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The description of the statistical dynamics of quantum oscillators is formulated in terms
of the Wigner distribution, analogous to the more commonly used P distribution, with ex-
plicit formulas being obtained for its time evolution and for average values. This formula-
tion is desirable because, e.g. , the Wigner distribution always exists whereas the P distribu-
tion does not. The formalism is applied to the process of parametric amplification in a single
mode, which may be considered as the degenerate form of the well-known two-mode case.
This degeneracy gives rise to significantly different properties; for example, the P distribu-
tion for the single mode of interest evolves from a circularly symmetric two-dimensional
Gaussian into an elliptically symmetric form and ceases to exist after a finite time, even for
amplification in the presence of losses. This is contrary to the two-mode case. The cor-
responding Wigner distribution is found to exist as a well-behaved function for aO time as ex-
pected, regardless of the amount of losses, and is used to calculate average values of various
quantities of interest. It is found, e.g. , that. in the lossless case the average number of
photons in the signal mode always becomes infinite as t- ~. This is in contrast to the cor-
responding classical result for the lossless case which allows the signal to decay rather
than to grow with time, depending on the relative phase between the signal and the pump.
Field fluctuations are discussed and found to have some unusual properties. The combina-
tion of frequency up-conversion with single-mode amplification is also described briefly.
The effect of the quantization of the pump oscillator is considered in an Appendix.

I. INTRODUCTION

The theoretical formulation that has been de-
veloped during the past few years for the descrip-
tion of various basic processes and field proper-
ties which are of interest in quantum electronics
and quantum optics has included to a considerable
extent formulations in terms of quantum-oscillator
statistical distribution functions. Glauber, '
especially, has made extensive use of the eigen-
states of the oscillator annihilation operator,
called coherent states, in his development of the
theory. These states have been used to form the
basis for an expansion of the density operator in
terms of a distribution function. The use of a
distribution function, rather than the density oper-
ator, has the advantage that it is an ordinary func-
tion, allowing a graphical representation of the
systexn under study, and allowing the calculation
of average values by ordinary integrals very sim-
ilar to the way in which it is done classically. If

the time evolution of the distribution function can
be determined, then one has the complete descrip-
tion of the corresponding process as a function of
time. Of the possible distribution functions in
terms of which a density operator maybe expanded,
the particular one usually referred to as the I'
distribution has received the most attention; it is
a particular ("diagonal" ) case of the general dis-
tribution function which is obtained when the den-
sity operator is expanded in terms of coherent
states. The I' distribution has a simple form and
many convenient properties, and has therefore
been used a good deal, but being a special case it
leaves open the possibility that it is not adequate
to describe all fields. Thus, the applicability or
validity of the I' distribution has caused consider-
able debate and study. Whereas fields could be
thought of for which the I' distribution does not
exist (e. g. , a field in the pure occupation-number
state '~), it seemed at first as if it were adequate
for fields which are met in practice. Mollow and
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Glauber found, however, in their study of para-
metric amplification in two modes, that the descrip-
tion of the coupled modes by a single P distribution
is not always possible. They then ment to another
distribution function, the Wigner distribution, and
found that it does exist for this case at all times.
In fact, as they point out, the Wigner distribution
always exists for all quantum states. The relation-
ship betmeen the Wigner and P distributions has
been found. ' 'o

In this paper, the process of parametric ampli-
fication in a single mode, rather than intwo modes,
is presented and analyzed. It is found that this
provides a simple case for which the P distribution
breaks domn, and one may see justhom aninitially
meQ-defined P distribution for the mode of interest
evolves into a strongly singular function in the
region of operation that is of interest. The Wig-
ner distribution is therefore needed for a complete
description of this process, and it is obtained and
shown to exist as a well-behaved function for all
time. Since the Wigner distribution always exists
and it is now seen that the P distribution does not
exist for all physically realizable electromagnetic
fie1ds, it seems desirable to develop a general
formulation in terms of the Wigner distribution
analogous to mhat has been done for the P distri-
bution. " This is done in Sec. II in tmo alternative
representations: first in terms of the eigenstates
of the displacement and momentum operators,
and second in terms of the coherent states. The
first might seem more natural for the Wigner dis-
tribution, but the second turns out to be simpler.
In fact, in terms of coherent states, the resulting
formulas obtained in this work involving the Wig-
ner distribution are as simple and convenient to
use as those involving the P distribution. The
formulas obtained are for the determination of the
time evolution of the Wigner distribution, and for
the calculation of average values by means of the
Wigner distribution at any time.

In See. III, the results for the Wigner distribu-
tion found in Sec. II are applied to the process of
parametric amplification in a single mode, after
finding that the P distribution for this case breaks
down in the region of operation that is of interest.
Results for the amplification and for the field fluc-
tuations are obtained, using the Wigner distribu-
tion. Some final remarks are made in Sec. IV
along with a brief description of the extension of
the theory of parametric amplification in a single
mode to include the process of frequency up-con-
version. In Appendix A, the definitions, proper-
ties, and basic relations of the various pertinent
states and operators which are used in this work
are reviewed. Appendix B is used to present an
example (a pair of coupled oscillators) which shows

explicitly horn an originally well-behaved P distri-
bution becomes highly singular as a pure occupa-
tion-number state is approached, mhile the cor-
responding Wigner distribution remains well-be-
haved. These results for the pure occupation-
number state are mell known '; these calculations
are presented to shorn by means of a simple ex-
ample how these results came about. Appendix C
is used to evaluate several complex integrals that
occur in Sec. III. In Appendix D is considered the
quantum-meehanieal, rather than classical, treat-
ment of the pump. In the remainder of this section
some of the theory and results concerning the P dis-
tribution will be reviewed.

The P distribution is defined ' by the following
(diagonal) expansion ' of the density operator p
over the coherent states I z)

o= f f dxdyI (x, y)~z) &z~ .

Since Trp =1, the P distribution is normalized:

A 6-function singularity is allowed for the P dis-
tribution, P(x, y) = 6(x —xo)5(y —yo)q so that the
density operator for the pure coherent state may
be obtained from Eq. (1.1) as p = Iso) &zo I.

Following Robl, " some useful results involving
the P distribution mill now be reviewed. The
average value of an observable which is repre-
sented by the operator function I' in a system de-
scribed by a density operator p is given by

&&(t)& = »[p(0)J'(t)] = »[p(t)&(0)] .

To study a system of oscillators, let p(t) represent
the density operator for the system and let E&(0)
be an operator mhich operates only on the jth oscil-
lator of the system at time zero. Taking the trace
over all states except those of the jth oscillator
yields p&(t)E, (0), where p&(t) denotes the trace of
the density operator over all states except those
of the jth oscillator. Therefore, one may mrite
from the tmo equivalent expressions for the aver-
age value of E&(t)

&~ (t) = »[p(0)~ (t)]= »;[p (t)&;(0)l

where the symbol Tr& denotes the trace over all
states of the jth oscillator. The equality on the
right-hand side above allows one to calculate the
time evolution of the P distribution corresponding
to any particular oscillator in the system. If the
system is composed of initially independent oscil-
lators, then the initial density operator p(0) can be
written as a. direct product of the p;(0) for each
oscillator. Using Eq. (1.1) to express p in terms
of P gives, from Eq. (1.4),
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f f dx/ dp/ P/(x/, y/, t)&z/
l
F/(0)

l 8/&

= f.. .fII,.dx, dy, P, (x „y;,0)&E.() lF/(t) lbt]'&.

(1.5)

If the operator exp[- -,'i)a/ (t)]exp[- -2i(*a/(t)] is
substituted for J &, then this equation may be for-
mally solved for P/(x/, y/, t) by means of a Fourier
transform, yielding

P,(x,', »', t) = (2)t) ' f f dt d&le'" /~'/& f.. .f Ili

P (x 0)/&1 le-i&t/ &q/&t&e-t(t/ )q/(t) l(e )&

(1 8)

where & = $ + ig, z = x+ iy. This result gives the
time evolution of the P distribution for the jth
oscillator in terms of the initial P distributions of
all the oscillators, provided the Fourier transform
exists. Whether it exists or not depends on the
solutions to Heisenberg's equations of motion for
the annihilation operator a/(t), which pertains to
the jth mode of the radiation field as represented
by a quantum oscillator, and for the corresponding
creation operator at (t), for the system under study,
and on the initial distributions.

If the P distribution exists and is determined at
time t, then the average value of any operator
F/(t), pertaining to the jth oscillator at time t, is,
from Eqs. (1.1) and (1.4),

&,(t)&= f f dx,'dv,'P/(x, ', », t)&e'IF/(0) le'& (1 ~)

Of particular interest and usefulness are P distri-
butions which are Gaussian in form

P (x $ t) = [vv (t)]-le-lq. (t) 1 Is& y/(t) I (1 8)

where o& determines the width and y& the location
of the center of the Gaussian. For example, in
the limit as o&- 0, P& approaches a 5 function,
which corresponds to the pure coherent state. In
the other extreme, we have thermal equilibrium,
e. g. , which is represented by a Gaussian centered
at the origin of the complex plane (y/ = 0), with
&r/= (e""/'" —1) ', whichalso equals the average
number of quanta in the jth mode in the Planckt
thermal equilibrium distribution. The probability
that the jth mode of the radiation field, as described
by a Gaussian P distribution, contains n photons
at time t approaches a Bose-Einstein distribution
as y/(t) —0 and approaches a Poisson distribution
as o/(t)-0. A convenient result for the average
value of the number operator N= a a, when

P, (x/, », t) is a Gauss. ian as in Eq. (1.8) above,
can be obtained for the jth oscillator at any time
t from Eq. (1.V) to be

&A', (t)&= ly, (t) l"a, (t) . (1.9)

Robl" has examined in particular the time evo-

II. STATISTICAL DYNAMICS OF QUANTUM
OSCILLATORS IN TERMS OF SIGNER

DISTRIBUTION

We shall use the expression obtained by Moyal
as our basic definition of the Wigner distribution.
He showed that the Fourier transform of the
characteristic function )t(f, &I, t), where

X(&, r), t) =»[ (t)e ""'""]=»[p(0)e'""""""']
(2 1)

produces the same form of the distribution function
as originally given by Wigner. That is, the Wig-
ner distribution W(q, p, t) is given by

Ii'(q, P, t) = (2)/) 'f f d( d//X((, r/, t)e" t""t') . (2. 2)

The characteristic function y((, rI, t) is defined by
an expansion due to Weyl' applied to the density
operator

p(t)=(») 'f f 4dqX(h, n, t)e"" "
From Eq. (2. 2) we have

&t(], &I, t) = f f dq dp W(q, p, t)e" (t''q/') .

(2. 8)

(2. 4)

The Wigner distribution is another of the quasi-
probability functions; it is normalized, as may be
seen by letting $ = ri = 0 in Eq. (2. 4) and referring
to Eq. (2. 1),

f f dqdp W(q, p, t) = 1 . (2. 5)

Substitution of Eq. (2. 4) into Eq. (2. 8) yields the
density operator in terms of the Wigner distribu-
tion at any time t,

p(t) = (2)/)
'f f dq dp W(q, p, t)

&& ff d~ dq e-i&tqqqp)ei&to+qt'& (2. 6)

We shall consider a system of oscillators which
are assumed to be initially independent, and shall
seek expressions for the time evolution of the Wig-
ner distribution, and the average value of any ob-
servable at any time t, for the jth oscillator. The
method used in the Introduction to obtain the time

lution of Gaussian P distributions and has shown
that if the solutions to Heisenberg's equations of
motion are of the form

a/(t) = Q „w»(t)aq+ Q t w»(t) a, + g/(t), k qt l (1.10)

where the sv& and ); are ordinary functions of time
(initial values are written without any time de-
pendence), then the P distribution for the jth oscil-
lator exists and remains Gaussian at any time.
Its width and center are given by, for this case,

&r/(t) = Q„ l
w»(t)

l
&r„+Qt l w/t (t)

l
(I, y o,), (1.11)

y/(t)=Z„w/, (t)y, +g, w»(t)y'f+g, (t) . (1. 12)
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evolution of the P distribution could also be used
here, but we shall proceed directly from the im-
mediately preceding equations. The development
of the theory may be carried out either in terms
of the operators Q, P and their eigenstates I q), Ip),
or in terms of the operators a, a and the coherent
states I z) (see Appendix A for notation and proper-
ties). This will be done separately in Secs. II A

and II 8.

composition, we now use the alternative forms

&(g Q+f)P) e & (1/2)&P &k'Q ~ (1/2)nP e & (1/2) CQ i r)Pe &(1/2) fQ

The trace in Eq. (2. 9) is then taken in a similar
manner to that above but now the integrations in-
volved produce 6 functions. Then integration over
$, &I leads to the following simple formula for this
special case':

&f[P;(t)]+g[Q;(t)])= f f dq;dp, [f(p)+g(q;)]
A. Formulation in Terms of Operators Q, P, and

Their Eigenstates x W,.(q, , p, , t). (2. 11)

Using Eq. (2. 6) for the ith oscillator at t= 0 and
substituting into Eq. (2. 1) written for the jth oscil-
lator at time t gives

&t, (~, q, t)= Tr[II,.(2~)-'j f dq, dp, .W, (q, , p, , o)

x f f dard re-i(E ' q&+n'P
z

& ei(4' Q +n' I'

In this particular case, the average value is ob-
tained exactly as is done classically by integrating
over phase space the ordinary functions weighted
by the (Wigner) distribution function. A useful
example for which this equation is directly appli-
cable is the number operator W= a a, which in
terms of P and Q for the jth oscillator is

)( e-i [.(Q)(t)+rfPg(t) jg (2. 'I)
&g(t) = 2[Pg (t)+ Qg (t) —1]

The trace may be evaluated between q eigenstates,
in which case the identity operator for p eigen-
states is inserted; then the expressions for the
bracket &q Ip) and the Dirac 6 function are used,
giving a result for &t&(], », t) whichwh, en substituted
into Eq. (2. 2), yields the desired result

W, (q,', p,', t) = (2»)-' f f d~ dq e"«~~~~& II,.[(2/7&)'"

x f f dq; dp; W;(q;, p„0)e 2"&~&

xf . . f d tidpri &Q, ].le
& [gq. (&&+gp.&g&&l~ lp~)

This formula expresses the time evolution of the
Wigner distribution for the jth oscillator.

The formula for the average value of any oper-
ator function pertaining to the jth oscillator F&(t)
is obtained by substituting Eq. (2. 6) for the den-
sity operator into Eq. (1.4), yielding

&F,(t)) = (2&&)
' f f d& d&& f f dq; dp, W, (q;, p;, t)

x e '"'~'&'Tr, .[e'"&~ 'F (0)] . (2. 9)

The trace may be evaluated in terms of the q eigen-
states by inserting the identity operator for p
eigenstates and using the Baker-Hausdorff rule to
effect the decomposition exp [i()Q+ qP)] = exp (i 2 $&I)

exp(i&Q) exp(i&IP). Then integration over (, q gives
the general result

&F,(t)) = (2/w)' f J dq, dp; W&(q, , p, , t)e "s~g

xf f dqj'dpi' &ql F,.(0) lpga)e" ~s'& '&'J' 'g's& .
(2. 10)

If F&(t) can be expressed in the particular form
of a sum of a function f of P&(t) and a function g of

Q&(t) then an especially simple formula for the
average value results. Instead of the previous de-

In particular, if W, (q;, P&, t) is a Gaussian whose
width is defined by o", (t) and center by z,". (t), then
Eq. (2. 11) gives

&A&(t) = '[l ~&'(-t) l'+ o~( )t1]— (2. 12)

2
e -i,( g Q+qP) -(1/4) IO' I - ~ g//2)a™i(f //2)a=e e 8

where &= )+ iq, then Eq. (2. 1) becomes, for the
jth oscillator,

X,(~ . t)=»[j frr, d;dy, P,(.„yii 0)

B. Formulation in Terms of Operators a, a),
and Coherent States

The formulation up to this point has been car-
ried out in terms of the operators Q, P, and their
eigenstates, which might seem natural when using
the Wigner distribution. However, the general
formulas obtained in this way are seen to be rather
complex; another inconvenience is that the model
Hamiltonian for the system under study is usually
expressed, and the equations of motion solved, in
terms of a and at rather than Q and P. It there-
fore seems advantageous to develop the formulas
in terms of a and at (and coherent states and initial

P distributions). This will have the added ad-
vantage of allowing a more direct comparison be-
tween the Wigner- and P-distribution formulations,
which is done in Sec. IIC.

The basic formulas for the Wigner dist"ibution,
Eq. (2. 2), and for the characteristic function, Eq.
(2. 1), are again the starting point, but now weex-
press the p;(0) in terms of the initial P distribu-
tions, by means of Eq. (1.1), and Q and P are ex-
pressed in terms of a and at (see Appendix A).
Using now the decomposition
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e ) (e ~e(-t/4)&L'&e t(-t/42)a/(t)e t(-t /&2)o/(t)]x z, z, e

(2. 13)

Evaluating the trace over any complete set of
state (e. g. , the number states), substituting the
result into Eq. (2. 2) written for the jth oscillator
(and replacing r. by f/v 2 for convenience) yields
the result

W, (q,', )I&,', t) = ,'(2—7/) 'f f d$ dt&e
' """'" '

)&et (&tie'2&t/ (q/42&p' )f fg d d P ( 0)

x((z )~e t&l/?&(a/&t& e-t&t/t&t a/& &~( ])8 8 (2. 14)

This gives

(E/()t)) = (2)/) 'f f d( dqe "/ " ' f f dq/dP/ W/(q/, P,, t)

xe' t't'')tt Tr [e'( ~ "j "t '~/E (0)]

(2. 15)

Taking the trace over any complete set of states
of the jth oscillator and using the identity operator
for coherent states gives the general result (after
replacing r„by (/W2)

(E (t)/)=(2 )2))f f d]dt&e ) t '" f f dq/dp,

W ( p f)et(t/42)q/+(n/42&P/)f f dx dy

x(x ~et()/ )to/et / &t /E (0) ~x ) (2 18)

As an example, consider the operator a a~, ~

any positive integer, for which the following iden-
tity holds:

a at = (ata+ 1)(ata+ 2) ~ ~ ~ (ata+ &(). (2. 1V)

This form, rather than normal form, is useful
here in evaluating the trace in Eq. (2. 15), since
a trace allows cyclic permutation of factors, and
this form allows indirectly the calculation of the
average value of any power of the number operator
N= ata. Substitution of Eq. (2. 17) for E/(0) into
Eq. (2. 15), evaluation of the trace between coher-
ent states, and integration over $, t& (and replacing
r„by f/v'2 and e by x/v"2) gives the result

(e/(f)~/ «» =(2"') 'f f dq/ dp/ W/(q/ » f)

Equation (2. 14) gives the Wigner distribution for
the jth oscillator at any time in terms of the initial
set of P distributions, the operators a/(f) and at/(t),

and the coherent states. It is an alternative ex-
pression to that in Eq. (2. 8).

The average value of E/(t) in this formulation is
obtained by again using Eq. (2. 8) for p/(t) in Eq.
(1.4), but expressing the last factor in Eq. (2. 8)
as

&f(&Q+n&) (-1/4) ICI2 &(0/&3)~f~ &(0 /&&)~f

x Jf'dx/dy/(x'/+yt/)'e (&-"/ "/& '"/'/' '. (2. 18)

For &l. = 1 and W, (q;, p, , t) a Gaussian, Eq. (2. 18) to-
gether with Eq. (2. IV) yields the same result for
(N/(t)) as obtained before from the q, p formulation,
Eq. (2. 12).

C. Comparison of W(q, p, t ) and P(x, y, t )

The relationship between the Wigner and P dis-
tributions can be found explicitly by a calculation
similar to that leading up to Eq. (2. 14), this time
starting with the density operator written at time
t. Then Eqs. (1.1), (2. 1), and (2. 2) give the re-
sult (also obtained by others 'o)

W(q, P, t)=t/ 'f J-dxdyP(x, y, t)e 't ""-'~ '" ) -.

(2. 19)

From this relation one may prove the theorem
that if the P distribution is a Gaussian then the Wig-
ner distribution is a Gaussian also, with the rela-
tionships between their widths and centers given by

o (t) = 2@'(t)+1, y (t) = v 2 y(t) . (2. 20)

The superscript m is used to distinguish quantities
referring to the Wigner distribution from those re-
ferring to the P distribution. This theorem allows
the results concerning the properties and evolution
of Gaussian P distributions [see Eqs. (1.8)-(1.12)]
to be applied to Gaussian Signer distributions as
well. It is seen, e. g. , that the pure coherent state
is represented by a Gaussian Wigner distribution of
unit width (&t = 1), rather than zero width as for the
P distribution, and that thermal equilibrium is rep-
resented by a Gaussian Wigner distribution cen-
tered at the origin, as with the P distribution. It
might be noted that Eq. (2.20) establishes the iden-
tity of the results obtained for (N,.(t)) by means of
either Gaussian Wigner or P distributions, Eqs.
(2. 12) and (l. 9).

Other formulas which may be useful and which
give further information on the relation between the
quantities W(q, p, t), P(x, y, t), and )&($, q, t) will now
be presented. The relation between P(x, y, t) and

y, ($, )&, f) can be obtained by equating Eqs. (2. 3) and
(1.1) for p(t), taking the expectation value of both
sides between the coherent states lz), making use
of the Fourier transform, and performing the in-
tegration over x', y', yielding the result

X(&, q, t) = e' ' ""'" ' f f dxdy P(x, y, t)e ' "'"' ""' .
(2. 21)

Using the inverse Fourier transform gives

P(x y f)=2(27/) tf f d( d&&e&
-/4&&t +»

($ q t)e«&t" + "»

(2. 22)

(These results agree with those of Glassgold and
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Holliday, although they use a different definition
for the coherent states. ) Comparing Eq. (2. 21)
with Eq. (2. 4), and Eq. (2, 22) with Eq. (2. 2),
shows that the difference in the relation between
P(x, y, t) or W(q, p, t) with y($, q, t) is essentially an
exponential factor.

Equation (2. 19) relating W(q, p, t) to P(x, y, t) may
now be obtained also by using the result given
above in Eq. (2. 21) in Eq. (2. 2). It can also be
easily shown that Eq. (2. 19) yields W, (q,', p', , t) in
terms of the P;(x;, y, , 0) as stated in Eq. (2. 14) if
Eq. (1.6) is used for P;(x&', y', , t). An alternative
derivation of the time-evolution formula for the
P distribution, Eq. (1.6), may be obtained using
the methods presented here by means of Eqs.
(2. 22), (2. 1), and (1.1).

A comparison of the formulas for W&(q, ', P&, t)
and P&(x&', y&, t) in terms of P;(x;, y„0), Eqs. (2. 14)
and (1.6), respectively, shows that the formula for
the Wigner distribution has a factor exp[- —,'(( +q )]
which the P-distribution formula does not. This
gives the integrals over $, q stronger convergence
in the case of the Wigner distribution and indicates
why the Wigner distribution may exist at time t
even when the P distribution does not. Another in-
dication of this is given, for Gaussian distribu-
tions, by the relation e(t) = —,'[a"(t) —1] from Eq.
(2. 20), which shows that the width of the P distri-
bution can be zero or negative while that of the
A'igner distribution remains positive. A thorough
study of the existence properties of the W'igner
and P distributions has been made recently by Ca-
hill and Glauber, 7 and they show that in fact the
A'igner distribution always exists. Therefore, the
formulation in terms of the Wigner distribution
presented herein may be very useful in describing
the statistical dynamics of quantum oscillators,
especially when the P distribution breaks down, as
it does, e. g. , for the process described in Sec. QI.

III. PARAMETRIC AMPLIFICATION IN A
SINGLE MODE

We present here a study of parametric amplifi-
cation in a single mode, in contrast to the usual
two-mode case which has been treated rather ex-
tensively '"'"'; this degenerate form has quite
different properties as compared to the two-mode
case. Summarizing for reference some of the
pertinent results for the two-mode case, the solu-
tion for a&(t) for that case is of the form given in
Eq. (1.10), so Eqs. (1.8)-(1.12) apply directly,
and we have immediately the result that an initial
Gaussian P distribution for either mode remains
Gaussian in form (circularly symmetric about its
center) for all time. Those equations show that
the distribution grows in width and moves towards
infinity along a hyperbolic path in the complex z

a (t) = —i&uoa(t)+ i@a (t)e '"0'+ ixQ, P,a»(t), (3. 2)

a~„(t)= —i&a,a„~(t)+ isa(t), (3 3)

along with the corresponding adjoint equations.
Making the substitutions

a(t) =A(t)e '"o', (3.4)
m

& ai. (t) =Ai(t)e '""
y, -1

results in the following simplified set of equations
in the rotating frame:

A (t) = tgA'(t) + t~ P,A,(t),

(3. 6)

(3. 6)

A ~(t) + i(~, —&uo)A&, (t) = ivm~A(t), (3 7)

and the adjoint equations. The last equation was
obtained after summing over p,; it may be formal-
ly integrated directly, and Robl" has obtained an
approximate solution to this very same type of
equation. He assumes a uniform density of damp-

plane as time goes on (at least, for the lossless
case), which corresponds to amplification.

Parametric amplification in a single mode, in-
cluding losses, may be described by the Hamilto-
nian

H= h~o(ata+ 2) —tt,'g(-a~a~e @"o'+aae""o')
m)t m$

+ a+ (u, Q (a,',a„+ -', )—tt~ P P (a'„a+ a'a„).
g-1 p =1

(3.1)
The first term describes the self-energy of the
oscillator representing the mode of interest. The
second term describes the coupling of the classical
pump to that mode, giving rise to the parametric
amplification process. The third term represents
the self-energy of a system of damping (loss) oscil-
lators, m„of which have the frequency &,~, and the
last term represents the coupling of the radiation
oscillator in the single mode of interest to the res-
ervoir of damping oscillators. The phenomeno-
logical coupling constants —,

'
g and e are taken to

be positive real; they have the dimension of a fre-
quency. The pump is assumed to be an intense
coherent beam from a source such as a laser, with
frequency twice that of the single mode of interest
so that one pump quantum can produce two signal
quanta. The phase of the pump is taken to be zero
at t= 0 for convenience. Our model Hamiltonian
above is a degenerate form of the usual two-mode
Hamiltonian, and a device based on this model
might be called a degenerate parametric amplifier.

The operator equations of motion are obtained
by using Eq. (3. 1) in Heisenberg's equation of
motion, along with the usual boson commutation
relations (and the fact that operators pertaining to
different oscillators commute). They are
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A (t) = igA'(t) + ix Q, e (&"
&

"o"Q, a,„-&(p(&do) K'A(t),

(3.9)

and likewise for the corresponding adjoint equations.
Combining Eq. (S. 9) and its adjoint equation yields
the single equation in A(t),

A (t) + 2QA (t) + (Q' —g )A(t) = /( ~,[(&d„—&d,) + iQ]

xe (&") "o-&tL, a,„+Kg+8 ""&-"o&tQ„a,',
(3. 10)

The abbreviation Q = ~p(&do)s2, which has the dimen-
sion of a frequency, has been used. The general
solution of this equation is found to be

A(t) =(k,e '+ koe ')e "'-RQ) D&,'[(&d&, —&do)+iQ]

x e '"&-"o"Q a„-Rg@(D*) 'e""&, "o&t Q, a,'„,

(3. 11)

where

D&,= (&d&-&do) + 2zQ(&d&„-&do) -(Q -g ). (3. 12)

The constants k& and k2 are to be evaluated from
the initial conditions. The initial value of A(t) is
simply obtained from Eq. (3.4) as A(0)=a. The
initial value of A (t) must, however, be obtained
from Eq. (S. 9) rather than Eq. (3. 6), since it is
Eq. (3.9) which makes use of the approximate
solution (3.8), that was used in obtaining the gen-
eral solution (3. 11). Thus, from Eq. (3.9),

A (0) = iga +it(Q~Q„a» —Qa. (3. 13)

Matching these initial values to the general solu-
tion (3. 11), solving for the constants k, and k„and
substituting these expressions into Eq. (3. 11),
gives the complete solution, which can be written
in the form

ing oscillators, which we shall denote by p(&do), in
the range coo- ~'& ~), & no+ ~', and in this limit
obtains the result, written for our Eq. (3.7),

+A, (t) =+e ""~ o" Q„a&„+iK(/p(&d&))A(t).

(3 6)
It should be noted that this solution does not sat-
isfy the initial conditions exactly [see Eq. (3. 5)],
so care must be taken in matching our general so-
lution to the initial conditions.

Substitution of Eq. (3.8) into Eq. (3.6) gives

A(t) = R(t)a+ S(t)at++ U,(t)Q a),a++ V„(t)pa~„.
(S. 14)

The following abbreviations are used:

R(t) = e "' coshgt,

S(t) = ie~( sinhgt= iS'{t),

(3. 15)

(3 16)

U, (t) = ixD, '(e "'[Q coshgt+ g sinhgt —i(&d, -&d,)

)& coshgt]+i[(&d, -&do)+iQ]e "
& "o&t], (3. 17)

V&,(t) = t&(Df) '(e "'[Q sinhgt+ g coshgt+ i(&d„-&do)

&& sinhgt] -ge""1 "o") . (3. 18)

The solution for a(t) is then given by Eq. (3.4). It
can be shown by a rather long calculation that, in
the approximation used in obtaining the solution
[see discussion preceding Eq. (3.8) and at the end
of Appendix C] this solution satisfies the require-
ment that [a(t), a (t)] = 1, and it agrees with its ini-
tial value a when t-0.

The P distribution for the radiation oscillator rep-
resenting the single mode of interest (which shall
be called the signal oscillator or signal mode) in
this model will now be studied. We assume that
all modes of oscillation can initially be represented
by Gaussian P distributions of quantum oscillators
(except for the classical pump which has been rep-
resented by an ordinary function). %e take o for
the width and y= &2+i p for the center of the Gaussian
representing the signal oscillator, and o» for the
widths and y» = 0 for the centers of the Gaussia»
representing the damping oscillators, assuming
them to be in thermal equilibrium initially. The
solution a(t) above is not of the form given in Eq.
(1.10), so the formulas related to that equation
are not directly applicable here. Therefore, the
expression for the P distribution for the signal
oscillator at time t is sought by substituting these
initial Gaussian P distributions and the solution
a(t) above into the general formula Eq. (l. 6).

Transformation is made to the rotating frames
(denoted by a bar under the symbol) by means of
r= &exp(-i&dot), z'=z'exp(-i&dot), and we also use
a(t) =A{t)exp(-i&dot). Since the operators pertaining
to different oscillators commute, the bracket ex-
pression in Eq. (1.6) factors. We have

p(Zt yi t) (2&()-2jf d~ g e((k&&'+ON') j1 dZ dy p(Z ~ 0)(Z e-((/2)if (R(t&a (S'(t)al e &(/2&((R2(t&a+IS '(t&at)
~

X 8-(I/2)if IU), (t)a)t++ 7'&(b)a)t 3I f
(S. 19)
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Each bracket is evaluated after first putting the operator function inside in normal form by means of the
Baker-Hausdorff rules. [Note that the first two terms of the solution (3. 14), which occur in the first brack-
et above, do not commute; this, in fact, is the basic mathematical difference between the degenerate and
the two-mode cases. ] Then putting in the Gaussian expressions for the initial P distributions as described
previously and carrying out the integration over x, y and x», y» by means of the formula

f (q-qo) +iBq d ( g)1/2 -(A jq)B +iqoB A & 0 (3. 20)aoo

yields

&(&,y, t) = (2v) f f d] d )7e pxf--,'[(R +S' )o+S' +g, I U, I Q„o,„+Q„IV
I Q„(o,„+I)](( +7)')}

x exp(- 4 [Z„Re(U, V)) Q„(2o„„+1)](('- ri )}exp(- —,'[(2o+ 1)RS'+Z, Im(U, V~) Z„(2o,„+1 )]LE}
xexp1(i[x'- (nR+ pS')]&}exp(t[y' —(aS'+ pR)]rJ} . (3. 21)

[In this equation and those that follow, the time de-
pendence of the functions R(t), S (t), U, (t), and

V~(t) is not indicated for the sake of simplicity].
The terms with sums involving U~ and V~, which

are of the form
mg

&X-&0 &)tp, ~

)ti, -1

become

+mao) f((d) (do)

after summing over p, . If we assume that only
those damping oscillators with frequencies near
resonance with the signal frequency are of impor-
tance, then o, = (e"")+r-1) ' can be replaced by the
constant value o'= (e""o" -1) ', and the expression
becomes o Z)) m, f((o„-(oo). If we pass to the limit
of a uniform density of damping oscillators p((oo) as
was done in obtaining the solution a(t), then the sum

o'g„m), f(o))„-&uo) is replaced by the integral
o'fo do), p(o), )y((o, o)o) U-sing .the same assump-

tion as above, letting & = & —coo, and extending the
limits to infinity, we arrive at the replacement
formula

fftg

Qf(o), -o)o) P o„-o'p(o)o) f" do)f((d). (3.22)

The terms of this form in Eq. (3. 21) without the
O,„are of course treated in the same way. This
calculation is then carried out for those terms in

Eq (3. 21. ) of this form. This is done in Appendix
C. In particular, it is found there that LRe(U), V,),
which becomes p(o)o) J Re[U(o)) V(&u)]do), is zero, so
the($ -rt') term in Eq (3.21.) disappears. This
allows the elimination of the cross term ($)) ) by
means of a simple 45 rotation (taken counter-
clockwise) from the $,ri frame to the $ ', 7)' frame.
If a similar rotation is made from the x', y' frame
to the x, y" frame, then the expression for the
P distribution becomes a simple product of two
standard integrals of the form given in Eq. (3. 20),

P'(x", y", t) = (2q) ' f exp[ ——,'[(R+ S')'o+ S'(R+S')+o'p(o)o) f I
UI do)+ (o'+1)p(o)o)f I

VI d(u

+(2o'+1)p((do) f Im(UV)do)]g' }exp(i(x"—(I/)t2)[(n+P)(R+ S)]}$')d$'(2v) '

x f exp( l'[( R-)S' o-(S-R-)S+'o(~p)foIUI'd~+(o'+I)p(~o)f IVI'd~

—(2o'+I)p(o)o) f Im(UV)d(] i"d}exp(i(y" —(I/v 2)[(—n+P)(R — S)] }))) d)') (3. 23)

The expressions for the integrals over w, in-
volving the functions U and U, which occur above
in the exponentials, are given in Appendix C, Eqs.
(C7), (CB), and (Cll), and it is seen there that
they are all non-negative. The other two terms
which precede these in each exponential involved
are also themselves non-negative. Therefore, it
is seen that the integral over ( ' exists at all times
(see Eq. 3. 20) whereas the integral over n

' exists
only when

g —2cr'0 tanh(D+ g) t

0+@ 1 -t han(A g+)t
(3. aS)

[(R S') o-S'(R-S')+o-'p((do) f I UI do)+ (o'+ I)p((oo)

xf I
V I'd~ (2a I+)p-(~ )foim(UV)d&u] ~ 0

(3. 24)

Substituting the expressions for the various quan-
tities, and simplifying, results in the requirement
that the following condition be satisfied:
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FIG. 1.. I' distribution for parametric amplification
in a single mode exists only in the region above the ap-
propriate curve, according to the inequality (3.25).
The amount of damping present is characterized by the
parameter 0; the solid curve is for no damping. Since
the condition for amplification is such that Q«g/2a'
for optical frequencies and ordinary temperatures of the
medium, it is seen that I'(t) ceases to exist at some
finite time under these conditions, and this may occur
quite soon. In fact, if the initial state is a coherent one
(o =0) and Q&g/20', then I'(t) breaks down immediately.

In other words, the P distribution exists only as
long as the value of the expression on the right-
hand side above does not exceed the value of o for
the initial P distribution. So the greater its ini-
tial width is, the longer the P distribution exists.
As po1nted out 1n Append1x C the results for the
integrals involved here are valid for all values of
0 and g, so this result is also. A plot of Eq. (3. 25)
is shown in Fig. 1, with the amount of damping,
characterized by 0 = rr p(&uo)z', as a parameter.
By means of

tan, {A+g)t/[1 —tano{A+g) f]

= —,'(exp[2{1+&/g) gt]- 1]

the inequality {3.25) can also be expressed in di-
mensionless form as a function of {gt) with the
ratio {0/g) as a parameter.

Therefore, it is seen that the P distribution for
the signal mode in this model ceases to exist at
some finite time when 0 &g/2o'. (That time is
determined by the intersection of a given horizon-
tal line o = const with the appropriate curve in

Fig. 1. )
In the region for which the P distribution does

exist [that is when the inequality (3.25) is satis-

fied], the integrals over $, r} in Eq. (S. 23)
can be evaluated, using Eq. (3.20). This gives
the result

g'(x", y", t) =[rro,(t}]"'e "+"» '~"-~&'»'

x[rrg (f)]-U2e-E~ or) tv"-aorp (3 26}

where

o,(t) = (R+ S')'a + 8'(R+ 8')+o'p(&uo) f Ui'd(u

+ (o'+ I)p((uo) f ~

V~'d(os (2(r'+ I)p((uo) f Im(UV)d(u,

(S. 2'I)

(3. 28)

and t is such that the inequality (3.25) holds. The
expressions for the lntegrais ln Eq. (3.27} are
given in Appendix C, Eqs. (Cv), (C8), and (Cll},
and those for R and 8' by Eqs. (S. 15) and (S. 16).

We have denoted rotating frames by a bar under
the symbols and 45' rotations by adding a prime
to the symbols involved. The result in Eq. {3.26)
is expressed in a frame rotated 45 counterclock-

~

wise and rotating clockwise with angular frequency
&uo, so that u(t) and P(t) are in this frame. The
relation of this, the x",y" frame, to the original
x', y' frame, is given by

x = x cos((dot —@s) —y sin((a)ot err) q

y"= x' sin(&ot ——,'rr) + y' cos((sot ——,'m).

(3.29)

(S. 30)

The P distribution is a simple product of Gaus-
sians in the x",y" frame. As time progresses,
the original circularly symmetric Gaussian, in

general, becomes elliptically symmetric about its
center: It narrows in the y direction and elongates
{unless the damping is large) in the x direction. For
0 &g/2o, the I distribution eventually degenerates
into a 5 function in the y direction and then ceases to
be defined at the finite time dictated by Eq. (3. 25),
i. e. , when o (t)-0. We therefore have an example
for which the P distribution ceases to exist as a
well-behaved function under certain conditions, and
we may see how this comes about as it evolves in
time.

The center of the P distribution may go either to
zero or to infinity, depending on whether Q &g or
Q &g, respectively. The axes of the elliptical
cross section of the distribution a,re at all times
parallel to the rotating axes x",y". When there
is no damping, 0 = 0, giving cr, (t) = (c+ s) o + s(c + s)
and o'{t) ={I/v 2 ) {a+p) {c+s),p(t) = {1/v2 ) {-o'+ p)
&&{c—s), where c = coshgt ands = sinhgt. This shows
that, for Q = 0, the center always moves towards
infinity, approaching the positive or negative x"
axis asymptotically as t ~ (unless it is initially
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located at the origin, in which case it remains
there). In this case the path is one of the branches
of the rectangular hyperbola, with respect to the
x", y" frame, n(t) p(t) = —,'(- np+ p ). This com-
pares to the corresponding two-mode case for
which the path of the center is a general hyper-
bola (nonrectangular).

The corresponding Wigner distribution for this
example will now be studied. It is most convenient
to use Eq. (2. 14), with the initial P distributions
assumed to be Gaussian as above. The same pro-
cedure as used above is followed, giving the re-
sul, t

~l( II pII t) [ 8/(t)) )/p Ig ( )() (q Ot 0))

r ]~is-1/2 -(a(t) ] ~"-g fo(g) P

(3. 31)

where

ments made in Secs. I and II.
The motion of the center of the Wigner distribu-

tion is similar to that for the P distribution, the
distance of its center from the origin being M2

times that of the P distribution. The width of the
Wigner distribution is also similar to that for the
P distribution, beingla. rger according to Eq. (3.32),
but it never goes to zero in any direction (except
in the limit of no damping and infinite time).

We have found that the Wigner distribution de-
scribes the system for all time, whereas the P
distribution, in general, does not, and it may be
used to calculate average values by means of the
general formulas developed in Sec. II. For ex-
ample, the average number of photons in the sig-
nal mode at any time for this model is, from Eq.
(3. 31}for the Wigner distribution and Eq. (2. 11),
with N(t) =-,' [P'(t) + Q (t}—1],

(N(t)& =-,'[~y (t)l'+-,'[o. (t)+o (t}]-I}. (3. 37)

o, (t) =2o,(t)+1,
n (t) = &2n(t), p "(t)= &2P (t).

(3. 32)

(3. 33)

Substituting Eqs. (3. 32) and (3.33) and using also
Eqs. (3. 27) and (3. 28), the following result is ob-
tained:

The expressions for a,(t), n(t), and p(t) are given
in Eqs. (3. 27) and (3. 28), which refer to the P
distribution. It is noted that these relationships
agree with the predictions of Eq. (2. 20). We see
that the Wigner distribution is quite similar to the
P distribution, being a product of Gaussians of un-
equal width in the frame, analogous to Eqs. (3. 29)
and (3. 30), defined by,

q"= q' cos ((ppt=,')/) —p'sin((opt-~))),

p"= q'sin(p)pt 4)() + p'cos(p)pt —4)/).

(3. 34)

(3. 38)

no[ I/2(Q). g)](2o)Q [e2(o+r)t 1]+ Q(&em+ )+/(t}g

(3. 38)

That is, the Wigner distribution for the signal
mode exists as long as the value of the expression
on the right above does not exceed the value of o

for the initial P distribution. However, it is seen
that the expression on the right-hand side is al-
ways negative, so the condition is satisfied for all
time. Thus, there is no restriction on the exis-
tence of the Wigner distribution for the signal mode
in this model, in agreement with the general state-

There is an important difference, however, be-
tween the two distributions. This difference is ex-
pressed in Eq. (3.32). The requirement that must
be met in order for the Wigner distributionto exist,
and be given by Eq. (3.31), is, similar to the case
for the P distribution, that the integral over q'
exists. This is equivalent to the requirement that
o (t) be non-negative. From Eqs. (3. 32) and(3. 27),
it may be shown that this reduces to the require-
ment that the following condition be satisfied:

(N(t)) =-,' (N(0))+ ~y~'sin2y- „ge" "'

+-.' (N(0)) —~y~'sin2(/—
2(Q+g} g

2o'Q +g'
2(Q' —g') (3. 38)

We have used(N(0)) = lyI'+ o and y= n+iP = }y ~e'~.

The angle (t) is the phase of the signal at t = 0;
since the pump phase was taken to be zero at t = 0,
(t) also represents the relative phase between sig-
nal and pump at t = 0. Although the pump is rota-
ting in the complex plane at twice the angular fre-
quency as that of the signal, so that the relative
phase changes with time, it is seen in the above
equation for the expectation value of the occupa-
tion number that it is twice the signal phase rela-
tive to the pump that is of importance, and this
quantity remains constant.

From Eq. (3. 38) we find that when Q &g, ( N(t))
changes from (N(0)) to —,

' (2o'Q'+g )/(Q -g ) as t
goes from zero to infinity. (It may be noted that,
for Q»g, (N(t}) -o' as t-~, i. e. , the signal
oscillator settles into thermal equilibrium with the
damping oscillators for very large damping. ) This
represents a decrease in the signal (except for
Q=g, in which case the signal would grow by a
limited amount). For Q &g, (N(t)) increases from
its initial value without bound. The expression
corresponding to Eq. (3. 38) for the special case
Q =g shows that (N(t}) is finite at finite times, ap-
proaching infinity as t goes to finity. Therefore,
it is concluded that the condition for unlimited am-



plification is 0 &g.
From Eq. (3.25) it has already been concluded

that the I' distribution breaks down after a certain
time when Q~ g/20'. But o'= [exp(%@0/kT) —1]
and for ordinary temperatures and optical fre-
quencies, e. g. , o'«1. Therefore, if the condi-
tl011 fol' a111pllflcatioll (0 ~g) ls 111st fol' tllese c011-

ditions, then Q«g/2a' and one is well within the
region of operation for which the I' distribution
for the signal mode ceases to exist after a certain
time (see Fig. 1). It is concluded therefore that
the ceasing of the I' distribution to exist here is
not a trivial or uninteresting case, but occurs for
the very region of operation that is of interest. It
is thus quite desirable to have a description in
terms of the signer distribution formulation avail-
able as present herein,

It is perhaps of interest to compare our quantum

theory of the degenerate parametric amplifier to
the classical theory; Iouisell, ' for example, has
presented the classical treatment for the ideal
case of no damping. Our results for no damping
are obtained by letting 0 go to zero. From Eq.
(S.38), we find the ideal value in this limit to be

(N(t)& =(N(0)&(c +s )+82+2ce~y~'sin2$, (3. 39)

where a=cosh gt, s=sinh gt, (N(0)& = lyl +0; and
y= )y( e'~. We find that(N(t)&-~ as t ~, re-
gardless of the relative phase angle Q at t = 0.
Therefore, amplification always occurs for this
lossless model in the quantum theory. This is in
contrast to the classical result which allows the
signal to decay rather than to grow, depending on
the phase. The difference between the results is
the independent term sinh gt occurring in Eq.
(S.39), which is due to quantum llolse' lt 18 pl'es-
ent even if there is no signal initially [(N(0)& = 0,
which implies )y)'=0 also]. To compare to the
classical theory, in which the signal is a classical
coherent wave, we may describe this in our nota-
tion by letting o = 0. This means (N(0)& = ly I, and
even for the most negative contributionof thephase-
dependent term in Eq. (3.39), we have (N(t)&

=(N(0)& e ~'+s, which still eventually grows in
time, although it may initially decrease if (N(0)&
is large enough. The corresponding cia,ssical ex-
pression is the same except that the spontaneous
emission term sinh gt does not appear, so the sig-
nal would decay in the classical theory for this
case.

The field fluctuations will now be studied, for
which the average values of the observables whose
operators correspond to the displacement and to
the momentum of the oscillator representing the
signal mode are needed. Since the %igner distri-
bution has already been obtained, Eq. (2. 11) may
now be used for this purpose. Any power of the

(Q(t)& = n"(t) cos 8+ p"(t) sin 8, (S.41)

and for X=2,

(@ {t)&=([& (t)] + 2o."(t)j'cos 8+ 2&"(t)p (t)sin8 cos8

+f [P"(t)]'+ —,'a"(t)] sin'8, (S. 42)

where we have used the abbreviation 8= not —m+.

A similar calculation for the momentum operator
P(t) produces the results

(P(t)) = —n (t)sin8+P"(t) cos 8, (3.43)

(P'(t)& =([e (t)]'+-,'cr. (t)jsin'8 —2n (t)p (t)

x sing cos 8 + JI[p"(t)] + —,'a (t))c0828.

(3.44)

These results yield the mean-square fluctuations
in the variables corresponding to Q and to I', and
hence determine the fluctuations in the magnetic
and electric fields, respectively, that comprise
the signal,

(tlat)3=-,'0, (t) cos'8+-,'o"(t)sin'8,

(&P) =-', o, (t)sin 8+ —,'o (t)cos 8.

(3.45)

At the times when cos'8 is unity and sin'8 is zero,
the fluctuations are greater in Q than in P, since
o(t) &o"(t) for t &0. From Eqs. (3.34) and (3. 35)
it is seen that at these times W "(q",P", t) of Eq.
(3.31) becomes W(q', p', t) and the product of un-
equal-width Gaussians is then elongated in a di-
rection parallel to the q' axis. Alternatively,
when cos 8 is zero and sin 8 is unity, the Quctua-
tions are greater in P than in Q, and W(t) is elon-
gated parallel to the p' axis. Figure 2 shows the
cross section of the %igner distribution which has
evolved after several revolutions in the q', p' frame
from an initial distribution centered on the positive
q" axis in its position at t= 0{a= p &0) as a special
case. The angle 8 =(dot —

&m had been defined so
a,s to be measured positively clockwise, in the
same sense as the rotation, from the positive q'
axis. The two sets of axes coincide when g = &nor,
N=O, 1, 2, . . . , which correspondstothe situations
described above regarding fluctuations. For the
case shown in Fig. 2, P (t) = 0, so the average
values corresponding to P and Q become zero when
W(t) is aligned along the q' and p' axes, respectively.

The fluctuations in Q and in P are thus seen to

displacement therefore has the average value given

by the formula, written for the present case,

(Q'(t)& = J jdq"dP" q"(q", P", t) W'(q", p", t).
(3.40)

Using Eq. {3.31) and the inverse of Eqs. (S.34)
aIld (3.35) gives, fol' X = 1,
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If the expressions for the widths, Eqs. (3.27) and

(3. 32), are used with 040, it is found that
~P~Q & -2 as would be expected, but for 0 =0 and

cr = 0 substitution of these expressions into Eq.
(3.47) gives

(3.48)

FIG. 2. Wigner distribution for parametric amplifi-
cation in a single mode, in the special case for which
the initial circularly symmetric Gaussian distribution
was centered on the positive q" axis, (i.e. , & =P &0).
The center of the distribution is moving along the q"
axis away from the origin for small damping or towards

the origin for large damping. The eccentricity of the
elliptical cross section increases as time goes on, un-
less the damping is quite large. The ellipse represents
the intersection of a plane, parallel to and above the q',
p

' plane, with the distribution function, and is qualita-
tive only. The distribution, along with the q",p" frame,
rotates clockwise with respect to the q', p' frame, and

for the case shown 8'(t) remains centered on the positive
fL" axis, with the major axis of its elliptical cross sec-
tion remaining along the q" axis.

alternately and periodically grow and diminish as
W(f) rotates clockwise in the q', p' frame. Stating
this in another way, the fluctuations in the mag-
netic and electric fields themselves fluctuate in

magnitude as time goes on, this magnitude being
proportional to the width of W(t) in a direction
parallel to the q', p' axes, respectively, at any
time. As t gets larger, the maximum value of
these fluctuations increases and the minimum
value decreases (unless the damping is large). In

particular, these extreme values are proportional
to the widths, and as f-~, o, (t)-Q(2o'+ I)/(0 —g)
for A&g or o, (f)-~ for 0 ~g, ando (t)-A(2a" +1)/
(0+g) for all 0 and g.

It might be of interest to consider the ideal limit
of no damping in connection with the fluctuations.
Letting 0-0, we find that as f- ~, o,"(f)-~ and

o (i)- 0, so that the fluctuations in Q and in P
alternately and periodically become infinite and

zero. The product, however, never becomes
zero, but obeys the uncertainty principle: From
Egs. (3.45) and (3. 46), the uncertainty product
squared, considered as a function of P, has its
minimum value when 8 = —,'nm, n=0, 1, 2,

So, in general, we have nP&Q & —,', in agreement
with the uncertainty principle.

Thus, we see that the uncertainty principle is
satisfied for the no-damping case also, i. e. , even
when the fluctuations in one of the variables be-
come zero while those in the other variable be-
come infinite. We also see from Eq. (3.48) that
the absolute minimum uncertainty is attainable
(periodically) in this lossless case. This was
found to occur if the initial state of the signal mode
is a coherent one and at such times that 6) = —,'m,
n=0. 1, 2, . This was seen earlier to be the
same times that the fluctuations are their extreme.
For the special case shown in Fig. 2, the Wigner
distribution is elongated along one of the axes in
the q', p' frame at these times. The minimum

values of the fluctuations in the variables corre-
sponding to Q and P occur in this case when their
expectation values are zero, and the maximum
fluctuations coincide with the peak values of the
corresponding variables, and at these times mini-
mum uncertainty obtains. In the lossless case,
the minimum values of the fluctuations approach
zero as t- ~. This implies that the fluctuations
of the electric and magnetic fields tend to zero
whenever their average values are zero. When

damping is included this ideal limit of course is
not reached.

IV. FINAL REMARKS

The theory given in Sec. III on parametric am-
plification in a. single mode has been extended to
include the process of frequency up-conversion,
which might be of interest as the basis for an in-
frared detector. A brief summary of these calcu-
lations follows: Neglecting damping, the model
Hamiltonian may be written as

H= @Ops(agag + 2 ) + A(og(a2a2 + 2) —Ag(agape

+ a&a&e' "I ) —@2tc(a2a2e '"»'+ azaze'"»'),
(4. 1)

where co& =~1+~2 and +z = —,'+». A single pump of
frequency ~o = ~1=~» might be used for both pro-
cesses, such that frequency up-conversion would

occur at && = —,'~0 and amplification at co2 = 2+0. In

either case, the solution for a&(t) =A~(t) exp(- i~~t)
is found to be such that
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[()«2 g2) + «(1«R g2)1/2]1/2

m, = [(-,'«' —g') —«(-,'«' —g'}"']"'. (4. 3}
Whether the expressions for m, and m3 are real,
imaginary, or complex determines whether A, (t)
is pure exponential, oscillating, or a combination
of the two. For —,'z & g, m, and m3 are both positive
real, while for —,'z& g they are both complex. For
K=0, we have the pure imaginary case correspond-
ing to just frequency conversion. Thus, the solu-
tion /1, (t) goes from pure oscillatory to a combina-
tion of oscillatory and exponential, to pure expo-
nential as —,'K increases from zero.

For the case —,'z =g, which corresponds to equal
coupling for the amplification (—,«) and conversion
(g) processes, the solution is

/1, (t) = (coshg t -gt sinhgt)a) —t(sinhgt -gteoshgt)a,

+ i(gt «shgt)a, —(gt sin?gt)a2 . (4. 4)

This solution is a good deal simpler than that in

Eq. (4. 2} and has been used to obtain the distribu-
tion functions for mode 1 in this case. The P dis-
tribution is again found to cease to exist after a
certain time, whereas the Wigner distribution does
not and is given by

W')(q'„' p'„' t) = [va,"(t)] "'e «a""' [q", —o., (t)]'

x[)/a „(t)] ) ~e-«pf. &&)) )t/)'-ay~a))2
1

(4. 6)

where

o,""(t) = 2[(1+gt)'(c —s)'a, + (gt}'(c —s)'a~
Qy

—s(c —s}+gt(c —s)'+ (gt)' (c —s)']+ 1,
(4. 6)

o~..(t) = 2[(1 gt)'(c+ s}'o,+ (gt}—'(c+ s)'a,

+s(c+s}-gt(c+s)'+(gt)'(c+s) ]+1,
(4. V)

o.", (t) = (n, + P,}(1+gt}(c —s }+(o., —P2}(gt}(c—s),
(4. 6)

P) (t) = (- t)', +P, )(1 gt)(c+ s)+ —(n, +P,)(gt)(c+ s}.
(4. O)

A, (t) = —,'(m,' —m', ) '( [ —(m~+g '}a,—g«a, + t(«/m))g 'a,

+t(g/m, )(«'-g' —m, )a,je )'+[-(m, +g'}a,

-g«a2 —t(«/m, )g a) —t(g/m))(« -g —m3)a2]e

+ [(m) +g )a) +g«a2 —t(«/m~)g a, —t(g/m3}

x («'-g' —m, )a,]e ~'+ [(m,'+g')a, +g«az

+t( /«m, )g'a +)2(g/ m)( «-g —m)}a2]e

(4. 2)

where

The notation is similar to that in Sec. III.
Average values, fluctuations, and the uncer-

tainty product for the variables corresponding to

Q and P are given by equations of the same form
as those obtained previously, Eqs. (3.41}—(3.47).
However, due to the reversal of the relative mag-
nitude of the widths of the distribution, the maxi-
mum values of the fluctuations for the case shown

in Fig. 2 occur when the average values are zero,
and the minimum fluctuations coincide with the
peak average values. The absolute minimum un-
certainty is not attained in this model; the equation
corresponding to Eq. (3.48), i. e. , for o = 0 and
8=- —2', is

[(t)P}'(b,Q)'] „=—,'+ (gt)' . (4. 11)

In summary, we have used in this paper distri-
bution functions of quantum oscillators to describe
parametric amplification in a single mode, with
emphasis on the usefulness of the Wigner distri-
bution. This degenerate form of the two-mode
process was seen to be significantly different from
that nondegenerate case. The P distribution for
the signal mode was found to cease to exist after
a finite time for amplification at optical frequen-
cies and ordinary temperatures of the amplifying
medium. The Wigner distribution was obtained by
means of the general theory developed herein, and
was found to be well behaved at all times. Ampli-
fication was found to always occur over an extended
period of time in this quantum treatment, in the
limit of no damping, whereas the corresponding
classical treatment allows the signal to decay for
certain phase relationships. The field fluctuations
in the signal mode were studied and in the limit of
no damping were found to alternately and period-
ically approach zero and infinite values as time
goes on, and to be periodically in a state of mini-

This result is in a form similar to that found in
Sec. III but the shorter width of the distribution
is now parallel to the q" axis rather than the
greater width as before. In reference to Fig. 2
the distribution W(t) would now be oriented perpen-
dicular to that shown so that the minor axis of the
elliptical cross section would be along the q" axis.
The average number of photons in mode 1 is ob-
tained as

(N, (t)) =(N, (0))([1 +( gt) ](c +s ) —4(gt)csj

+ ( N, (0})[(gt)'(c'+ s')]+ 2 ly I

' sin2y, ((gt)(c'+ s')
—[1+(gt)']cs)+

I y, l
'sin2&, [(gt)'(c'+ s')]

+
2 I» I I y~ I sin(y) —y, )[(gt)(c'+ s') —2(gt)'cs]

+ 2
I y) I I y& I «s(0 &+ e&)[(gt)'(c'+ s') —2(gt)cs]

+ (gt)'(c'+ s'}+2(gt)cs+ s' . (4. 10)
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mum uncertainty. The combined processes of
parametric amplification in a single mode and

frequency up-conversion was also treated, with
explicit results given for the case where the cou-
pling for the two processes is the same.

The approach used in this paper may also be
used to some extent in the description of two-level
and three-level" systems, e. g. , and their inter-
action with radiation, and appears to be quite ap-
plicable to the description of a charged particle in
a magnetic field. Boson operators corresponding
to quantum oscillators may be used in the latter
case, "making them especially adaptable to the
technique used in this paper. However, fermion
operators are used in describing the atoms in the
former case and these give rise to difficulties in
obtaining exact operator solutions and distribution
functions; use of the Wigner distribution seems to
be advantageous to the use of the I' distribution
for that case, due to the stronger convergence of
the integrals involved as noted at the end of Sec.
Ir.
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APPENDIX A: DEFINITIONS AND NOTATION

As is well known, any mode of the electromag-
netic field is mathematically equivalent to a linear
harmonic oscillator. That is, the total energy per
mode is 2(P +co q'), where q is the mode ampli-
tude and P = j. In the quantum theory of the elec-
tromagnetic field, [q;, p&] =i@6;& and p and q deter-
mine the electric and magnetic field strengths,
respectively. ' Letting P = (ke)'~ P and q= (8'/&u) ~

&& Q, then the Hamiltonian for any given mode be-
comes H= —,'k~(P'+ Q'), where [Q, P] =i The a.n-
nihilation operator is defined by a = (1/M2)(Q+ iP)
and the creation operator is defined by at = (1/W2)
x (Q —iP); they are dimensionless. Their inverses
are Q= (1/u 2)(a +a) and P= (i/W2)(a —a). We
now have H=hv(a a+-, ), where [a, a ] = l. The
operator N= a a is identified as the number oper-
ator so that its operation on its eigenket In) yields
the eigenvalue n, giving the correct energy eigen-
value for the quantum oscillator, E„=h&u(n+ —', ).
With these definitions, we have the following basic
relations:

N
I n) = n

I n), a
I n) = n'

I
n 1), -

a
I n) = (n+ 1)' '

I
n+ 1), a

I 0) = 0,

Z In)(n =I.

The coherent states are defined in terms of the

number states as

lz&=exp(--,'lzl')P (n I) "'z"
ln) .

Their relationship to the number states is expressed
ln

(Al )

2 n ) -1 ~ 2&8-lal 2
(A2)

They are eigenstates of the annihilation operator,
such that

az=zz, za=z*z. (As)

~'ff«dx lz)(z =f. (A4)

These states are normalized, (z Iz) = 1, and over-
complete. They are not orthogonal, but obey the
relation

(zl"&=e p(z*"--,'lzl'--, 'I "I')
The usual relations are used for the "displace-

ment" and "momentum" operators Q and P, their
eigenstates I q) and IP&, and their eigenvalues q
and p, respectively. That is,

Ql q&
= ql q&, fdql q&«l =f

and

(q; I q;& = &;;,

with similar relations for the quantities referring
to momentum, and

(q, I p, &
= [1/(2m)"']e" ~'~.

APPENDIX B: BEHAVIOR OF & DISTRIBUTION

FOR AN OSCILLATOR AS IT APPROACHES A

PURE n STATE

Here we present a simple example which allows
us to follow the approach of the I' distribution to-
wards a strongly singular function as the quantum

oscillator it describes approaches a pure n state.
The example is that of two coupled quantum oscil-
lators with the same frequency +, described by
the Hamiltonian

H= 5(u(a, a, +-,')+ Kg(a,a, +-,') —)tg(a, a, + a,a, ). (Bl)

The corresponding solutions to Heisenberg's equa-
tions of motion are

a, (t) = (a, cosgt+ tan singt)e ' ',

a~(t) = (a&cosgt+ia, singt)e ' '
(B2)

(»)
(These are also the solutions obtained for frequen-

cy conversion. ")

We denote the coherent state by Iz), where z= x+iy
is a complex number (our z corresponds to Glau-
ber's u). The expectation value of the number
operator in a pure coherent state is seen to be
(zINlz) = Iz I . The identity operator for coherent
states is
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We assume that oscillator 1 is initially in a I'
distribution of coherent states, which we will take
to be Gaussian, while oscillator 2 is initially in a
pure n state. After a time t„=((/2g, the roles of
the two oscillators will have reversed and oscil-
lator 1 will be in an n state at that time. We wish
to follow the time evolution of the I' distribution
for oscillator 1 as it approaches the n state. We
have the fol1.owing formula, obtained in a manner
similar to that presented in the Introduction pre-
ceding Eq. (l. 6}:

(2&)-2 f f d~ d))&((( 1+nnj) f f d& dy

xf,(x„y„o)(,'z, l&nzl e ""' "'"
-&&&t'a&c

(B4)

The function denoted by I.„is the I.aguerre func-
tion. The index n refers to the n state, which was
originally occupied by oscillator 2 and designated
n~. This result satisfies the requirements that it
agree with the initial Gaussian when t-0 and that
it is normalized as stipulated in Eq. (1.2). [The
special case where g, cos'gt —sin'gt = 0 must be
treated separately, but calculation shows that a
normalized I' distribution results for this case as
well; however, for present purposes, we shall as-
sume this special case does not arise for the times
of interest here, and examine Eq. (B5) only. ]

Examining the I' distribution as the n state is
approached, we have, when t has almost reached t„,

&1,n(&(l) ylt t - tn) = ( 1}[&l(t ]

(B6)

where

ol(t) (71 cos gt, yl(t) yl cosgt . (B7)

The expression (B6) is the product of an oscillating
function, whose magnitude grows as the distance

Substituting Eq. (B2), transforming to the rotating
frame, and carrying out the rather lengthy evalua-
tion of the expression in Eq. (B4), we arrive at
the result for the P distribution of oscillator 1 at
any time t

I&, „(g„y',, t) = [(a,cos gt —sin gt) "/)((a, cos gt)""]

&& exp(- (a, cos gt) '

x [(&(1 —Ql cosgt) + (yl —pl cosgt) ]]'

x L„][sin gt/a, cos gt(sin gt —a, cos'gt)]

&& [(xl —((1 cosgt) + (yl —pl cosgt) ]]'.

(B5)

from y, (t) increases in the complex plane, and a
normalized Gaussian, which cuts off the preceding
function as the distance from y, (t) increases. In
the limit as t- t„, then a,(t)-0 and y, (t) -0, which
causes the Gaussian to degenerate into a 5 function
at the origin and the factors preceding it to become
infinite. Therefore, it is seen that the P distribu-
tion moves toward the origin and becomes highly
singular as t- t„, i. e. , as the n state is approached.
Our example allows one to see how this highly sin-
gular P distribution is approached as a limit of a
well-behaved function.

We conclude this Appendix by finding the corre-
sponding Wigner distribution for this example by
means of the theory of Sec. II. From Eqs. (2. 2)
and (2. 13), we find the result at any time t to be

W t = [(2a, cos'gt+ 1) —2 sin'gt]"
(2 z t+1)n 1

xexp( —(2a) cos'gt+ 1) '[(q, —)t 2 nlcosgt)

(B8)+(p, —v 2 p, cosgt) ]]
sin'gt

"
~(2&y, cos'gt+ 1)[sin'gt ——,'(2a, cos'gt+ 1)]

x [(q, —v~2((, cosgt)'+ (p, —M2p, cosgt)']
I
.

This is the product of a Gaussian and an oscillating
function, which is normalized and well behaved,
although it may assume negative values as is typ-
ical of quasiprobability functions such as 8' and I'.
Therefore, unlike the I' distribution, the Wigner
distribution is well defined for the pure m state,
and is given by Eq. (BS}above. This result for
W'„agrees with that obtained by Glauber ' in a
different way and using a different notation.

APPENDIX C: EVALUATION OF INTEGRALS

According to Eqs. (3. 21) and (3. 22), theintegrals

f IU(~)l'd~, f lv(~) I'd~,

x fRe[U(&u) V((a)]d&u, f Im[U((d) V((d )]d(d

need to be evaluated. The functions U and V are
given in Eqs. (3. 17) and (3. 18), where now(dl —a)()
= ~, and the integrals extend from —~ to ~.

(a) Taking the absolute square of Eq. (3. 17),
simplifying, and formally integrating, we find

It may be shown that the normalization and initial
conditions of this expression are satisfied. The
form of this expression is similar to that for the
I& distribution, Eq. (B5), but it remains well de-
fined as t- t„:

W, „(ql, P), t = t„) = ( —1)")( 'e '-1'~"I „[2(q,+ P, )] . (BS)
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2
x d

( )i2 +(e cosll gt+1
) ( ) i2

d(h1

+ [ —2Qe '(Q coshgt+g sinhgt)]
cosset

-&t cos(d ~x d~ + ( —2Qe cosbgt)
~ D( ) ~

2

(Cl)

where

ID(((1)I =&@ +2(g +Q )(d'+(g —Q )'

from Eq. (3. 12).
Each of the five integrals involved has an even

integrand with the same denominator tD(~) l2. This
denominator has four simple roots at ~ = a t(g+ Q).
In the complex plane, these roots lie along the
imaginary axis, two above the origin and two below
it. Whether t(g —Q) or t(Q-g) lies above or below
the origin depends of course on whether g & 0 or
g&0; the calculations were done for both cases.
All five integrals may be evaluated by integrating
around a semicircle in the upper half of the com-
plex plane and using the residue theorem. The re-
sults are

ing our abbreviation Q= vp((uo)((, and considerable
simplification, the result

p((d, )J I
U((o)

I

2 d(d

= —,'(Q'-g') '[(2Q' —g') ——,'Q(Q+g)e "
——'Q(Q-g)e g ' —(Q -g }e "'] (C7)

This expression starts at the value zero at t = 0 and
becomes infinite as I;- ~ for 0 & g, except it is
zero for 0=0, and it approaches the value

—2'(2Q2-g2)/(Q2 —g') for Q &g.

(b) Similarly, using Eq. (3. 18}, there are four
integrals involved, which are the same as those
just encountered, Eqs. (C3)-(C6). We find

p((h12) f I
V((0)

I
d(d

1(Q2 g2)-1L 2 1Q(Q g) 2(q-g)(

——,'Q(Q g)e "—"""+(Q' -g')e '"']. (C8}

(c) Taking the real part (denoted by Re) of the
product of U(((1) and V(~), we obtain

Re[U((d ) V((d)]d(o = (('Ig(e '"'+ I) 2 d(d2 i -20t (0

ID4&) l'

-&t 4) coscot—2ge coshgt
( }~2

dq1

f [(d cos(dt/ID(&)I ]d~
= (me g'/2Qg)(Q coshQt -g sinhQt),

= (ve "g/2gQ)(g coshgt —Q sinhgt),

f [ cos~ t/ID(~) I']d~ (C2}

= [m'e '/2Qg(g' —Q )](g sinhQt+ Q coshQt), g & Q

= [ve "'/2Qg(Q —g )](Q sinhgt+g coshgt), g & Q

(c3)

f [(u sin(ut/
I
D(~)

I ]d(d = (1(e "/2Qg)sinhQt, g& Q

= (ve "'/2Qg)sinhgt, g & Q

(c4)

f ((o'/
I
D((u ) I

')d(u = 7(/2g,

=v/2Q,

(c5)

fde/ ID(~) I
= v[2g(g2 —Q2}] 1,

= v[2Q(Q'-g2}]-', g&Q .
(c6~

Equations (C2)-(C6) are now substituted into Eq.
(Cl}. It is found that the same result is obtained
whether the g&Q or the g &0 solutions in the above
equations are used. Therefore, for any value of
Q and g, we find after multiplying by p(u&0} and us-

-Qt v sanest—s sishgt
t&( ii, g~) . (co}

Since )D((d) ~2 is an even function of v, it is seen
that all the integrands above are odd, so each of
the integrals is zero. Therefore we have

p((d2) fRe[U(&u) V(e}]de = 0. (C10)

(d) Taking the imaginary part (denoted by Im ) of
U((d)V(v), we find the integrals in Eqs. (C2), (C3),

(C5), and (C6) involved again, and the result is

p((uo) f 1m[U((u) V((o)]du) = -,'(Q' —g') '

X [Qg LQ(Q g)
-2 (G-g& t 1. Q(Q )

-2 (q sg&(]

(Cl 1)

The general behavior of this expression and that in

Eq. (C8) is similar to that given for Eq. (C7), and

the results are the same whether the g&Q or g&Q
solutions in Eqs. (C2)-(C6) are used.

The resultsgiven in Eqs. (CV), (C8), (C10), and

(Cll) are used in Sec. III. It might also be men-
tioned that the proof that [A(t), At(t)] = 1 for the so-
lution (3. 14) involves the same five integrals that

are given in this Appendix, viz. , Eqs. (C2)-(C6).
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APPENDIX D: QUANTUM-MECHANICAL

TREATMENT OF THE PUMP

The effect of treating the pump quantum mechan-
ically rather than classically is considered in this
Appendix. In particular, we are interested in
seeing if the breakdown of the P distribution per-
taining to parametric amplification in a single
mode, as studied in Sec. III, might be due to the
lack of a full quantum-mechanical treatment. For
comparison, let us consider the no-damping case
for which Eq. (3. 1), in which the pump is treated
classically, reduces to

&= K&p(a a+ 2) —@2g[ a a e '"0'+aae2'"0']. (Dl)

The pump is represented classically in this ex-
pression by an ordinary function of the form n(t)
= n exp(-2ip10t), the amplitude n being real and
included in the coupling constant —,'g. From this
Hamiltonian we get

—[N, (t)+ —,'N, (t)] = o,
which is just a statement of the conservation of
total photon energy for this process. From Eq.
(DS), we find that

(DS)

N1(t) —2 No(t) = N1(0) + 2 No(0) —No(t),

but Eq. (D'7) is still nonlinear when this result is
substituted.

Since Eq. (DV) is nonlinear and not readily solv-
able, we consider a Maclaurin series expansion of
the solution Ao(t). Using the values

Ao(0)=a, , Ao(0)=igao a, ,

and (D6) to find N, (t), we find

[N,(t) ——,'N, (t)] = ig [A,'(t) A', (t) -A,"(t)A, (t)] .
(D6)

Similarly it is found that

A(t) g'A(t) =-o,
for which the solution

(D2) Ao(o) =g'[al a1 2 aoaolao

we have

a(t) =(a cosh gt+ia sinh gt)e '"o' (DS)

is easily found [ Eq. (3. 14) with z = 0], and the
breakdown of the P distribution is governed by the
Q=O curve in Fig. 1. This shows, e. g. , that the
P distribution breaks down immediately for the
signal mode initially in a coherent state.

We now represent the pump by the quantum-
mechanical operator a, (t), and put a subscript 0
on the operator representing the signal mode to
correspond to its frequency ~p.

H =@100(aoap+ —,') + h 01,(a, a, + —,')
—@-2'g(aoao a, +apaoa, ) . (D4)

Here g does not include the pump amplitude. This
fully quantum-mechanical Hamiltonian leads to
after making the substitutions

ao(t)=A, (t)e ' 0',

a, (t) =A, (t) e '"1',
the equations

A, (t) =igA', (t) A, (t),
A, (t) =i ,'g A, (t) Ao(t), -

1 2(op,

(D5)

(D6)

along with the adjoint equations. From these we
get, with N, =-A~&A, ,

A,(t) g'[N, (t) —,
' N, (t)]A,(t) =—O . — (DV)

Compared to Eq. (D2) it is seen that in the classical
treatment of the pump the bracketed expression
above is replaced by unity [or really by the square
of the amplitude of the pump, since the g in Eq.
(D2) includes the pump amplitude]. However, this
quantity is not constant; making use of Eqs. (D5)

Ao(t) =ap+igt aoa1+ 2 (gt)

x [a,a1 —
2 apap] ap+ ~ ~ ~ (Dl0)

To first order in the parameter gt, we have then
an approximate solution which is valid for gt «1,

Ao(t) = ao+igt a1', a, . (D11)

where

0'p (t ) = 00 2 G1gt (20'p + 1),
up(t) = (I/~2) (pro+ Pp) (1+u1gt),
tt o(t) =(I/~&) ( 020+Po) (1 —-1r1gt) .

(D13)

(D14)

(D15)

The expression in Eq. (D12) is, of course, valid
only if the integrals involved in its derivation exist,

We now substitute ao(t) =Ao(t)e '"0' into Eq. (1.6)
to determine the time evolution of the P distribution.
We are interested in comparing to the previous
case in which the pump was treated classically
(and had its initial phase taken as zero). The
closest quantum-mechanical state to this one is a
coherent state with a large number of photons,
which we represent as a 5-function P distribution,
so that

1( 1» 3 1» 0) 6(x1 +1)5(y1

where n, » 1 and P, =0 (corresponding to /=0).
Taking Po(xp yp 0) to be a general Gaussian as
before, then Eq. (1.6) leads to the expression (re-
taining terms to first order in gt only)

p,'(r,",y,",t) =[11al(t)] '"
xe~( [0Q(t)] '[ZQ'- o.p(t)]'] [vao(t)] '"
xexp(- [00(t)] '[yo'- po(t)]']
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which means that oo(t)» 0. Since o, » 0 and o,gt» 0,
then from Eq. (D13) we have ao(f)» 0 for all time,
but oo(t) is non-negative only as long as

O'O»Q
g gf (1 —2Q y gf)

Keeping terms to only first order in gt, and letting
~,g = g, , which corresponds to the g in the case of
a classical pump, we have the requirement that
oo g,t. This is for thequantum treatment of the
pump, and gt «1. (It may be shown that there is
no restriction here on the existence of the cor-
responding Wigner distribution. )

Comparing to the classical treatment of thepump,
we have, from Eq, (3. 25) with 0=0, ao» tanh gt

x(1 -tanhgt) . Tofirstorderingt we have then
oo~gt in the classical treatment, with gt «1, asthe
requirement for the I' distribution to exist.

Thus, it is seen that the two results are essen-
tially the same, i. e, , the curve which determines
the breakdown of the I' distribution for this case
(the 0 =0 curve in Fig. 1) rises from the origin
immediately in the quantum, as well as in the clas-
sical, treatment of the pump. As mentioned in the
caption of Fig. 1, this means, for example, that
the I' distribution for an initially coherent state of
the signal breaks down immediately, and the re-
sults of this Appendix show that treating the pump
quantum mechanically does not alter this conclusion.
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A consistent, set of hydrodynamic equations for liquid crystals is derived from the neces-
sary conservation laws and the requirements of Galilean invariance. In the stationary case,
the equations reduce to the Oseen-Frank hydrostatic theory. The equations should be useful
in discussing the hydrodynamics of cholesteric and smectic crystals. Linear dissipative
effects are also considered.

I. INTRODUCTION

The continuum hydrostatic theory of liquid crys-
tals of Oseen' and Frank is well known and firmly
established. More recently, Ericksen and Leslie
have discussed continuum theories of the dynamics

of liquid crystals. The theory of Leslie is defi-
cient in that it does not, in the stationary case,
reduce to the Oseen-Frank hydrostatic theory.
This situation has been partially rectified by Erick-
sen. ' This deficiency is not important in the case
of nematic crystals, and some interesting solutions


