gradient between the 4. 2 'K bath and
the cell was made horizontal. This was accom-
plished by using thick copper wires to thermally
anchor the He filling capillary to the 4. 2 'K bath
at the height of the sample capacitor. The cell was
made part of the tank circuit of a tunnel diode
oscillator, the frequency of which was measured
by means of an electronic counter, as described
previously. The stability of this oscillator was
about + 2 Hz per day while the frequency v was of
the order of 14 MHz. This stability made it possi-
ble in principle to reproduce the density within a
day and under identical conditions to within about
2x10-'%. The dielectric constant of the sample
is related to the frequency as"

IV. CALIBRATION PROCEDURES AND
EXPERIMENTAL ERRORS

A. Thermometry

Approximately 40 measurements of the germa-
nium thermometer resistance 8 were taken in the
interval 2. S-3.8 'K by reading the vapor pressure
of He4 in the pot of Fig. 1 from the height of a
mercury manometer. The necessary corrections
were made to convert to readings taken under
standard conditions. The external helium bath was
regulated to a temperature only slightly above
that of the pot, so that there was only a very small

PUMPI NG

F ILL I N 6
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(STAINLESS STEEL )
—HEATER

ture profile, was connected electrically in series
with the standard resistor decade boxes. The sen-
sitivity of the bridge was such that temperature
changes of 5 pK near 3.3'K could be resolved. The
phase-sensitive detector of the bridge was connected
to a heater circuit making possible the temperature
regulation of the sample capacitor. Temperature
stabilities to within 20 pK were thenachievedfor the
various isotherms.

The sample pressure was measured by a Texas
Instruments fused Quartz Bourdon gauge that had
a stated resolution of 0. 025 Torr. This gauge was
initially calibrated against a mercury manometer
and periodically checked against it for possible
drifts. The pressure in the system was controlled
by means of the variable volume of a finely adjust-
able piston which allowed very small changes in
P to be made conveniently.

(po/p)'+C [(p, /p)' —I]
1+BP (22) 4.2 K COPPER

WIRES

-He POT

where vo is the frequency of the empty capacitor,
BP is a correction for the distortion of the capac-
itor as the pressure changes, and C is a term due
to the capacity of the condenser part filled with
Stycast and to various other parts in the circuit.
The procedure of calibration is described below.

The temperature of the sample was determined
from a Cryocal germanium resistor thermally
bonded to the capacitor, and used in a two-lead
arrangement with a 200-Hz Wheatstone bridge. To
compensate for temperature effects from the lead
resistance, an identical pair of leads, also mounted
in the cryostat and subjected to the same tempera-

D IOD E

RADIOFREQUENCY
LEAD

VACUUM JACKET

FIG. 1. Schematic presentation of the cryostat, in-
cluding the density cell. The vacuum jacket is sur-
rounded by liquid He, usually kept at 4.2'K, except
during the thermometer calibration.
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temperature gradient and the temperature drift
with time of the pot was negligible. The vapor
pressure was related to the absolute temperature
by means of the 1958 He vapor-pressure scale.
A least-squares-fit technique was applied to the
equation

log (T —E) = C, log R+ C2, (23)

where F was determined by iteration. The devia-
tions between the measurements and the curve so
obtained were random arid gave a mean-square
temperature deviation of 0. 3 mK. We estimate
that accuracy of our temperature scale to be with-
in 0. 5 mK of the 1958 scale. The temperature
calibration was not subjected to the same uncer-
tainties as those discussed by Missoni for the work
on He4 '4

B. Capacitor

At the beginning of an experiment, after a
thorough check on the stability of the oscillator,
the frequency vo of the empty sample capacitorwas
measured as a function of temperature and the
resulting set of points was fitted with a polynomial

g&. 'z a; T' with a random deviation of +1 Hz. Imme-

diately after admitting He into the capacitor, a
calibration at T = 2. 9 'K of frequency v versus P
in the liquid phase was carried out. Data, of the

density at this temperature and pressure were
taken from results obtained withanother capacitor. '
This latter cell, calibrated with He' from pyck-
nometric measurements, had given results for
He' that were approximately 0. 15+0. 1% lower
than those at l. 0 atm obtained by Sherman and

Edeskuty.
In our calibration, we have made the reasonable

assumption that the constants C and 8 are temper-
ature independent in the region 3. 8-2. 5 'K. We

found I3= —1.828x10 atm ', which is of the same
order as that for the previous density cell. '

Because of the refilling of the He pot every two

days and the transfer of liquid helium into the main
bath, there were some unavoidable, small frequen-
cy shifts. These were taken into account by a daily
recalibration of the frequency versus pressure at
2. 9 'E4 and a corresponding shift, when necessary,
was applied to the vo-versus-T curve.

Based on considerations of the long-term stabil-
ity, and on possible systematic uncertainties in our
calibration, as well as those due to the slight den-

sity dependence of the polarizability, we estimate
the uncertainty in our absolute value of the density
to be approximately 0. 5% at the critical density,
while the density resolution, as mentioned before,
is much better, being 5p/p, = 5 x 10 % near p, .
Because of the difficulties inherent in the experi-
ment, a density at a given T and P, . as read by the

resistance bridge and the quartz gauge in the course
of a long experiment, could only be reproduced to
about 5X10 2%.

C. Pressure Measurement

As mentioned before, the calibration of the Quartz
gauge was regularly checked against the height of a
mercury column. This height, corrected to stan-
dard conditions, was determined to +0. 1 Torr. The
shifts of the calibration curve were of the order of
0. 2 Torr over periods of days, in a random way.
We thus estimate the accuracy of the pressure
reading to be about a 0. 2 Torr compared with res-
olution of the instrument, which is 0.025 Torr. The
pressure difference P(4 K) —P(300 'K) between
room temperature and the cell was calculated to be
about 5x10 P, assuming the ideal-gas law to hold
and taking a realistic temperature profile in the
cryostat. This systematic correction, although it
increases the absolute value of P near the critical
point by about 0. 5 Torr, is too small to affect signif-
icantly the calculation of the quantities of interest
such as &P and ~p, and has not been incorporated
into the tabulated results, except for the tabulated
P, .

D. Experimental Procedure

Isotherm data were taken by changing the amount
of sample in the system by means of the movable
piston and waiting for the frequency v and the
pressure P to reach equilibrium. The time ~ that
elapsed between two data points was usually of
the order of 10-15 min even in close proximity of
the critical point. In half of that time P and v had
reached an equilibrium value, which was then
closely monitored for the remaining 5 min. Hence
the data taking was considerably shorter than it
was with the density cell having a height of 1 cm
and for which 7' could attain 1 or 2 h very close to
T,. The isobars, obtained by changing the temper-
ature and manually keeping the pressure constant,
took about 20 min per point, because of the more
tedious manipulations. Once the critical density
was determined from an analysis of the isotherms
and isobars, the critical isochore was taken by
changing the pressure and temperature in such a
way that the frequency stayed constant at the value
v, computed for the density p, .

V. RESULTS AND DISCUSSION

Because of the large amount of data taken, both
on isotherms and isobars, that extends over a
region of —0.1& t&0. 05and j~p j 0. 5, atabulation
appears impractical in this paper and is being sub-
mitted to the National Auxiliary Publications Ser-
vice, sponsored by the American Society for Infor-
mation Science. These tables are also available in
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computer sheet format from the authors. Here we

merely list, in Table I, the temperatures and pres-
sures at which the isotherms and isobars were
taken. A systematic check for internal consistency
was made between both sets of data. For a given
P and T, the densities were found to be equal to
within 0. I%%uo. We have also obtained (by numerically
integrating the isotherms) the normalized chemical
potential &p/P, V, = f VdP/P, V, . (Tabulations are
also available upon request. ) We now describe the
various steps in the analysis.

A. Properties on the Coexistence Curve; Compressibility
and Thermal Expansion along the Critical Isochore

The coexistence data obtained from 18 iso-
therms and isobars and gave p~ and pI. as a func-
tion of T (Table I). The average value p = —,

'
(pe

+pl. ) did not change significantly in the temperature
range investigated, being 0.04145 g/cm . We add
that the limiting value at T = 0 is not very different,
being p (& = 0) = —,

'
p~ (T = 0) = 0.0405 g/cm, where

pz (7=0) has been taken from the work of Kerr and
Taylor. '3 For temperatures above T„ the in-
flection density p„„in the p, , p plane for a given
isotherm was determined from the maximum in a
Plot of &p/S p, = p k r = p(&p/sP) r versus p. The

p,„„values so obtained were found to be very close
to p and wex e taken to be equal to p, . The maximum

of x~ for a given isotherm occurs, of course, at a
density p &p„„.For a discussion of this point,
see the paper by %'idom. The inflection density
for a given isobar was obtained from the maximum
of a plot of I/p(&p/&T) p versus p. It was also
found to be very close to p. Table I gives the ex-
perimental values fox' p both fox' isotherms and
isobars. The critical temperature T, was then
located from the data of Table I and from p, jp&

{T) T,) using a least-squares fit to Eqs. {4) and

(I), where the parameters to be determined were
B, P, I", y, and T,. The temperature range over
which the fit was made was 0.001- l T —T, I - 0. 2

K. The T~ value froIn both sets of data agreed
within experimental error, which was 0. 2 mK for
the coexistence curve and 0. 5 mK for the KT data.
No significant difference was found for the values
of the parameters as determined from either the
liquid or the vapor side of the coexistence curve.
Figure 2 shows a plot of (p~ —p, ) versus T, —T.
%e obtained

T, = 3.3105~0. 0002 K,

P = 0. 361 + 0.005, B= l. 31

y= f. fayQ. Qa, I'= 2. 48x IQ

p, =0. 04145+0. 0002 g/cm'

The quality of the fit is significantly affected if

TABLE I. The values of the liquid and vapor densities pf and pa on the coexistence curve and their average. Above
T~ we tabulate pfIIfg as defined in text, which is very close to p~.

3.044 78
3.19985
3.249 81
3.279 81
3.294 81
3.300 01
3.30500
3.308 01
3.310 00

I
(Torr)

648.8
766.75
807.75
833.25
846.15
850.80
855.15
857.80
859.7

0.063 218
0.057 353
0.054 214
0.051 437
0.049324
0.048 134
0.046 782
0.045 309
0.043 691

pg
g/cm'

0.019587
0.025 464
0.028 564
0.031 545
0.033 741
0.034 758
0.036 120
0.037 642
0.039 215

—.'(pI, +pc)

0.041 41
0.041 41
0.041 39
0.041 49
0.041 54
0.04145
0.041 45
0.041 47
0.041 45

3.31199
3.31500
3.320 00
3.330 00
3.345 Ol
3.369 99
3.400 00
3.443 69

&(p,}
(Torr)

861.4
864.05
868.4
877.25
890.7
912.8
940.0
979.35

Piaffe

g/cm3

0.0415
0.0415
0.0414
0.0416
0.0415
0.0416
0.0414
0.0417

P
(Torr)

B. Isobaric data

pg
g/cm3

P
(Torr}

«nfl
g/cm3

763.9
796.6
824.2
836.8
848.5
851.8
854.3
856.8
858.8

3.19616
3.236 27
3.269 10
3.283 74
3.297 37
3.301 16
3.304 00
3.306 85
3.30910

0.057 533
0.055 216
0.052 592
0.050 941
0.048 778
0.047 927
0.047 180
0.046 094
0.0446

0.253 42
0.027 688
0.030 332
0.031 986
0.034 242
0.034 965
0.035758
0.036 675
0.0383

0.041 44
0.041 45
0.041 46
0.041 46
0.041 51
0.041 45
0.041 47
0.041 38
0.041 45

860.8
862.8
864.8
866.8
871.8
884.4
904.5
932.1
982.0

3.31140
3.31360
3.315 90
3.318 24
3.323 96
3.337 91
3.360 57
3.39131
3.446 59

0.0415
0.0414
0.0414
0.0414
0.0414
0.0415
0.0414
0.0415
0.0415
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o IS(}therrr}S FIG. 2. Plot of the densities of

].iquyd at the coexistence curve, ex-
pressed as (pl. —p ) versus (T, —T).
Points for the vapor phase (p, —pt-. )
versus (T~- T), which are indistin-
guishable from the (pI, —p,) plot, are
omitted from the graph.
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the critical parameters are changed more than the
indicated uncertainties. As pointed out before, the
uncertainties of the absolute values of T, and p,
are about+0. 5 mK and 2. 5x10 g/cm3, respec-
tively. By an interpolation procedure between the
isobars, we then obtain, including the hydrostatic
correction, I', = 860. 5+ 0. 3 Torr.

From the isobaric data we obtain the thermal
expansion coefficient at the critical density for the

various isobars. A logarithmic plot versus tyields
yp=1. 18+0.08 andI'=0. 218 K ', in good agree-
ment with previous work.

As will be seen later, (SI'/8 T), only changes
about 2% for the range T —T, & 0. f K, and hence
can be approximated as a constant. Then, accord-
ing to Eq. (16), we should have

8+
(24)

This relation is indeed satisfied by the experiment,
confirming again the internal consistency of the
data.

From a plot of ~p, versus p —p, in the one-phase
region below T„we note the expected symmetry
between the vapor and the liquid side. The deriv-
atives (Sp/S p, ) z = p kr on the coexistence curve
are hence closely the same. A plot of sp/s p on

both sides of the coexistence curve versus T is
shown in Fig. 3 and gives y' = 1.12+ 0. 08 and
I"'=6.9x10-' Torr-'. @re note from Fig. 3 t at
there is a tendency for y' to be smaller than y,
although the extreme values, as determined by
the experimental uncertainties, overlap. These
results are in agreement with the findings of Chase
and Zimmerman.

The critical parameters are compared in TaMe
II with those obtained in previous work. There is
a disagreement in T, and I', with the earlier re-
sults of the cell 1 cm high by amounts that are
somewhat outside the experimental uncertainty;
this is not understood.

B. Critical Isobar and Isotherm

[04

+ Isobofs
~ isotherrns

lo (3P)

g'/(cm' Torr)-

IO—2

IT - Tc I (mK)
[00

FIG. 3. Compressibilities p k~= (Bp/Bp)~ from iso-
therms (open circles) and p2k& ——p{Bp/BT)p{BT/BI')p from
isobars (black circles) along the isopycknal (t&0).
Points on this latter curve represent the average for
both liquid and vapor.

Although these curves were not measured direct-
ly, they were derived by a graphical interpolation
technique suggested by Coopersmith. ' In the case
of the isobars, for example, the method consists
in plotting these curves with their inflection points
(for T& T,) and coexistence region (T & T,) coinci-
dent, as shown in Fig. 4. The density values for
each isobar were read off at constant-temperature
intervals and were used to construct Fig. 5.

Using the values of T, and I', obtained before,
the critical isobar was then plotted from Fig. 5.
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FIG. 6. Compressed plot of five
representative isotherms as (p —p,)

versus (P -P~) .
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f

j~Tor )
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of data on He, Ar, and steam, these authors'
conclude that from the meager amount of data
available there is no experimental evidence for
a rapid change or divergence of d'p/dT in th, e two-
phase region. Integration of Eq. (25) gives for
p=p

f

sP
f

1 C dT(
(&T], " I, T

and T, as determined previously, the procedure
was to iterate on 5 while finding E, and E,. We also
applied small changes to p„xo, P, and T, within
the limits of our experimental errors that would
result in only small changes in E„E&, and 5. We
were able to represent our data with the values
xp= 0 475 Ey= 2 53 E2= 0 44, and 6 = 4. 23 for the
optimum fit. These numbers are similar to those
found for He', Xe, and CO2, except for ~, which
we believe is definitely less than the value of about
4 ~ 5 given for these gases. From the experience
gained in the fitting of experiment to theory, 6 in
He may not change by over 0. 10 without seriously
affecting the quality of the fit. Any change in 6 will
cause a corresponding change in E, and E2 ~ A plot
of the departure from the theoretical curve, ex-
pressed as &k(x)/h(x) versus x is shown in Fig. 9.
In this plot, additional isotherms, that were not
used for obtaining the fit, are shown. They are
consistent with the others. The scatter appears to
be almost random around the zero value for &k(x)/
h(x), with a slight tendency for the departure to
increase with (xo+x)/xo. It should be pointed out,
however, that it would be easy to obtain a truly
random scatter around the horizontal zero axis by
assuming an individual variation of the effective
value of p, for the various isotherms by at most
0. 2/o, as due to inevitable small shifts, uncertain-
ties in the analysis, etc. This error is entirely
within the limits of our quoted uncertainty. For
instance, a change of the density by 0. 2% causes
&h(x)/h(x) to change between about 2% and 9% over
the range of the values of log(x+xo)/xo. From our
reanalysis of the data~ on He, and a representation
into a plot similar to that in Fig. 9, we conclude
that the scatter of the data as fitted to theory is
comparable for both isotopes.

(spy
=I —l, (p. , T.)--Cl C

d p
dTg

dT. (28)

Using, in this equation, the numerically integra-
ted results by Moldover, we obtain to good approx-
imation, as shown in Fig . 8:

f,T2 f

d T = - 0. 22(T - T,),

D. Fit of the Isotherms to the Expression of Missoni et al.

In general, the unsmoothed ~p. -versus- ~p plot
was so close to being antisymmetric around p, for

j ~p j 0. 25 and j t j
~ 0. 03 that an average curve

~p. versus &p represented well the behavior on
either side of p, or of the coexistence curve within
the uncertainty of the original data. We applied a
least-squares fit to Eqs. (18) and (20) using 150
such values taken from eight isotherms (3. 2948
~ T ~ 3. 3300 'K). Starting from values of p„xp P,

(2'/)
fT T,

f
0. 1 . -

Hence there appears to be no singularity in d p/dT,
in the critical region. More precise measurements
of dP/dT are necessary, however, to make sure
that with a higher resolution no singularity can
be detected.
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FIG. 9. Relative deviation,
&ah)/ab) = [a~„-a„„,„(x)l/a(x)
versus log[(x + xo)/xo]. The
vertical error bars represent the
experimental uncertainties. Al-
though 150 data points were invol-
ved in obtaining the fit, only 41
were plotted here to avoid over-
crowding, especially near
log[(x+xo) jxo] = 0. These points
are a random selection and rep-
resentative of the fit to the
scaling equation of Missoni et al.
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with purer He than described above, in order to
ascertain whether some of the properties in the
immediate vicinity of T, were substantially modi-
fied by small He impurities. A series of isotherms
at the same temperatures as in Table I, and the
critical isochore (P, 7) were recorded. These re-
sults have somewhat more scatter, due to a slight
instability of the tunnel diode oscillator. Their
analysis, carried out in the same way as described
before, omitting the fit to the theory of Missoni

et al. ,
' does not give substantially different re-

sults. We find T, = 3. 3098 'K, p, = 0. 041 37 g/cm,
P, = 860. 2 Torr, (dP/d T) (T„p,) = 880 Torr/K,
P=O. 361+0.005, y=1. 19+0.10, and 5=4. 20+0. 10.

One expects the critical temperature of He' (250
ppm He~) to lie above the critical temperature for
pure He~ by approximately &T, = 2. 5x 10 [T,(He )
—T,(He') j= 5x 10 K. Since the two samples were
measured in two different series of experiments, with
two different temperature calibrations, such a small

TABLE IV. Critical isotherm, as obtained by graphical construction from Fig. 7.

(1P-1)g

1.0471
1.1617
1.2474
1.3801
1.4791
1.5539
1.6962
1.8169
1.9207
1.9979
2.0703
2.1415
2.3623
2.6518
2.8690
3.0814
3.2551
3.4011
3.5278

I' —I'
(Torr)

0.2
0.3
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0
3.5
4.0
6.0

10.0
14.0
19.0
24.0
29.0
34.0

10 3(p, —p,„
&c~c

0.21556
0.32029
0.42401
0.62932
0.83278
1.0346
1.5345
2.0291
2.5188
3.0049
3.4881
3.9683
5.8644
9.5792

13o223
17.702
22.116
26.478
30.795

—10 imp

0.90512
1.0982
1.2116
1.2985
1.4396
1.5470
1.6363
1.8064
1.9343
2.0429
2.1394
2.2203
2.2927
2.5485
2.7415
3.0359
3.2724
3.4679

V&V,
—(s —z,)

(Torr)

p.l
0.2
0.3
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0
3.5
4.0
6.0
8.0

12.0
16.0
20.0

—10 3(p, —p„)
&c&c

0.11921
0.24856
0.38007
0.51307
0.78263
1.5607
1.3327
2.0355
2.7510
3.4769
4.2121
4.9558
5.7065
8.7792

11.943
18.491
25.290
32.307
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shift is within the uncertainty of the absolute tem-
perature ca1ibration, which is about 0. 5 mK for
each series of experiments.

VII. CONCLUSIONS

From a detailed study of the equation of state of
He near the critical point, we draw the following
conclusions. (a) The scaling-law approximation
that uses power laws with critical exponents is well
justified by experimental evidence for He, at least
for the density range &p ~ 0. 25. (b) The relations
between the various critical exponents are all
satisfied by the experiments, provided the exponent
for the specific heat, n', is larger than 0. 05, which
is not inconsistent with a cursory graphical analysis
of Moldover's data. (c) The exponent y is found to
be slightly larger than ~', but their combined un-
certainties are such that one can speak of an aver-
age value of about 1.17, representative for regions
both above and below T, . (d) A comparison of the
critical exponents for the critical isotherm and
isobar where (p, P) and (p, &) are, respectively,
the variables shows that on the liquid side &= ~.
On the vapor side there is a tendency of m to be
larger than 6, but the difference is marginal. The
equality for the liquid is in agreement with the
prediction by Griffiths, ' while there is no such
prediction for the vapor side. (e) Combination of
the I', T measurements along the critical isochore
with the specific-heat measurements of Moldover
show that within the experimental scatter,

—z- ———0. 22 (K) for
l
f

l
& 0. 03,

which is the experimental temperature range. Hence
no singularity could be detected. However, since
such a singularity, if any, would have only a small
effect on the vapor-pressure curve, pressure
measurements with considerably higher resolution

would have to be carried out to obtain complete
certainty. The value of dP/dT at the critical point
is 882+ 5 Torr (K) '. (f) There is good agreement
in the critical exponents with those obtained in
previous measurements on He, except for 6 which
is found to be larger in the present research. The
critical exponents are also in good agreement with
those for He, Xe, and COB, with the exception
again of 6, which is slightly smaller for He . Thus,
on the whole, quantum effects on the exponents for
the helium isotopes appear to be insignificant. (g)
A fit of the isotherm data, expressed as ~JL(, versus
~p to the proposed equation of state by Missoni
et a/. is very satisfactory, as indicated by the
scatter in Fig. 9 which shows the departures from
this fit. In this theory~ J= p ~ but as mentioned
before, the direct analysis of the compressibility
data indicates a tendency for y' to be smaller than
'Y. The parameters E&, Ez, and 6obtained from
the fit, are reasonably consistent with those for
He, Coa, and Xe. (h) The critical isotherm,
expressed as ~p, versus 4p, is antisymmetric
within experimental error for )~p ) &0. 25. For
&p=0. 35, we have

An analysis into an antisymmetric and a symmetric
term as suggested by Griffiths is too uncertain
for these data and is being carried out at present
for data extending to density values up to about
r~p ~

=0. 6. These results will be reported else-
where.
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Virtually all measurable properties of a classical fluid may be determined from the expec-
tation value of the phase-space density operator f{rpt) =Z~ B{r-r~(t)) 6(p -p (t)), and
the phase-space density correlation function (f (rpt) f(r' p' t')) —(f (rp t)) (f(r' p' t')), a
matrix with indices (rpt). Systematic procedures for approximating this matrix, unhindered
by secular effects, are always based on approximations to its inverse. For a weakly coupled
fluid, the inverse can be expanded in powers of ~, the ratio of potential to kinetic energy.
The leading term in this expansion gives rise to a Vlasov equation for the phase-space cor-
relation function. The next term is the first that includes collisions, and results in relaxa-
tion towards equilibrium. This paper is concerned with the detailed study of the resulting
fundamental nontrivial approximation. It is not Markovian and is perfectly reversible. Al-
though the approximation is complicated, it is tractable analytically in various limits, and
numerically for all wavelengths and frequencies. In this paper, only the behavior in certain
limits is evaluated. Particular attention is directed toward its contractions —the density
correlation function, which is measured by inelastic neutron and light scattering, and the
momentum correlation function. Calculation of the former at long wavelengths corroborates
the Landau-Placzek expression for light scattering, and therefore demonstrates that the ki-
netic equation predicts hydrodynamic behavior at long times. Since the correlation function
is correct to order X, it has, in contrast to a solution to the Boltzmann equation, the correct
long-wavelength velocity of sound, c =- (dp/dmn), & 3 k&T/m. It also predicts different trans-
port coefficients than those deduced from a Boltzman equation. These include a nonvanish-
ing bulk viscosity. The transport coefficients reduce to those derived from the Boltzmann
equation at low densities. Some aspects of the short-time behavior are also discussed.

I. INTRODUCTION

The measurable properties of a system of clas-
sical spinless particles are properties which can
be constructed from observables formed from the
field

f (r p t) = Z 5(r —r (t)) &(p - p (t)),

in which & extends over all the indistinguishable
particles in the system. Thus, a study of the dy-
namics of such a system is an investigation of
(f(rpt)), (f(rpt)f (r p t )), etc. Fundamentally,
the equation which governs these products is the
Liouville equation, and the determination of these

correlations for an arbitrary state requires a
specification of the initial conditions of all prod-
ucts (f(rpt) ), since they are all necessary to
characterize an arbitrary state. It has been rec-
ognized for some time, however, that an important
class of problems can be understood from a knowl-
edge of (f(rp t)f(r'p't'))„ in an equilibrium
ensemble. In particular, because of the connec-
tion between fluctuations and linear response, the
equilibrium fluctuation function

S(r-r', t-t';pp') =((f(rpt) —(f(rpt)) )
x(f(r'p't') (f(r'p't')) „}}„


