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The equilibrium thermodynamics of a one-dimensional system of bosons with repulsive 6-
function interaction is found to be intermediate between those of a one-dimensional free-boson
and a one-dimensional free-fermion system. Numerical comparisons are given.

I. INTRODUCTION

In a previous paper (which we shall henceforth
call I) a method was developed in which the pres-
sure P at any temperature T of a system of bosons
with repulsive 5-function interaction in one dimen-
sion was shown to be exactly given by

P = T/2n J dk ln(1+ 8 ' ~' ~r), (1)

where e(k) is the unique solution of the integral
equation

clef
e(k) = -A, +k ——

) g
(k )2

&& ln(1+ exp[- e(q)/T]),

with c = interaction strength & 0 and A = chemical
potential. We shall in this paper discuss the ther-
modynamics of such a gas.

II. THERMODYNAMICS

A. Behavior of the Pressure

In terms of the fugacity z = e"~ the pressure of
a one-dimensional system has the general form

N -E /T

where L = size of the one-dimensional system and

E, is the energy of state s. In the present case,
it is obvious that E, increases with increasing c.
The coefficient of s thus decreases with increas-
ing c. For constant z we therefore have P(c=0)
&P(c finite) &P(c =~), from which follows:

Theorem 1

Pez &P(c) &Pro at a particular T and s. (S)

Here P~E and P» stand for the pressure at a fixed
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z for a free Bose-Einstein and a free Fermi-Dirac
system, respectively. By definition

P(c = 0)=P„.
It was shown in I tha, t

P(c = //0) = Ppn

(4a)

(4b)

We have performed numerical computations
(details described below) at z =0. 1353, 1.0000,
1.648V and V. 3890. The P ~ -versus-T curves are
presented in Fig. 1. They explicitly demonstrate
the statement of Theorem 1. Note that for z &1,
P~E is not defined.

pand in powers of z

exp = Z A„(k, T)z" .
—«{)'3)

The absence of the term az and the following all
follow from Eq. (2):

a, =e "", a, =e ' "Ou, ,
-2

(
-3

a3=C ' ~ [Oaz- 3O(a', )+-,'{Oa,)'],

where the operator O is-c dc/

p c3+Q —q3'
The pressure is then given by

TA80'Msl 2

At fixed z, T-o, P(c)/Ppn-1

T-, P(c)/P„- 1 .
(5a)

(5b)

/'=(&/2~/) &/f~/*/(~/-~'/l&)*'

+(a, -a,a, +a',/3)z'+" ]
proof: Dimensionally P-1/2, z-i, T-1/I /

c' 1/r, '-. Thus, p"'/T-1 f(T/c', z)

or P3'3= Tf(T/c3, z).

Using Eq. (4b)

g //8
/ P y II)//f//

////
c 3/32'

I

~$2& e " dy z'+0(z') . (10)

P„{2A) T' Z
a=a n

and Ppn (2V 7f) T 2 ( ) 3/3 ~

n=1 n

Furthermore, for constant z, Eq. (5a) tells that
the slope of P '(c) is the same as that of Pp3n3

at T =0 and Eq. {5b) says that P3~3(c) and Pn3~~3

are parallel for T-~.
If one takes T and the density D~ a,s independent

variables, one can ask whether z is analytic in T
and D. The answer is yes, since D is analytic in
T and z, and by a theorem on the existence of
thermodynamic limits (generalized to quantum
statistical mechanics) D 18 IIlollotolllc 111 z.

B. Virial Expansion

One can obtain the fugacity and virial expansions
as follows. & is a function of T, z and k. We ex-

P/Ppn = [f(T/c', z)/f(0, z)]"' .
Hence Eq. (5a). Similarly, by using Eq. (4a), one
proves Eq. (5b).

We now consider the surface 2' over the z-T
plane. Since z= e"~ is always positive, only the
positive quadrant where z &0, T &0 need be ex-
amined. From I, Appendix D, P is analytic in z
and T for all z, T &0. Because of Eq. (3), the

surfa, ce is below the I'~~+ and above the I'z~~

surfaces, respectively. Both P~E and PFD are
surfaces generated by straight lines parallel to the
z=0 plane, since

From this we easily obtain the first nontrivial
term in the virial expansion:

1

il
X g d$ ~ + ~

v"2 v )~
'

I
where v =—= (particle density) '.

NHigher-order terms of both the fugacity and
virial expansions can be systematically obtained
in this manner by quadratures alone.

&. Hole and Particle Densities in k Space

The hole and particle densities p„(g) and p(y)
sa,tisfy

f(I3) = p3()'3) +p(u),

2pf(I ) = i+ 2c c'+(f3 —q)' '

(i2)

(i3)

and e(13) = T ln[ p3(j'3)/ p()'3)], (i4)
where e is the solution of the integral Eq. (2).

Figures 2 and 3 give f, p, p„ for A =4 and T =0.2
and 5.0. These graphs are obtained by iteration
performed on Eq. (13) (see I, Appendix A and B)
using a digital computer with 4-mesh sizes chosen
to be 0.03 and 0. 10, respectively. The conver-
gence is rapid in both cases, requiring around ten
iterations per point.

One observes that f is the density of particle
"momenta, " plus the density of hole "momenta" in
)'3 space, as explicitly stated in Eq. (12). For c
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FIQ. 1. a, b, c, d Temperature dependence of pressure to the ~ power for fugacity z=.1353, 1.0000, 1.6487, and
7.38g0. The strength of interaction c is chosen to be unity. The corresponding straight lines for the free bos6 gas and
the free fermi gas at the same fugacity values are shown for comparison. Note that for z &1, Ppp is not defined.
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FIG. 2. The momentum dependence of the density of
particle "momenta" p, the density of the hole "momenta"
4o& and their sum f for the chemical potential 8=4.0, and

the temperature P = 0.2, respectively.

=0, Eq. (13) shows that

00

FIG. 3. The momentum dependence of the density of
particle "momenta" p, the density of the hole "momenta"

p& and their sum f for the chemical potential A = 4.0 and
the temperature T =0.5, respectively.

Thus, in general, Eg. (13) shows that

f(c&0) & f(c =0).
In other words, the repulsive interaction allows
more "single-particle momenta" to exist in mo-
mentum space.

The curve p(Q), the density of particle Ino-
menta" per unit k, is characteristically peaked at
k = 0. On the other hand, p„(k), the density of hole
"momenta" per unit k, has characteristically a

valley at k =0.
At T=O, all low lkl states up to a Ikl =ko are

occupied by particles, while all states with Ik I

&ho are unoccupied. This is the special case dis-
cussed by Lich and Liniger. 3
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