Fiz. <u>42</u>, 936 (1962) [Soviet Phys. JETP <u>20</u>, 1073 (1965)]. ¹⁴M. A. Babykin, P. P. Gavrin, E. K. Zavoiskii, C. L.

Nedoceev, L. I. Rudakov, and V. A. Skoryupin, *Plasma Physics and Contributions to Nuclear Research* (IAEA, Vienna, 1966), Vol. I, p. 851.

¹⁵V. D. Shaprio, Zh. Eksperim. i Teor. Fiz. <u>44</u>, 613 (1963) [Soviet Phys. JETP <u>17</u>, 416 (1963)].

¹⁶V. A. Suprunenko, E. A. Sukhomlin, and N. I. Reva, J. Nucl. Energy <u>7</u>, 297 (1965).

 17 S. M. Hamburger and M. Friedman, Phys. Rev. Letters <u>21</u>, 10 (1968).

¹⁸T. H. Jensen and F. R. Scott, Phys. Fluids <u>11</u>, 1809 (1968).

¹⁹P. I. Blinov, L. P. Zakatov, A. G. Plakhov, R. V.

Chikin, and V. V. Shapkin, Zh. Eksperim. i Teor. Fiz.

52, 670 (1967) [Soviet Phys. JETP <u>25</u>, 3439 (1967)]. ²⁰S. M. Krivoruchko and Yu. V. Medvedev Zh. Tekhn.

Fiz. <u>38</u>, 87 (1968) [Sov. Phys. Tech. Phys. <u>13</u>, 61 (1968)]. ²¹A. P. Babichev, A. I. Karchevskii, Yu. A. Muromkin,

and E. M. Buryak, Zh. Eksperim. i Teor. Fiz. <u>53</u>, 1 (1967) [Soviet Phys. JETP 26, 1 (1968)].

²²M. V. Babykin, P. P. Gavrin, E. K. Zavoiskii, S. L. Nedoceev, L. I. Radakov, and V. A. Skoryupin, Zh.

Eksperim. i Teor. Fiz. <u>52</u>, 643 (1967) [Soviet Phys. JETP <u>25</u>, 421 (1967)].

 23 Y. Matsukawa, Y. Nakagawa, and K. Watanabe, J. Phys. Soc. Japan $\underline{4}$, 196 (1968).

²⁴E. J. Sternglass, Phys. Rev. <u>108</u>, 1 (1957).

²⁵Ya. B. Fainberg, J. Nucl. Energy <u>4</u>, 203 (1962).

²⁶B. B. Kadomtsev, *Plasma Turbulence* (Academic, New York, 1965).

²⁷The term "hydrodynamic instability" as used here refers to the instability derived from standard hydrodynamic equations. In contrast, the low-frequency drift instability treated by G. Field and B. Fried [Phys. Fluids 7, 1937 (1964)] is a microinstability, since its theoretical origin lies in the solution of the detailed microscopic plasma equations (specifically, the collisionless Boltzmann equations) governing the particle distribution functions.

²⁸P. J. Mallozzi, H. M. Epstein, W. J. Gallagher (un-published).

²⁹R. W. P. McWhirter, in *Plasma Diagnostic Techniques*, edited by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965), Chap. 5.

PHYSICAL REVIEW A

VOLUME 2, NUMBER 1

JULY 1970

One-Dimensional System of Bosons with Repulsive δ -Function Interactions at a Finite Temperature T

C. P. Yang*

The Ohio State University, Columbus, Ohio (Received 22 August 1969; revised manuscript received 6 February 1970)

The equilibrium thermodynamics of a one-dimensional system of bosons with repulsive δ -function interaction is found to be intermediate between those of a one-dimensional free-boson and a one-dimensional free-fermion system. Numerical comparisons are given.

I. INTRODUCTION

In a previous paper (which we shall henceforth call I)¹ a method was developed in which the pressure P at any temperature T of a system of bosons with repulsive δ -function interaction in one dimension was shown to be exactly given by

$$P = T/2\pi \int^{\infty} dk \ln(1 + e^{-\epsilon(k)/T}) , \qquad (1)$$

where $\epsilon(k)$ is the unique solution of the integral equation

$$\epsilon(k) = -A + k^2 - \frac{Tc}{\pi} \int_{-\infty}^{\infty} \frac{dq}{c^2 + (k-q)^2}$$
$$\times \ln\{1 + \exp[-\epsilon(q)/T]\}, \qquad (2)$$

with c = interaction strength >0 and A = chemical potential. We shall in this paper discuss the thermodynamics of such a gas.

II. THERMODYNAMICS

A. Behavior of the Pressure

In terms of the fugacity $z = e^{A/T}$ the pressure of a one-dimensional system has the general form

$$\frac{PL}{T} = \ln \left(\sum_{N=0}^{\infty} z^N \sum_{\text{states}} e^{-E_s/T} \right) ,$$

where L = size of the one-dimensional system and E_s is the energy of state s. In the present case, it is obvious that E_s increases with increasing c. The coefficient of z^N thus decreases with increasing c. For constant z we therefore have $P(c=0) > P(c \text{ finite}) > P(c=\infty)$, from which follows:

Theorem 1

$$P_{\rm BE} > P(c) > P_{\rm FD}$$
 at a particular T and z. (3)

Here $P_{\rm BE}$ and $P_{\rm FD}$ stand for the pressure at a fixed

z for a free Bose-Einstein and a free Fermi-Dirac system, respectively. By definition

$$P(c=0) = P_{\rm BE} \quad . \tag{4a}$$

It was shown in I that

$$P(c = \infty) = P_{\rm FD} \tag{4b}$$

We have performed numerical computations (details described below) at z = 0.1353, 1.0000, 1.6487 and 7.3890. The $P^{2/3}$ -versus-T curves are presented in Fig. 1. They explicitly demonstrate the statement of Theorem 1. Note that for z > 1, $P_{\rm BE}$ is not defined.

Theorem 2

At fixed z,
$$T \rightarrow 0$$
, $P(c)/P_{FD} \rightarrow 1$, (5a)

$$T \rightarrow \infty$$
, $P(c)/P_{\text{BE}} \rightarrow 1$. (5b)

Proof: Dimensionally $P \sim 1/L^3$, $z \sim 1$, $T \sim 1/L^2$, $c^2 \sim 1/L^2$. Thus, $P^{2/3}/T \sim 1 \sim f(T/c^2, z)$

or
$$P^{2/3} = Tf(T/c^2, z).$$
 (6)

Using Eq. (4b)

 $P/P_{\rm FD} = [f(T/c^2, z)/f(0, z)]^{3/2}$.

Hence Eq. (5a). Similarly, by using Eq. (4a), one proves Eq. (5b).

We now consider the surface $P^{2/3}$ over the z-Tplane. Since $z = e^{A/T}$ is always positive, only the positive quadrant where z > 0, T > 0 need be examined. From I, Appendix D, P is analytic in zand T for all z, T > 0. Because of Eq. (3), the $P_{\rm FD}^{2/3}$ surface is below the $P_{\rm BE}^{2/3}$ and above the $P_{\rm FD}^{2/3}$ surfaces, respectively. Both $P_{\rm BE}^{2/3}$ and $P_{\rm FD}^{2/3}$ are surfaces generated by straight lines parallel to the z = 0 plane, since

and

$$P_{\rm FD} = (2\sqrt{\pi})^{-1} T^{3/2} \sum_{n=1}^{n} (-)^{n+1} \frac{z^n}{n^{3/2}} .$$

 $P_{\rm BE} = (2\sqrt{\pi})^{-1} T^{3/2} \sum_{n=1}^{\infty} \frac{z^n}{n^{3/2}}$

Furthermore, for constant z, Eq. (5a) tells that the slope of $P^{2/3}(c)$ is the same as that of $P_{\rm FD}^{2/3}$ at T=0 and Eq. (5b) says that $P^{2/3}(c)$ and $P_{\rm BE}^{2/3}$ are parallel for $T \rightarrow \infty$.

If one takes T and the density D^1 as independent variables, one can ask whether z is analytic in Tand D. The answer is yes, since D is analytic in T and z, and by a theorem² on the existence of thermodynamic limits (generalized to quantum statistical mechanics), D is monotonic in z.

B. Virial Expansion

One can obtain the fugacity and virial expansions as follows. ϵ is a function of T, z and k. We expand in powers of z

$$\exp\left(\frac{-\epsilon(k)}{T}\right) = \sum_{n=1}^{\infty} A_n(k, T) z^n .$$
(7)

The absence of the term a_0 and the following all follow from Eq. (2):

$$a_{1} = e^{-k^{2}/T}, \quad a_{2} = e^{-k^{2}/T} \underbrace{O}_{a_{1}}, \quad (8)$$
$$a_{3} = e^{-k^{2}/T} \begin{bmatrix} Oa_{2} - \frac{1}{2}O(a_{1}^{2}) + \frac{1}{2}(Oa_{1})^{2} \end{bmatrix},$$

where the operator <u>O</u> is $\frac{c}{\pi} \int_{-\infty}^{\infty} \frac{dq}{c^2 + (k-q)^2}$. (9)

The pressure is then given by

$$P = (T/2\pi) \int_{-\infty}^{\infty} dk \{ a_1 z + (a_2 - a_1^2/2) z^2 + (a_3 - a_1 a_2 + a_1^3/3) z^3 + \cdots \}$$

$$= P_{FD} + \frac{T^{3/2}}{2\sqrt{\pi}} e^{c^2/2T} \left[\frac{1}{\sqrt{2}} - \left(\frac{2}{\pi}\right)^{1/2} \int_{-\infty}^{c/(2T)^{1/2}} x e^{-y^2} dy \right] z^2 + 0(z^3) .$$
(10)

From this we easily obtain the first nontrivial term in the virial expansion:

$$\frac{P}{T} = \frac{1}{v} \left(1 + \left\{ \frac{1}{2\sqrt{2}} + e^{c^2/2T} \left[\left(\frac{2}{\pi} \right)^{1/2} \int_0^{c/(2T)^{1/2}} \right] \times e^{-y^2} dy - \frac{1}{\sqrt{2}} \right] \left\{ \frac{\lambda}{v} + \cdots \right\},$$
(11)

where $v = \frac{L}{N} = (\text{particle density})^{-1}$.

Higher-order terms of both the fugacity and virial expansions can be systematically obtained in this manner by quadratures alone.

C. Hole and Particle Densities in k Space

The hole and particle densities $\rho_h(k)$ and $\rho(k)$ satisfy

$$f(k) = \rho_h(k) + \rho(k) , \qquad (12)$$

$$2\pi f(k) = 1 + 2c \int_{-\infty}^{\infty} \frac{\rho(q) \, dq}{c^2 + (k-q)^2} \quad , \tag{13}$$

and
$$\epsilon(k) = T \ln[\rho_h(k)/\rho(k)]$$
, (14)

where ϵ is the solution of the integral Eq. (2).

Figures 2 and 3 give f, ρ , ρ_h for A = 4 and T = 0.2 and 5.0. These graphs are obtained by iteration performed on Eq. (13) (see I, Appendix A and B) using a digital computer with k-mesh sizes chosen to be 0.03 and 0.10, respectively. The convergence is rapid in both cases, requiring around ten iterations per point.

One observes that f is the density of particle "momenta" plus the density of hole "momenta" in k space, as explicitly stated in Eq. (12). For c

156

P3

.4

FIG. 1. a, b, c, d Temperature dependence of pressure to the $\frac{2}{3}$ power for fugacity z = .1353, 1.0000, 1.6487, and 7.3890. The strength of interaction c is chosen to be unity. The corresponding straight lines for the free bose gas and the free fermi gas at the same fugacity values are shown for comparison. Note that for z > 1, $P_{\rm BE}$ is not defined.

157

FIG. 2. The momentum dependence of the density of particle "momenta" ρ , the density of the hole "momenta" ρ_h and their sum f for the chemical potential A=4.0, and the temperature T=0.2, respectively.

= 0, Eq. (13) shows that

$$f = (2\pi)^{-1}$$
.

Thus, in general, Eq. (13) shows that

f(c > 0) > f(c = 0).

In other words, the repulsive interaction allows more "single-particle momenta" to exist in momentum space.

The curve $\rho(k)$, the density of particle "momenta" per unit k, is characteristically peaked at k=0. On the other hand, $\rho_h(k)$, the density of hole "momenta" per unit k, has characteristically a

FIG. 3. The momentum dependence of the density of particle "momenta" ρ_{h} the density of the hole "momenta" ρ_{h} and their sum f for the chemical potential A=4.0 and the temperature T=0.5, respectively.

valley at k = 0.

At T=0, all low |k| states up to a $|k| = k_0$ are occupied by particles, while all states with $|k| \ge k_0$ are unoccupied. This is the special case discussed by Lieb and Liniger.³

ACKNOWLEDGMENTS

The author would like to thank Professor C. N. Yang for many discussions.

*Partially supported by NSF Grant No. GP 8731. ¹C. N. Yang and C. P. Yang, J. Math. Phys. <u>10</u>, 1115 (1969). ²T. D. Lee and C. N. Yang, Phys. Rev. <u>87</u>, 410 (1952).

³E. Lieb and W. Liniger, Phys. Rev. <u>130</u>, 1605 (1963).