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which means that oo(t)» 0. Since o, » 0 and o,gt» 0,
then from Eq. (D13) we have ao(f)» 0 for all time,
but oo(t) is non-negative only as long as

O'O»Q
g gf (1 —2Q y gf)

Keeping terms to only first order in gt, and letting
~,g = g, , which corresponds to the g in the case of
a classical pump, we have the requirement that
oo g,t. This is for thequantum treatment of the
pump, and gt «1. (It may be shown that there is
no restriction here on the existence of the cor-
responding Wigner distribution. )

Comparing to the classical treatment of thepump,
we have, from Eq, (3. 25) with 0=0, ao» tanh gt

x(1 -tanhgt) . Tofirstorderingt we have then
oo~gt in the classical treatment, with gt «1, asthe
requirement for the I' distribution to exist.

Thus, it is seen that the two results are essen-
tially the same, i. e, , the curve which determines
the breakdown of the I' distribution for this case
(the 0 =0 curve in Fig. 1) rises from the origin
immediately in the quantum, as well as in the clas-
sical, treatment of the pump. As mentioned in the
caption of Fig. 1, this means, for example, that
the I' distribution for an initially coherent state of
the signal breaks down immediately, and the re-
sults of this Appendix show that treating the pump
quantum mechanically does not alter this conclusion.
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A consistent, set of hydrodynamic equations for liquid crystals is derived from the neces-
sary conservation laws and the requirements of Galilean invariance. In the stationary case,
the equations reduce to the Oseen-Frank hydrostatic theory. The equations should be useful
in discussing the hydrodynamics of cholesteric and smectic crystals. Linear dissipative
effects are also considered.

I. INTRODUCTION

The continuum hydrostatic theory of liquid crys-
tals of Oseen' and Frank is well known and firmly
established. More recently, Ericksen and Leslie
have discussed continuum theories of the dynamics

of liquid crystals. The theory of Leslie is defi-
cient in that it does not, in the stationary case,
reduce to the Oseen-Frank hydrostatic theory.
This situation has been partially rectified by Erick-
sen. ' This deficiency is not important in the case
of nematic crystals, and some interesting solutions
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In simple liquid crystals the molecules have a
preferred direction but the centers of mass of the
molecules are arranged at random as in an ordi-
nary liquid. We denote the preferred direction of
the molecules by the vector n and refer to it sim-
ply as the director. W'e will assume that its mag-
nitude as well as its direction may vary and spe-
cialize later to the case where n is a constant.
Thus besides the usual types of hydrodynamic mo-
tions occurring in ordinary liquids there are also
motions connected with the changes in the director.
We assume that the dynamical equations in the
absence of dissipative effects have the form pro-
posed by Ericksen'.

ep—+~ J=O

8Jg 8

et Bg (2)

eg—+V Q=0
Bt

&
(ps) + V (psv) = 0 (4)

~ 8 ~

s (pn, )+ (pn, v, )+ II„+g,=0
~x~ Qg~

(5)

Equation (1) describes the conservation of mass;
p is the mass density, J = pv is the current, and
v is the fluid velocity. Equations (2)-(4) express
the conservation of momentum, energy, and en-
tropy, respectively; T;& is the stress tensor, Q
is the energy current, and s is the entropy per
unit mass. Finally Eq. (5) is the equation of mo-

of the linearized equations have been considered
by the Orsay group. However, it is desirable to
have a consistent set of hydrodynamic equations
describing the macroscopic behavior of liquid
crystals. It is shown in this paper that a consis-
tent set of hydrodynamic equations can be deter-
mined uniquely from the requirements of Galilean
invariance, the necessary conservation laws, and
certain natural assumptions about how the fluxes
transform under Galilean transf ormations. This
method was used by Landau and Khalatnikov to
derive the equations of superfluid hydrodynamics,
and the procedure followed here is rather similar.
These equations should be useful for discussing
the hydrodynamics of cholesteric and smectic liq-
uid crystals. It is necessary in order to derive
the equations consistently not to neglect nonlinear
terms but only to make such approximations in the
final equations. The dissipative effects in the hy-
drodynamic equations in a linear approximation
are also considered briefly.

- II. CONSERVATION RELATIONS

tion of the director; H;, is a stress tensor, and

g; is the internal body force. We use a Cartesian
tensor notation where necessary, and a dot indi-
cates the substantial time derivative. Thus we
have

dt ~t

T]g = pV~ Vg+ Of j
E =;pv'+ pN (u& x n) + 2 p((u X n) + Eo

Q, =[-,'pv'+pN ((uxn)+ 2p((uxn)'+Eojv,

+ v ( To() + ((d xn) ( II(g + @p~

(8a)

(8b)

(8c)

In the moving coordinate system, the molecules
only execute rotations described by N. Hence the
quantities To;&, Eo, and Qo& will only depend on N

and other thermodynamic variables. The energy
+p satisfies the following thermodynamic identity:

dEO= pdp+ Td(ps)+g;dn; —II;&dn; &+N; d(pN;), (9)

where p, is the chemical potential per unit mass
and n; &

= an;/sx& is the director gradient.
In order to illustrate the transformation laws

(8a)-(Bc) let us take a simple model in which the
molecules are like dumbbells. Each molecule
consists of two masses M& and M& rigidly con-
nected. Focus attention on a molecule with M,
at r& and M, at r, and let

1 - (M M2)R (Ml 1 l +M2 I p), n = (rl 1 2)

Here R is the c.m. , n is the director, and M = M,
+M2. The energy of this molecule is

e = —'MR + —Mn +U (10)

where U is the potential energy. We now trans-
form to a coordinate system moving with velocity
v and rotating with angular velocity ~. The energy
of the molecule measured by an observer in this

so that n, is the rate of change of the director of a
particular molecule or group of molecules. We
have omitted external forces in Eqs. (1)-(5), but

these can be included in an obvious way by adding
terms to the right-hand sides of (2), (3), and (5).

We now transform to a coordinate system moving
with the fluid. This system thus has a velocity v

and an angular velocity ~ = & curlv. The rate of
change of the director relative to the moving fluid
is given by

N=n —(&u xn) (7)

We assume that the quantities in the stationary co-
ordinate system are related to their values in the
moving coordinate system (which we denote by a
subscript 0) by the following transformation for-
mulas of mechanics:
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moving frame is

eo=-,'M(R-v) + —,'M[n- (v&&n) ] +U

We now turn to Eq. (15) and from (13) it can be
written

The kinetic energy vanishes, as it should, if the
coordinate system is rigidly attached to the mol-

1ecule. In the case where v=R and =2curlv, e,
is the energy of the molecule excluding that part
due to the fluid flow. This is exactly the thermo-
dynamic internal energy per molecule. From (10)
and (11) for this case we find

e = 2Mv +M(~ &&n) ~ [n- (~ &&n) ]+ —.'M(~ &&n)'+eo

~p, ~T ~nk
P~ +Ps —gk +Hk) nk )xi

8
(ii„,. n, , )=O .

~xg

Using (16) to eliminate g~ this reduces to

()p, BT
p +ps, =0

xi xi

(18)

(19)

which is in agreement with Eq. (Sb). Thus in Eq.
(8b), Eo is the thermodynamic internal energy per
unit volume. The remaining transformation for-
mulas (8a) and (Sc) may be derived similarly.

The stress tensor TQ;; and the energy current
Q+ are now determined from the consistency of
Eqs. (1)-(5). The details of this calculation are
similar to those of Landau in the superfluid case
so we will only give the general outline. In the
equation of conservation of energy (3) we substi-
tute for E and Q from (8b) and (Sc) calculating the
time derivative of Eo from (9). All the time de-
rivatives are eliminated using Eqs. (1)-(5). The
resultant equation after some rearrangement has
the form

which is the usual condition for the hydrostatic
equilibrium of an ordinary fluid and in that case
is equivalent to the pressure being constant. Thus
our equations reduce in the stationary case to (17)
and (19), which are equivalent to the hydrostatic
theory of Oseen and Frank.

III. CONSERVATION OF ANGULAR MOMENTUM

The conservation of angular momentum puts a
restriction on the symmetry properties of the quan-
tities TQi, , II;&, and gi. We define the angular mo-
mentum tensor by

1 1
pM(; ——2 p(x( v) —xg v;) + o p(n(n, —n)n (), (20)

and it must satisfy the conservation relation

—+ V Q= (Qo; —N; II;,)ax;

2+(Eo- pp —Tps —pN ) V v

8 8 1
(pM, ,) + (pM,.q v, ) +— [(x, To~, —xs Toe)

Xk Xk

+ (n; Ii), —n, II;„)] = 0 (21)

9 8
+TQij P. +Qkgnk i 'U

axe
' 'x~ (12)

Substituting (20) into (21) and eliminating the time
derivatives by means of (2) and (5) gives

To;& —To, , + II;,n, ,—II;„n; „+n;g, —n, g, = 0 . (22)

This uniquely determines TQ;, and QQg as
2

To,&=(-Eo+tLp+Tps+pN ) 5,, —II»n„, , (13)

&op=&iIIig . (14)

(15)

8
II;)+g; =0 (16)

With these definitions the hydrodynamic equations
(1)-(5) are completely determined.

We now examine the stationary case when all
time derivatives vanish. From (2) and (5) we have

This is a further symmetry requirement that the
stresses must satisfy in order that angular mo-
mentum be conserved.

In the case of the Oseen-Frank theory, the part
of the energy depending on the director is

1 ~ 2 1 2„(V n - o) + —, oo (n curln+ to)

+ 2k»(n Vn) —k&o(V n) (n curln), (23)

where so and to are constants and the k;; are elas-
tic constants. We have omitted a term which only
contributes to surface energies. From their def-
initions

From (9) Eq. (16) can be written in the Euler-
Lagrange form

~~o ego0 o 0
&x~ &n ~ ~ gag ~

(17)

8&Q
1

g, = =A. e;q, n, , +k»(n Vnq)n, z

ni

QE1
II,

&
= — =-Ae»;n, —k» (n Vn;)nj —B5;, , (25)

&rJ

where the derivatives are taken at constant density
and entropy. This equation is a generalized form
of the equilibrium theory of Oseen' and Frank.

where 8;,„ is the completely antisymmetric tensor
and

A =koo(n curln+to) —k&o V n
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IV. DISSIPATIVE EFFECTS

Dissipative effects have been extensively con-
sidered by Ericksen and Leslie, and we will
briefly discuss them. In the presence of dissi-
pative effects the equations of motion (2)-(5) are
generalized to

eg,. a
+ (T((+t(() = 0

~Xj

—+& (Q+Q')=o
Bt

(2'I)

—(ps) + V ~ (psv + q/T) =R (28)

lg 0 9 0 8—(pn, )+ (pn;((, )+ (II;, +((;,)+g, +g';=0 ,Bg j Bg ~

(29)

where the extra fluxes and forces t;&, Q, q, (((&,
and g; arise from dissipative effects. In particu-
lar q is the heat current and R is the entropy pro-
duction. These fluxes and forces are subject to
the restrictions (i) that they also satisfy the sym-
metry property (22), (ii) that the entropy produc-
tion R be positive, and(iii) that they vanish in the

steady- state condition.

The quantities Q' and R are determined as before
by substituting Eqs. (9) and (11) in (27), the time
derivatives being eliminated by means of (1) and

(26)-(29). It is found that

8 =k»(V n —s(() —k, an curln

Using T(((& given in Eqs. (13), (24), and (25) it is
easily verified that Eq. (22) is identically satisfied.

—(l(4nkNk+ p, dkk+ p6nk np dkp) n(n,

—p, vn ~ N ~ —p, en N ~ —jLLQdij —p, 10nini, dI j
—jLL11n jnp dg ~

g; = (ln((Nk+kXkdkk+ X,nknpdkp)n, y X4N,
1

+ Xgnjdj;

q; = —P(n( T,n( —Pk T;
m;j=0

The symmetry relation (22) requires that

(33)

(34)

(35)

(36)

~4 ~7 We ~ &5 910 911

In the case of incompressible fluids and when

n; = const the constitutive relations simplify some-
what. In this case we have the extra relations

where N, j =n, j —&„n„jand N, j is the change of the

director gradient relative to a coordinate system
moving with the fluid.

We now confine ourselves to constitutive rela-
tions which are linear in the quantities dij, N, , and

T i. We also make the assumptions that the fluid

has a center of symmetry and that n and —n are
indistinguishable. Further we will neglect as
small, products of the director gradient and the
above quantities and terms in¹jThis strictly
confines us to the case of nematic liquid crystals.
More general constitutive relations are easily
written down but the extra terms would be expected
to be small in most cases and the relations become

extremely lengthy.
The constitutive relations consistent with the re-

quirements are exactly those of Leslie and are

t(J (l (nkNk+ p'kdkk+ l 3 nkndppk) 5'(

1
Qj =qj+v, t,j+n, m, j

R= —tij ' —7t'ijni j+gini ——1'
i~Xj ' T

(3o)
n~N„= 0

and the constitutive relations may be taken in the
form

Using the symmetry property (22) we can write R
in a more convenient form. Thus we have

8V ~

t;j ~
' ——t;jd;j+t;j(uij

Xj
1=t;, d;, + , (t;& —t, ;)v;;—

t;j = —&5ij —n1n~n~d»n;n j —n~n; Nj —n3n jN;

(39)

(40)q, =P,n, T (n; —PaT;

—(k4d„—c(kn; nk d» —n6n, nk dk(, (38)
1g;=yni+y, N, +y, n, dji

where

d j=- + and

Using (22) to eliminate t;& —t;; we get

Vi 1ti j ~
ti jdi j ~ij iknk j +gi +ijn jXj

and on substituting this result in (31) we find

R = t((d(( —(((;N((+g(N( —(q(/T) T;1 (32)

y1= &a- ~3 ) ya= &s- ~6 (41)

In addition Parodi has recently shown from the

Here & and y are arbitrary scalar functions of po-
sition and time. These terms arise because for an
incompressible fluid the stress is indeterminate to
within such a scalar, and in the case where n has a
constant magnitude, g; is indeterminate within asca-
lar multiple of the director. These scalar func-
tions are determined by the equations of motion.
The symmetry relation (22) requires that
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Onsager relations that

na+ @3=n, —n5 (42)

Thus the theory contains seven dissipative coeffi-
cients.
In cholesteric crystals, as shown by Leslie, ' cer-
tain additional terms may occur in (88)-(40). ln

these crystals the molecules are optically active
and not invariant under reflections in planes con-
taining the director n. We assume that n and —n

are still indistinguishable. In thi. s case we may
have additional terms,

1
Q7e&pqnynp T q Q8e jpqn&np T q

11 i3e;;an T n, q. = —p3e ~I,n)NI,
(48)

with y3= ne- &7. These terms indicate that a ther-
mal gradient gives rise to a torque on the mole-
cules. The restrictions imposed on the coeffi-
cients n; and P; by the requirement that the en-

tropy production be positive have been given by

Leslie, ' and for completeness we reproduce

them below:

Q.4
~ 0, 2@4+ &5+ &6 ~ 0

2a(+ 3&4+ 2&~+ 2&6 0

4r& (»4+ o'5+ &6) - (o'a+ o'g+ r2)',
pg + pp - 0, p2 - 0

4P2yi P3

(44)

In conclusion we note that within the present
model of a liquid crystal Eqs. (1) and (28)-(29)
are a consistent and complete set of hydrodynamic
equations. They should be useful in discussing the
hydrodynamics of cholesteric and smectic crystals,
and some applications will be given elsewhere.
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