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The equilibrium thermodynamics of a one-dimensional system of bosons with repulsive &~
function interaction is found to be intermediate between those of a one-dimensional free-boson
and a one-dimensional free-fermion system. Numerical comparisons are given.

1. INTRODUCTION II. THERMODYNAMICS

In a previous paper (which we shall henceforth A. Behavior of the Pressure
call I)' a method was developed in which the pres-
sure P at any temperature T of a system of bosons
with repulsive §-function interaction in one dimen-
sion was shown to be exactly given by

P=T/21 " deIn(1+e *®7) 1)

In terms of the fugacity z=e*/7 the pressure of
a one-dimensional system has the general form

—P£=ln<f) 22 e“Es/T> ,

T N=0 states

where L =size of the one-dimensional system and

E, is the energy of state s. In the present case,

it is obvious that E; increases with increasing c.
dq The coefficient of 2" thus decreases with increas-

Erk-qP ing c. For constant z we therefore have P(c=0)

> P(c finite) > P(c =«), from which follows:

where €(k) is the unique solution of the integral
equation

e(k)=-A+k2—T7cf

x In{1 + exp[- €(q)/T]}, (2)

with ¢ =interaction strength >0 and A =chemical
potential. We shall in this paper discuss the ther-
modynamics of such a gas.

Theorem 1
Pgg > P(c) > Pgp at a particular T and z. (3)

Here Pyy and Py, stand for the pressure at a fixed
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z for a free Bose-Einstein and a free Fermi-Dirac
system, respectively. By definition

P(c=0)=Pyy . (4a)
It was shown in I that
P(c=2)=Ppp . (4b)

We have performed numerical computations
(details described below) at z=0.1353, 1.0000,
1. 6487 and 7.3890. The P?/%-versus-T curves are
presented in Fig. 1. They explicitly demonstrate
the statement of Theorem 1. Note that for z>1,
Py is not defined,

Theovem 2
At fixed z, T=-0, P(c)/Ppp—~1, (5a)
T-, P(c)/Pgg—~1. (5b)

Proof: Dimensionally P~1/L3, z~1, T~1/L?,
c?~1/L%. Thus, P¥3/T~1~f(T/c?, z)

or P*3=Tf(T/c?, z). (6)
Using Eq. (4b)
P/PFD= [f(T/CZ; Z)/f((), z)]3/2 .

Hence Eq. (52). Similarly, by using Eq. (4a), one
proves Eq. (5b).

We now consider the surface P¥3 over the z-T
plane. Since z=e¢*/7 is always positive, only the
positive quadrant where z>0, 7>0 need be ex-
amined. From I, Appendix D, P is analytic in z
and T for all z, T>0. Because of Eq. (3), the
P%3 surface is below the PZ; and above the P}
surfaces, respectively. Both P3; and P} are
surfaces generated by straight lines parallel to the
z=0 plane, since

n
Py = (2Vm) 12 2 <
n
and PFD:(Zw/—ﬂ)"lT”zEI(—)"” 7572— )
n=

Furthermore, for constant z, Eq. (5a) tells that
the slope of P?/3(c) is the same as that of P23
at T=0 and Eq. (5b) says that P?/3(c) and PZ2/?
are parallel for 7=,

If one takes T and the density D' as independent
variables, one can ask whether z is analytic in T
and D. The answer is yes, since D is analytic in
T and z, and by a theorem? on the existence of
thermodynamic limits (generalized to quantum
statistical mechanics), D is monotonic in z.

B. Virial Expansion

One can obtain the fugacity and virial expansions
as follows. € is a function of T, z and k. We ex-

pand in powers of z

exp (iT(kl) = 5;1 A, (R, T)z" . 7

The absence of the term g, and the following all
follow from Eq. (2):

-K2/T
b

a2
a=e az=e*'"0aq, , (8)

ay= e[ 0a, - 10 (@) + 1(0a,)?] ,

. bl dq
where th t £ —
e the operator O is ”./:.x, Cz+(k_q)3.

The pressure is then given by

(9

p- (T/Zwy ® drfayz +ay - a2/2) 2

+(ag - aya, +ad/3)z% ++++}

= T/ c2/2r 1 21/75‘/(21‘)1/2
Peo v 75 (2]

x ¢=¥° dy] 22+0(2%) . (10)

From this we easily obtain the first nontrivial
term in the virial expansion:

P_1 1 enr[(2)/? c/er)i/2
T v(”i‘zfz“‘e [(,, [

Xe-yzdy_T]'z]}%+..->’ (]_1)

where v:!i: (particle density)™.

Higher-order terms of both the fugacity and
virial expansions can be systematically obtained
in this manner by quadratures alone.

C. Hole and Particle Densities in k Space

The hole and particle densities p,(k) and p(k)
satisfy

flk)=py(R) +p() , (12)
2wf(k)=1+2c/ ” —ﬁcz‘l(g‘qu) : (13)
and €(k)= Tln[p,()/p(®)], (14)

where € is the solution of the integral Eq. (2).

Figures 2 and 3 give f, p, p, for A=4 and T=0.2
and 5.0. These graphs are obtained by iteration
performed on Eq. (13) (see I, Appendix A and B)
using a digital computer with 2-mesh sizes chosen
to be 0.03 and 0. 10, respectively. The conver-
gence is rapid in both cases, requiring around ten
iterations per point.

One observes that f is the density of particle
“momenta” plus the density of hole “momenta” in
k space, as explicitly stated in Eq. (12). For ¢



156 C. P. YANG

P

BE
FD

C finite

(a)

Py

16487)
T

P% vs T(z
2

C finite

FD

(c)

| |
OO 5 10

10000)

P% vs T(z

P% vs T(z=7.3890)

P%
5_

BE

Ino

C finite

FD

(b)

P%

20

o
T

C finite

FD

|

(a)

5 10

FIG. 1. a,b,c,d Temperature dependence of pressure to the % power for fugacity z=.1353, 1.0000, 1.6487, and
7.3890. The strength of interaction c is chosen to be unity. The corresponding straight lines for the free bosé gas and
the free fermi gas at the same fugacity values are shown for comparison. Note that for z>1, Ppgg is not defined.
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FIG. 2. The momentum dependence of the density of
particle “momenta” p, the density of the hole “momenta”
pn and their sum f for the chemical potential A=4.0, and
the temperature T'=0.2, respectively.

=0, Eq. (13) shows that
f=@n)t.

Thus, in general, Eq. (13) shows that
fle>0)>f(c =0).

In other words, the repulsive interaction allows
more “single-particle momenta” to exist in mo-
mentum space.

The curve p(k), the density of particle “mo-
menta” per unit 2, is characteristically peaked at
k=0. On the other hand, p,(%), the density of hole
“momenta’” per unit %2, has characteristically a
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€,Ch and f versus k

N
6k

FIG. 3. The momentum dependence of the density of
particle “momenta” p, the density of the hole “momenta”
pp and their sum £ for the chemical potential A=4.0 and
the temperature 7'=0.5, respectively.

valley at £2=0.

At T=0, all low |%| states up to a |k| =k, are
occupied by particles, while all states with |&]
2 kg are unoccupied. This is the special case dis-
cussed by Lieb and Liniger. ?
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