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This paper examines the “runaway solutions” (exponentially diverging solutions) which often
arise in slow~-motion approximations such as classical electron theory. Detailed study of a
typical runaway shows that it is a spurious solution attributable to faulty approximation tech-
nique rather than a physical result connected with, for example, the point-electron assump-
tion. Methods for consistently using the slow-motion approximation while avoiding these

-spurious solutions are given.

In this paper we will discuss some general fea-
tures that arise in systems where one has an os-
cillator coupled to a field (continuum) capable of
transmitting waves with a finite speed. One ex-
pects the coupling both to lower the frequency of
the oscillator due to an increased effective inertia
and also to cause the amplitude of the oscillator
to decay due to energy lost in outgoing radiation.
For systems where the oscillator is much smaller
than a wavelength of the resulting radiation, these
effects are computable by perturbation theory.
However, along with the physically reasonable so-
lutions, one also finds unexpected solutions char-
acterized by an exponential growth which is obvi-
ously physically impossible. These impossible
solutions grow on a time scale so short that the
initial mathematical assumptions of the perturba-
tion scheme are violated. Hence, the occurrence
of such solutions must be due to faulty perturba-
tion technique. The problem is not a routine sin-
gular perturbation problem, but incorporates
special features coming fromdelay terms implic-
it in the equations. The delay expresses the de-
pendence of the motion on its past history and is
due to the finite propagation speed of the medium
to which the oscillator is coupled. Runaway so-
lutions seem to be a common feature of systems
incorporating a delay mechanism. Such spurious
solutions have arisen in many places, most nota-
bly in classical electromagnetism,? where a
great deal of effort has been expended in trying to
interpret the results physically. Here we shall
discuss this phenomenon in detail, using a simple
mechanical system as a concrete example. For
such a system, explanations involving infinite
negative self-energies or noncausal behavior over

short times are clearly inappropriate. Instead,
we will resolve the difficulties by a careful use
of ideas from singular perturbation theory.

The system that we will use as an example con-
sists of a spherical elastic shell which oscillates
radially, radiates acoustic waves, and suffers
radiation damping.

Let #,  equal the dimensional radius and time
coordinates, I equal the equilibrium radius of the
sphere, Z(f)equal the radial position of the
sphere at time 7, a, equal the speed of sound, and
® equal the velocity potential. If ¢ satisfies
1 9%

—% =0, (1)

2 ~
V~¢_
7 (2]8{2

)

then we can arrive at a solution of the linearized
fluid equations by taking a velocity given by

v=vaé (2)
and a pressure given by

9
p—po=p0£, (3)

where p, and p, are the static pressure and den-
sity of the medium. The boundary conditions are
the expression

aq daz
5 Z0)] =a7 (4)

and the restriction to outgoing waves for large 7.

We can introduce the mechanical parameters of
the elastic shell by means of an “effective mass”
m and “effective elasticity” k such that the equa-
tion of motion for the shell becomes
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2 -
mj.—f+k[Z(t)—l]=471p0229£[2(t)]. (5)

t 3l

We will now make several approximations.
First, we will assume small displacements. We
formalize this by introducing 7, the ratio of a
typical displacement to the radius of the sphere,
and a dimensionless amplitude variable of order

unity,
¢=(Z-1)/nl. (6)

We will assume that 7 is much smaller than any
power of € of interest, where € is the small pa-
rameter that will occur in the slow-motion ap-
proximation. So severe a restriction on the size
of 7 is unnecessary, but will serve to keep the
example uncluttered. Some restriction on the
size of 7 is necessary to justify our use of lin-
earized acoustics.

We introduce a dimensionless parameter « to
measure the coupling between the shell and the
medium:

k=4mpyl3/m. (7

Here we will assume only that « is not large.

The approproximation of particular interest in-
volves the assumption that the size of the radiat-
ing system [ is much smaller than the wave-
length of the resulting acoustical radiation, A. If
the coupling between the radiation field and the
shell is not extremely large, then the oscillations
will take place on a time scale 1/w, where

w=E/mY? . (8)

This leads to radiation whose wavelength is of
order ):

A=ay/w. (9)
We now assume that
e=l/A<1. (10

Let us transform to dimensionless variables.
The length scale appropriate for the acoustical
radiation is »; therefore, a suitable dimensionless
radial coordinate is

r=7/x. (11)

The time scale for the acoustical radiation is
1/w; therefore, we take

t=wl=agl/x. (12)

Using these variables, we write the wave equation
[Eq. (1)]

V2 -82¢p=0. (13)

Near the body, the appropriate length scale is I;

2

the radial coordinate is

R=7/1. (14)
We define a dimensionless velocity potential

d=¢ /enayl. (15)
The boundary condition [Eq. (4)] becomes

?_9> _dt
(aR ey dt’ (16

where the smallness of n has been used to trans-
fer the boundary condition to the equilibrium posi-
tion of the shell. The equation of motion of the
shell becomes

L)
P +L=kK T (17)

There is another time scale I/a representing the
time required to communicate around the body.
This time scale will be discussed later.

To get a uniformly valid expansion of the velocity.
potential ¢ for small €, wewill have to match an
expansion valid where R =0(1), from which we can
compute the pressure on the sphere, with an ex-
pansion valid where »=0(1), to which we can apply
our outgoing-wave boundary condition. ®

Let us assume an inner expansion for ¢ of the
form

¢~AR, t)+€BR, t)+--- . (18)

The terms satisfy the equations

V3A=0, V%B=0,..., (19)
with boundary conditions

oA b 9B

s =25 aR(1, £)=0. (20)
These have solutions

d¢ 1
= 2
A(R,t) 7 Rra®, (21)
B(R, t) = B(2), (22)

and the functions @ and B are to be determined by
matching this expansion with the appropriate out-
going-wave solution of the outer expansion.

Let us assume an outer expansion for ¢ of the
form

o~a, t)+eb(, t)+--- . (23)

All of the terms satisfy equations of the form

82 (ra) - 9% (ra) = 0. (24)
The general outgoing-wave solution is
alr,)=Wt-7)/r. (25)
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The functions W, «, B, and b can now be deter-
mined by matching. Expanding Eq. (25) for small
7, we have

alr, t) W) /r-w(t)+---, (26)
and matching this with Eqs. (21) and (22) gives us

dt (27)
w(t) = - ar’
a(t) =0, (28)
dz
B =43 (29)
b(r, t) =0. (30)
The expansion for ¢ valid at 7 =1 is therefore
- a% 2
¢ dt +€a‘t—2‘ +O(€ ) . (31)

Substituting this into the equation of motion
[Eq. (17)] we find an equation of motion

(1+K)7t_2_ +¢ - €kZ§+O(€2)=O, (32)
the result of routine singular-perturbation tech-
niques.

The difficulty can now be seen by looking at the
modes of this equation of motion. There are two

of the form
C=exp(£ivi-3ekvit), (33)
where
=1/(1+x), (34)

which show both the modification of the original
modes and also a radiation damping of order €.
In addition, there is a third mode, given approxi-
mately by

L~ e¥tine (35)

which diverges at { - +%~. When such a divergent
solution appeared in the theory of classical elec-
tromagnetism applied to the “point” electron, it
was called a “runaway solution, ” and prompted
some remarkable attempts to circumvent its ap-
pearance, attempts including even abandoning
causality. 2 In the present problem, the runaway
mode is clearly impossible. A clue to its formal
occurrence is given by the fact that its growth time
violates the original perturbation assumption.

To investigate the runaway solution further, we
now solve Egs. (13), (16), and (17) without assum-
ing that € <1,

The general outgoing-wave solution of (13) can
be written

b=W(t-7)/7. (36)

The boundary condition [Eq. (16)] gives us the re-
quirement

dé‘

—-eW(t-¢€) - dt .

W(t-¢)= (37)
The motion of the oscillator is thus described

by the third-order system

AL K;I>'= 0, (38)
t'red’ 1 @20, (39)
d(t)=W(t—-€)/e . (40)

The characteristic equation satisfied by the fre-
quency of an exponential solution

¢=Ae?, &=Be (41)
is
(1+€p) (p%+1) +kp?=0. (42)

This equation gives us two oscillatory damped
modes with decay time ¢~1/€; one sees that Eq.
(33) gives a correct approximation to these modes.
In addition there is an overdamped mode

~ = (1+k)/¢, (43)

with decay time ¢~ €

Now Eq. (42) contains nu .race of the runaway
solution. To see how the runaway solution comes
in, let us write the exact equation of motion ex-
plicitly. We can solve Eq. (39) for &:

q):ce-t/e -lf (s-t)/e ¢ S) ds. (44)

This leads to an exact (in €) equation of motion:

2 .
dt§+§+~ f’ eV (s)ds = 0. (45)

We see that a delaylike term * has appeared ex-
plicitly. The characteristic equation correspond-
ing to this equation of motion is

P2+l +kp?/(L+e€p)=0. (46)

By integrating Eq. (45) by parts repeatedly, we
can generate a sequence of approximate equations
of arbitarily high order. Our previous approxima-
tion [Eq. (32)] is recovered by truncating this se-
quence to O(¢). In terms of the algebraic equation
(46), this procedure is just the expansion of
(1+€p)! in powers of €. Such an expansion will
generate algebraic equations of arbitrarily high
degree. These equations have only two roots which
are O(1); the rest are O(1/€), and give rise to
more and more runaway solutions as more and
more terms in the expansion are kept. These
spurious solutions arise as our expansion tries to
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describe a genuine fast mode [Eq. (43)], which
violates the assumptions underlying the approxima-
tion scheme (i.e., that time derivatives are of
order unity).

We could analyze the runaway solutions in the
above problem by comparing the approximation
with the exact result.® Suppose now that we deal
with a more complicated but basically similar
problem. The analytical work will then have to
rely only on perturbation methods.

In some cases, we will be faced with an initial-
value problem. Typical initial values to be pre-
scribed for our model problem are position ¢,
velocity ¢/, and pressure ®’. The highly damped
mode will be needed to satisfy general initial con-
ditions, and we will need to consider a boundary
layer in time of thickness I/a. The problem would
thus be singular both in space and in time. Motions
are not slow in the initial boundary layer, and the
detailed description (resonances, etc.) will pre-
sent formidable difficulties.

In other cases, and these are more common, we
will be given a system excited by a slowly varying
external force, or will be interested only in the
behavior of the system after some unspecified ini-
tial excitation. In these cases very little (~€2) of
the fast mode is excited and we deal essentially
with outer solutions. A routine approach would be
to insert an expansion for £(#):

(O~ L) +eg @) +- - (47)
into Eq. (32), to find

(1+K) Ly +£4=0, (48)

(1+K) &y + &=k (49)

These equations have no runaway solutions, and
simple two-variable methods ® allow one to remove
the secular terms and compute the damping. An
alternative method, which also uses the fact that
we deal with outer solutions, is the following.
Consider the more general equation resulting
from a nonlinear oscillator coupled to the medium

%;g+f(c)—ex‘—i—3§—o(<2). (50)

Differentiating (50) and using the result to elimi-
nate the third derivative [which is O(1) for outer so-
lutions ] gives us the equation

2
%fwf(c) +€Kf'(§);_t§‘=0(€2). (51)
In the linear case, we could simply throw away the
unstable mode. However, when numerical integra-
tion is necessary, the instability of Eq. (50) will
cause difficulties which are eliminated by using
Eq. (51) instead. This equation still contains the

L. BURKE

oo

damping information but is not unstable.

For example, the equation of motion for a clas-
sical electron derived from a slow-motion (i.e.,
point-electron) assumption is

mZ+V'(Z) - 2 Z/cY)=F(t), (52)

where V(Z) is a potential and F(¢) is an applied
force. This equation clearly suffers from the pres-
ence of spurious runaway solutions. If the function
F(t) varies only on a time scale long compared to
the time 7=e?/mc®, we can use the above trick to
derive a new equation:

mZ+ 2tV (Z)Z +VI(Z)=F(t+27)+0(1?). (53)

This equation does not contain any spurious solu-
tions. Any attempt to use the advance term
F(t+27) to violate causality requires changing
F(#)on the time scale T and violates the assump-
tions under which Eq. (52) describes the system.
An exact equation, corresponding to Eq. (45), suit-
able for such short time scales requires a detailed
description of the charge distribution.

There is a general mathematical feature of the
present problem which occurs in many important
physical problems. Consider Eq. (45): The in-
tegral relates the force to the time history of the
motion. It is formally equivalent to an infinite sum
of derivatives.This istypical of delay equations.

If, for instance, the term (f - ¢) had been present,
it would have been formally equivalent to

(e d*

> . (54)
o Rl af

glt—€)=e /%)=

Use of any partial sum may lead to difficulties
when d/dt=0(1/€). Formally, Eq. (45) may be re-
garded as a differential equation of infinite order.
In the singular perturbation, we lose infinitely
many derivatives in the outer equation. For an
inner equation, no finite number of them will do.
In many radiation problems and also in statistical
mechanics, integrals over finite domains occur.
Even if these domains are O(¢), use of a cutoff
series of derivatives may lead to difficulties when
we deal with inner solutions or when we deal with
outer solutions but fail to utilize this fact fully.

I should remark that the approach used here is
quite different from that of those, e.g., Rohrlich?
or Plass, " who attempt to use the extra integration
constant to select a solution which does not, in
fact, run away. Such an approach is justified in
electromagnetism only if the equation arrived at
by Dirac is considered exact despite the difficul-
ties of the limit process (which suffers always
from spurious solutions) used to derive it. Such
an approach is of no use in resolving the runaway
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difficulties that arise when the slow-motion ap-

proximation is applied to other physical problems.
The ideas presented here arose during a study®

of gravitational radiation damping, where the prob-
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lem of runaway solutions had to be solved before
work could safely proceed. I would like to thank
Professor P. A, Lagerstrom for help with this
problem.
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Precision heat-capacity measurements at constant volumes for hep He? are presented for
molar volumes between 13.7 and 20.8 cm® and for temperatures between 1.3 °K and the melt-
ing temperature. These data are used to calculate the deviations of the equation of state for
hep He! from the Griineisen equation of state. It is found that the reduced Debye temperature
6/6y is not a volume-independent function of the reduced temperature T/6, and that the Griin-
eisen parameter Y is both volume and temperature dependent. It is observed that ¥ and 6/6,
at a given volume and 7/6, are the same for hcp He? and hep He®, and it is suggested that the
observed volume and temperature dependence of ¥ and ©/6, are typical for close-packed van

der Waals solids in general. The temperature-dependent contributions to other thermody-

namic functions are given as well.

I. INTRODUCTION

In this paper detailed and precise constant-
volume heat- capacity (C,) measurements for hcp
He! are reported. These data are sufficiently ex-
tensive to yield complete information about the
temperature-dependent contributions to the equa-
tion of state for molar volumes greater than about
13 cm®. The work was undertaken because a care-
ful comparison of the thermal properties of hcp
He* with available results® for hcp He® is expected
to reveal any nonclassical isotope effect on the
thermodynamic properties of the solids. If such
nonclassical effects exist, they would be more
noticeable in helium than in other simple solids,
because the relative contribution of the zero-
point energy to the total internal energy is larger
here. I no such effects are observable, or if

their nature is simple, it is not unreasonable to
use solid helium as a model substance for the
prediction of the properties of other close-packed
solids whose binding is by van der Waals forces.
There has been great temptation in the past? to
look upon solid helium as such a model substance
because its thermal properties can be studied
readily over a large volume range. For most
other solids, such an investigation would be very
difficult because very large pressures would be
required.

If solid helium is to be looked upon as a model
solid, then it is of interest to examine the thermal
properties of He? in detail and to compare them
to simple equations of state such as the one pro-
posed by Griineisen.?® If the isotope effect in heli-
um is found to be essentially classical, it might
be hoped that any observed deviations from the



