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A complete set of time-independent orthogonal phase functions (+~), s =0, l, 2, ~ ~ ~, is gener-
ated via the Schmidt process and used to represent the Fourier coefficient RI,(t) of the time-de-
pendent microscopic density function. The projection of Rl, (t) on+0 is essentially the density
autocorrelation function. The equation of motion of the coefficients of this expansion is found
and formally solved to yield the Laplace-Fourier transform of the density autocorrelation func-
tion as a ratio of infinite determinants, closely related to Mori's continued-fraction expansion.
A non-Markovian memory function is then readily defined in the same terms. These exact re-
sults are illustrated by explicit calculations for the ideal gas. Finally, a perturbation expan-
sion of the memory function is developed, leading to practical approximations.

I. INTRODUCTION

The simultaneous correlation between the par-
ticle density at two points r and r + r in an equi-
librium fluid, given by the pair distribution func-
tion g(r), is a fundamental property of the fluid
from which other properties may be obtained. The
calculation of this quantity is a statistical problem
in which much progress has been made in recent
years. When the density at the second point is
taken at a time t later than the first, however, an
additional many-body dynamical calculation is re-
quired to obtain the corresponding time-dependent
correlation function G(r, t), first introduced by Van
Hove. This is, of course, an initial-value prob-
lem, so that G(r, t) should be expressible in terms
of the state of the system at the initial time t = 0.
In practice, however, this is a difficult problem
that is often partially circumvented by physically
motivated assumptions.

An elegant approach to the calculation of time-
correlation functions such as G(r, f) has been given
by Zwanzig, who used a projection-operator tech-
nique to obtain an equation of motion involving a
non-Markovian memory function. A formal defi-
nition of this function is obtained which of course
then contains all of the original dynamical problems
of the calculation. The present work was moti-
vated by a desire to make this projection technique
more explicit, in the hopes of thereby facilitating
approximations to the functional dependence of the
memory function.

The general formalism is developed in Sec. II.
Here the Fourier coefficients of the density at time
t are expanded onto a set of orthogonal functions
generated by the Schmidt process. The coefficients
of this expansion are time- correlation functions,
and in particular the first coefficient, i. e. , the ex-
plicit proj ection of the total density function onto the
fir st orthogonal function, is just the auto correlation

function being sought. The Laplace transform of
this quantity [essentially the doubly transformed
G(r, f) ] is then resolved as a ratio of infinite-order
determinants, the elements of which contain only
correlations from the initial state at t = 0, thus
formally satisfying the rigorous requirements of
an initial-value problem. A memory function is
then readily defined in the same terms. These
general results are illustrated in Sec. III by ap-
plying them to the ideal gas, where explicit evalu-
ations can be made. In Sec. IV a practical approx-
imation to the memory function is obtained using
a perturbation expansion.

After this work was completed, the author found
that a general analysis of time-correlation func-
tions similar to that in Sec. II had been made by
Mori. The form of the final result, however, was
that of a continued fraction, rather than a ratio of
determinants, as below. One of the advantages of
the present formulation is that the final result lies
in the range of well-studied functions, so that a
body of known results immediately becomes avail-
able for further developments (as instanced, e. g. ,
in the perturbation expansion of Sec. IV).

II. GENERAL FORMALISM

Preliminaries

The system consists of N molecules, in anequi-
librium distribution in a volume V at a tempera-
ture T = (ks P), whose motion is governed by the
Hamiltonian

The microscopic particle density at some arbitrar-
ily chosen origin of time is denoted
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whose formal solution is

p(r, t) =e'"p(r, o} . (4)

Here I. is the (Hermitian) I iouville operator, de-
fined as indicated by i times the Poisson bracket
of 8 with the operand. The mean value of theden-
sity at any time is n N/V -and we define for con-
venience the modified density function

This function evolves in time according to the clas-
sical equation of motion

&p(r, t) = —[a, p(r, t)] =il p(r-, t),

This straightforward time expansion, however,
leads to a slowly converging series for the time-
correlation function, with, what i.s worse, coeffi-
cients that increase rapidly in complexity. The
set of functions (L'Rf, (0}J, s = 0, 1, 2, . . ., may,
however, be used to generate an orthogonal set of
basis functions (4, j, s = 0, 1, 2, ... , which, being
tailored to the particular dynamics of the problem
at hand, have many convenient properties. (The
k dependence of the C„andof several other quan-
tities in the following, will be suppressed in the
notation. ) We use the Schmidt orthogonalization
process and define

R(r, t) = p(r, t) n- (6) 4, =RI (0)

G{r) =g(r) —1

is the total correlation function of equilibrium
fluids. The subsequent analysis will actually be
made in terms of the Fourier coefficients of
G(r, t), namely,

Gf, (t) =(ll&) '&Rf(0)Rr, {t))

where

R-„(t)=e'"R;(0), (10a.)

R;(0)= Ze '" "J-N5„',o- (10b)
j=l

In gelleral, for a function F(r) defined ill the volullle

V, we write the Fourier expansion in the form

F(r) = V 'QE"„e''
k

F- = f dr F(r) e-'"' .

In Eq. (10b), 5," o is the Kronecker 5.

Expansion of Rp {t)

The dynamical problem is contained in the calcu-
lation of R"„{t).An expansion of this quantity onto
a basis set of time-independent phase functions
xnay be trivially obtained by expanding the expo-
nential operator in Eq. (10a), which gives

R-„(t)= Z, r, 'R;(0) .

whose mean is zero.
The main quantity of interest in this paper is the

space- and time-dependent density correlation
function G(r, t) defined by '

G(r, t) = (nN) ' J dr '(R(r ', 0)R(r '+ r, t)), (6)

where the brackets denote a canonical-ensemble
average. Note that initially

G(r, 0) = G(r) +n ' 5(r)

8 QQI 8R (0
n=D n n

By construction then these functions have the pro-
perty that

(14)

(Note that the 4, are being left unnormalized. ) In
terms of this orthogonal set, we may now write

R-„(t)= Z W, (t) e, ,
s=o

where

Ao(0) =1, A, (0) =0, s )0 (16)

Equation of Motion of the &~ {t)

The equation for the evolution of the A, (t) may
be readily obtained. From Eq. (10a) we have

BR-„(t) .
)k

and hence, using (14) and (15), we get

w. (t) .+„,&e,*f.e„)

It is shown in Appendix A that the matrix whose
elements appear in this equation has a very simple
form, namely,

(16)

One finds then that the coefficients A, (t) are them-
selves time-correlation functions, and in particular
that

&4g R.„(t))G-„(t)
&+(~) '4) Gr, (o)

That is, in order to calculate the autocorrelation
function G;(t) we need to know only the projection
of the total "vector" R1(t) onto the fixed basis
"vector" 40.

Note finally that since Rf. (0) = 4'0, the initial val-
ues of the A, (t) coefficients are
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(4)L 4„)
s, n+i + s s, n-1

@s ~s
where

(21)
We then define

gwpO
(28)

(22)

Thus Eq. (20) reduces to a simple relation between
anythreesuccessivecoefficients A, (t) (except for
s = 0 as shown):

PA p (t) g (t)
~t

(23)

So (z) + Zz8 g (z) + v) Qo (z) =0

8, (z) + iz So (z) + v, gp (z ) = 0
0 ~ ~

where we have used Eqs. (18) in the right-hand
side. A straightforward application of Cramer's
rule then gives the solution (see comments in the
next paragraph)

—isa, (t)
9$

=A, , (t)+v,A„,(t), s &0

This set of linear differential equations may be
conveniently solved (at least formally) in Laplace-
transform representation. %e will denote the Lap-
lace transform of a function by its script letter.
The transformed Eqs. (23) then yield the set of

algebraic equations

iztto(z) + vog, (z)

Note that for any finite S the denominator in (28)
is a polynomial in z of one degree higher than the
numerator. Other ratios of infinite-order deter-
minants will also be understood in the sense of the
limiting process in Eq. (28).

Noting that Ao(t) is essentially the density auto-
correlation function [Eq. (17) ] and that the deter-
minants ~„(z)contain only correlations at the ini-
tial time [Eq. (22) ], we may say that Eq. (25) rep-
resents the desired solution of the time evolution
of G(r, t) in terms of the state of the system attime
t =0. This of course is true only in a formal sense,
for the problem of evaluating the determinants and
performing the Laplace inversion of (25) is clearly
impossible for the general interacting case where
the coefficients v, will largely remain unknown.
Rather than seek an approximate inversion of Eq.
(25), however, we will in the following subsection
introduce a "memory function" for the evolution of
G(r, t) and later, in Sec. IV, seek to approximate
it.

Memory Function

By expanding up(z) in minors of the first row
(or column) we may write Eq. (25) in the form

@o(z) = i ~ i (z )/ n o (z)

where S, (z) is an infinite-order determinant,

(25) &o (z) = i &i (z)/[iz&i (z) —vp&p (z) ]
= [z+ ivo~, (z)/m ( (z) ]

' = [z+Xf (z) ] ', (29)

sz vs 0
1 'Lz vs+

$, (z) =0 1 tz
001

0 0 ~ ~

0 ~ ~ ~

Vs+2 '''
2Z

(26)
X j (z) =

ivp &o (z)/Qg (z) (30)

The role of this quantity becomes evident on re-
writing Eq. (29) in the form

where we have defined (reintroducing the subscript
k notation)

zz

1

0
~(s)(z)

v„0
ZZ Vn~y

1 iz

0 0
0 0
0 0

(2'7)

0 0 0
0 0 0

M Vgy
1 iz

having nonzero elements only on the principal di-
agonal and the two immediately adjacent diagonals,
as shown.

The ratio of two infinite-order determinants such
as appears in Eq. (25) must clearly be defined by
a limiting process. This may be done unambiguous-
ly by first terminating the original expansion of
R-„(t)[Eq. (15)] at finite s =S, proceeding through
the above solution, and finally taking the limit as
S-~. For finite S this yields forgo(z) the solu-
tion iG~z '(z)/QP'(z), where now

zao(z) -1= -X;(z)~o(z) (31)

and performing the Laplace inversion; this yields

,',( ) = -g~ dt'Z-„(t- t') W, (t'), (32)

or, using (1V),

dt'Z;(t —t') G-„(t') . (33)

X.„(z)-vo/z, z- ~ (34)

That is, K„(t)is a non-Markovian memory function
for the evolution of Gf, (t).

The initial value of this function may be found
from the asymptotic limit of X.„(z).Noting in Eq.
(30) that the denominator is again of degree one
higher than the numerator, we obtain for this limit
simply
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so that

~-„(0)= ~, = (a'/pm) (1 —nC„-), (35)

. &Ao{t) k',
)

p
1

(41)
where the last equality is from Appendix B. Here
CI", is the Fourier coefficient of the direct correla-
tion function C(r ) of classical equilibrium fluids.

If we define a time-dependent function Cg (t) such
that

. sA;(t)—i ' =A;, {t)+(s+I) A;„(t), s &0
Pm

along with the initial conditions of Eqs. (18). It
can be verified immediately that the solutions are

Z„-(t) = (nk /Pm) C„"(t) (36)
(it)' —k' t'

A; (t) =, expst 2J3m
(42)

then Eq. (33) becomes
t
dt'C„(t—t') G"„(t')

0

or, by Fourier inversion,

sG(r, t) n
Bt Pm

(3'7)

Thus we find that while initially the total vector
R';(t) lies wholly along 4"0, this component de-
creases monotonically in time, while the com-
ponents along all other 4', initially increase, peak
in succession, and eventually also vanish.

Finally, using (40) and (42), we find for the com-
plete expansion of R'-„(t)

xC(r -r', t —t') G(r', t') . (38)

This is just the defining equation suggested by Per-
cus and Yevick for a generalized, space- and time-
dependent direct correlation function C( r, t).

We note finally that by indefinite continuation of
the process of expanding the determinant in the de-
nominator, as begun in Eq. (29), the continued-
fraction expansion of Mori may be recovered.

R'-„{t)= +exp —ik r, + ' —N6-„0, (43)
j=1

where we have used the generating function of the
Hermite polynomials. Obviously this elementary
result could have been much more easily obtained
directly had it been our main goal.

We have in Eq. (42), for s = 0, the well-known
form of G'f (t) for ideal gases":

III. NONINTERACTING CASE A; (t) =-G';(t)/G'-„(O) = exp(- a' t'/2Pm),

The Laplace transform of this is

(44)

v, =(s+1)k /Pm, s=o, 1, 2, ~ ~ ~ (39)

where the superscript degree mark identifies this
ideal case, and furthermore that

y2 s/2 S
@o ( I)s P tk r&-

Pm

1/2
pXH, — k"p, —N5), , 0 5s, 0

where the H, (x) are Hermite polynomials and k is
a unit vector in the direction of k. In view of the
fact that the canonical distribution function contri-
butes a Gaussian weight function for the momenta,
it is not surprising that the orthogonal expansion
should in this case turn out to depend essentially
on Hermite polynomials.

The corresponding coefficients A; (t) must sat-
isfy Eqs. (23), which now read

For the sake both of illustrating the developments
of Sec. II and of obtaining formulas needed below,
we will display here explicit evaluations of the gen-
eral quantities introduced above for the case of the
noninteracting gas, U= 0.

The realization of the program set forth in Sec.
II hinges on a knowledge of the coefficients v, . For
the present simple case, it is shown in Appendix B
that

tto (z) =(mPm/2k )
~ jl- erf[z(Pm/2k )' jI.

x exp(pmz '/2kz), (45)

IV. APPROXIMATE MEMORY FUNCTION

In this section we seek to approximate the mem-

ory function K", (t) for the general case of an inter-
acting system. It will be convenient to work tem-
porarily with the finite determina. nts of Eq. (2 t),
passing to the limit S-~ at the end.

The approach is essentially that of a perturba-
tion expansion, with the ideal gas as the unperturbed
system. We have, from Eqs. (30) and {27),

(z) =-»o& {z)/S ' (z) {46)

where the determinants contain v„s= 1, 2, .. .,

S —1, which we write in the form

Vs Vs +~s (47)

An expansion of the determinants in powers of the

5s can be obtained by using special properties of
the K),' ' (z). These determinants, called continu-

ants by Muir and Metzler, satisfy the decompo-
sition rule'

which, with Eq. (29), serves to define X'-„{z),to be
used in the sequel.
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/ (m)
( ) to (1)

( )ID (Itt)
V / (1 1) (Z) t0(m) (Z) (48)

for s & l &m, where we have incorporated the con-
vention

uI,"( )=1 .
Define now a hybrid determinant 5),'. )' (z) wherein
the elements v, are the ideal gas v, for s «& l and

the complete v; for l &i &m, Then choosing l =s
in Eq. {48), we write

but 5, and 6, . Then Eq. (53) becomes

ivor; (z)
&) (z)-uo (z) 5)

tv() vl I) o (z)
v,'g)1 {z)—

[ized

o (z) — 1 {z)] 5,

vov) ) {z)
v vl —z 6)X (z) (55)

&,'"' (z) = &."' (z)&,', '(z) —(v;+5.)&.""(z)&,', '(z)

+(m) { ) 5 to tt(8-1)
( )t0(m) (z) (50)

The same operations, with the choice l =s+1, may
now be performed on the hybrid determinant of
(50), glvillg

—(v'„,+ 6...)u,",,& (z)S(.o&, , (z)

g)
o (s-1) {Z)tD (m& (Z)

8+1
to(m& (Z) Q Q tt (i-1)

( ) tL) ((m) (

Continuing in this way successively through l =m
—1, we obtain a discrete analog of an integral
equation for S,( '(z):

g) (m& (z) / o(m& (z) p $) tt((-1)
( )/(m) ( ) 5 (53)

In the above the indices of the determinants have
been simplified as the nature of the elements per-
mitted; the superscript degree mark identifies, of
course, the determinants containing only ideal gas

0
vs

Equation (52) may be solved iteratively, yielding
finally for Xl(z), after passage to the limit 3'

where (48) has been used to eliminate So (z). Note
that for large z, using the asymptotic form of X ~

(z) in the denominator, one can write

X-„(z)- . . =—.X~(z), z- . (58)
v() vl X)t (z) v()

V0 V1 —V0 51 V0

That is, just as for the first approximation, the
memory function from Eq. (55) is initially exact
and evolves as for a free gas for short times.

For long times, 'o
K), (t) from Eq. (55) will show

an exponential decay, with the exponent determined
by the root of

v, g)) (z) —ized),
' (z) =0

with smallest real part. Exponentially decaying
memory functions have been studied by Berne,
Boon, and Rice. "

A general test of the usefulness of the approxi-
mation in Eq. (55) must await a numerical calcu-
lation. This is left for a later paper.

APPENMX A: MATRIX ELEMENTS (+,*I.+„)
In order to specify completely the equation of

motion of the A, (t), we need to know the effect of
operating on, a phase function C„with the Liouville
operator I-. From Eqs. (13) we have immediately

L4'o=LR-„(0)

X;(z) =ivo[S; (z)- Q &;""(z)8;„(z)5, + ~ ~ ]

&( [u, (z) Q X;('-'&(z)u, (z) 5, +" ] '.

Equation (53) is now in a form suitable for approxi-
mation. By simply neglecting all 5, (except 5o,
contained in vo) we obtain the lowest approximation,

1.4 =I.""R-(0)-Q ' " I,4tt )t ( )lt1t )lt ) t t

or, using (13) again in the right-hand side,

&4f «-.(o))I 4'o ——tl&) +
( ")

" (q~l-"'R-„(0))

(Al)

(A2)

X;(z) =(volvo)Xz~ (z) . (54)

It is shown in Appendix C that this result leads to
a form of the density fluctuation function derived by
Nelkin and Ranganathan from the linearized Vlasov
equation. Equation (54) gives the memoryfunction
K), (t) exactly at t = 0 but treats its time evolution
as that of an ideal gas, thus becoming less and
l app p at ast ce s.

The next approximation is clearly to neglect all (A3)
i=0

This provides a set of equations from which the
functions L C„could be calculated successively.
Note that L expands 4'„onto the finite subset

We now define for convenience a
matrix I",„such that

I 4t„=4„,1+ Q 1"(„4'(
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For s «, it follows that

(@,*I,C„)= I',„(@,*4,)

where the H„(x)are Hermite polynomials' and k

is a unit vector in the direction of k. It follows
that

(@8 l+s l) 6gq (yg y g S+1 lt! Ill SI1

s s~

(~;*~;)=iv(1-6;,,),
(e, *e, ) =Xk'/Pm,

whence, using (A8),

vo =k /Pm

With the use of (A7) in the form

+a =10+ —~o +o

(HS)

(B4)

(H6)

where we have used the Hermitian property of L in

(A4). Explicit expressions for the diagonal ele-
ments I"„„maybe obtained from (A2). One finds

and the recurrence relation for Hermite polyno-
mials, one can show that 4z may also be written
in the form

(egI, Z„-(0))
00 (yg@ )

(e„*I,"'Z„-(0)) (+„*,L "ft„-(O))
(4„*e„) (e„*,4„.,)

(A6)

and hence, again using (A8), that

%'e now note a general rule of these phase aver-
ages: Because of the symmetry of the momentum

weight function, any integrand with odd powers of
the momenta will yield a zero contribution. Thus
it follows immediately that I oo vanishes. In gen-
eral, this rule can be used to establish the van-
ishing of any phase integral that contains an odd

power of the operator I . Then, referring to Eqs.
(1S), we see tlla't because I 00 vanishes) q'1 contains
L only linearly. Hence, 42 will contain only even

powers of L, since the coefficient of the linear term
vanishes. Continuing in this way, it is apparent
that C„will contain only even or odd powers of L,

accordingly as n is even or odd. It then follows
from (A6) that I „„vanishesfor all n.

Summing up, we have shown that the only non-

vanishing elements of I;„arethose having i =m —1,
so that, from Eq. (AS),

(Av)

vl = 2k /Pm (88)

v =v + C;+— dr(1-e"')g(~)(k &)'0(&)
Pm 'm

(Bll)

In obtaining (Bl1), we have assumed the intermo-
lecular potential is composed of binary interactions
only:

(B12)

By an obvious proof using mathematical induction
with Eq. (A'7) and the recurrence relation of the
Hermite polynomials, it follows that all further
4'; can be written in the form of Eq. (87), while
cox respondingly the coefficients v, are

v,
' = (s + 1)k~/Pm

For the general interacting case we display here
only the first two coefficients v~. By a straight-
forward calculation, it is found that

Vo —Vo —(Bk /pm) Cf,

v„=i„„„=(e„*„e„.,)/(4+ e„).

APPENDIX 8: COEFFIt IENTS v~

The proof of Eqs. (S9) and (40) for the ideal gas
proceeds by alternate steps. It is readily verified
that the first two functions 4,' can be written in the
fol m

These coefficients involve the second and fourth
moments of Gf(t), which were first given by de
Gennes. '

APPENDIX C: EQUATION (54) AND NELKIN-RANGANATHAN
SOLUTION (NR)

In this appendix we wish to calculate explicitly
the time Fourier transform of Gf, (t),

St(e) =(2') ' f llG , (t)e '"'dt" (Cl)

llsillg the approxllYlatlon of Eq. (54) ~ Becallse of
the symmetry in time of G", (t), Eq. (Cl) may be
written
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S„-(~)=m 'Re[fonG„(t)e ' 'dt]

= m 'Re[n g-„(i(u)] (c2)

So (ie) =(Pm/2k )" [A(x) —iB(x) ]

having defined, following, ' NR,

(c6)

Now, using Eq. (29) for both the 1deal gas and the
general case, one obtains from Eq. (54)

@0 (z)
1+(1—vo/vo) [z80 (z) —1]

or

x = (pm/2k')"'u),

A(x) =/me "

a(x) =2e "' f",e' ds .

Thus, after some simplification, we get

(c7)

@o (z) Gg(0)
1+n C-„(ze,(z) —1j (c4)

(c5)

where we have used Eqs. (1V), (B9), and (810).
With the mathematical result that

erf(ix) = (2i/gw) J',ds e'

we obtain from Eq. (45)

(2') '(2'/u')"'~(x)
[(1+nG-„)'+nC"xI3(x) ] + [nc-„xA(x)]

(ca)

which is the result obtained by Nelkin and Rangan-
athan from the linearized Vlasov equation, with
an additional factor of 2m from the definition.
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