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The liquid-gas critical line in binary mixtures is discussed in terms of a theorybasedon the

assumption that the phase transition may be described in terms of a single ordering field and

an effective critical temperature. The theory, an application of a theory of Fisher to a case
not considered by him, makes a number of predictions, among them that the specific heat at
constant pressure and the isothermal compressibility, both at constant concentration, are
weakly singular at the critical line. Azeotropic critical points, as well as points where either
the critical pressure or critical temperature shows an extremum, are special cases in which

the transition differs from that at a general point on the critical line. The theory is consistent
with the few available experimental results.

I. INTRODUCTION

In recent years there have been striking ad-
vances in both the static and dynamic theories of
pure systems in the vicinity of their critical
points. Our understanding of transitions in impure
systems is considerably less advanced. Fisher'
has proposed a phenomenological theory dealing
with the static critical properties of special types
of impure systems. The predictions of this theory
have been confirmed by a number of calculations
on model systems, but have yet to be firmly test-
ed experimentally, primarily for the reason that
rather detailed knowledge of somewhat inacces-
sible thermodynamic quantities is required. The
available data are, however, consistent with Fish-
er's predictions. In this paper, we apply Fisher's
theory to a case more general than that considered
by him and work out in some detail the conse-
quences for the liquid-gas phase transition in bina-
ry mixtures. A number of predictions capable of
rather straightforward experimental check are
derived. We predict that the isothermal compres-
sibility and the specific heat at constant pressure
should exhibit weak divergences at a general point
on the critical line of a binary mixture. These
results have been derived for a simple-model sys-
tem by Helfand and Stillinger' and have been sug-
gested to be generally true by Rowlinson. A

divergent compressibility also exists in models
discussed by Widom and Wheeler. ' The adiabatic
compressibility and the specific heat at constant
density are predicted to be nonsingular along any
finite segment of the critical line, in agreement
with general arguments. However, at a point
where the critical pressure shows an extremum,
the theory predicts a weak divergence in the adia-
batic compressibility. Conversely, when the crit-
ical temperature shows an extremum, the specific

heat at constant density should be weakly singular. '
The theory also provides a natural description

of an azeotropic point. In this case we find that
the impurity concentration plays a rather inert
role, as in the case discussed by Fisher, and that
both the specific heat at constant density' and the
adiabatic compressibility remain finite.

The basic assumption underlying the theory is
that the essentials of the transition may be de-
scribed in terms of a single effective critical field
p,

* together with a single effective critical tem-
perature T*, both assumed to be regular functions
of the temperature T and the chemical potentials
p, , and lU, ~ of the two components. In the limit of
zero concentration x, T~ -T and p, ~- p.a. Spe-
cifically, it is assumed that the free energy in the
binary system may be written as the sum of a reg-
ular term plus the free-energy function of the pure
system with arguments T* and p, *. The singular-
ities of physical quantities in the binary system are
thus related to those in the one component system.

Our treatment will differ from Fisher's in that
we will assume, in general, that the introduction
of the impurity, especially in sizable quantities,
does alter the ordering field; all quantities in Eq.
(3) below will be assumed in general to be nonzero
on the critical line. If the theory is to be valid
for all values of x for which there is a critical
point, alteration of the ordering field with x is
mandatory; in some systems the critical line ex-
tends from x = 0 to x = 1.

In Sec. II, we present the basic formalism, in-
cluding discussions of the notion of an order pa-
rameter and of the way in which the experimental
approach to the critical point is described theo-
retically. In Sec. III, we discuss critical cor-
relations (static spacially uniform limit) near a
general point on the critical line. Special points
where the critical pressure or critical tempera-
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ture show extrema, as well as azeotropic critical
points, are given separate treatment in Sec. IV.
Section V is devoted to additional comments.

II. BASIC FORMULATION

as a function of the impurity chemical potential
The particle number densities n, (the im-

purity) and na and the entropy density s are given
by

BF BFO BEO Bg
'pl~ = = g T~+ g $p~+

BF BED BEo Bg
BT BT+ P B + P BT P

i =1, 2

(3)

where we have introduced the notations

Following Fisher, we commence with the basic
assumption that the free energy (here, the pres-
sure) may be written in the form

F(T, Vi, uo)

=FolT (T P 1, 92) P(T . / 1 I 2)j+g(T P'1 P2) .
(1)

F, is the critical part of the free-energy function
at zero impurity concentration, g is a regular
background term, and T*and p, *are, respectively,
the effective critical temperature and the effective
critical field, both assumed to be regular functions
of their a,rguments. The critical points (i. e. ,
line) in this formalism are given by the solution to
the equations

T*(T„g~,Vac) = T'„u *(T„gg,Vac) = g'„(2)

while the analogous quantities for the critical field,
temperature, and pressure are

8T=r(1 l'8')=-T- To,

5p =r 'a8(1 —8')= p, —g'„
aP = r"' "'P(8)= F,(q, T) .

(8)

8 = 0 represents the critical isochore, 8 = + 1
represents the two sides of the coexistence curve,
and 8 = + b represents the two parts of the critical
isotherm for 6p. ~~0. g, a, and b are constants.

I et us now apply Schofield's theory. To lowest
order the deviations of p,

* and T from their crit-
ical values are

5T = Tz6T+ T,'5 p, , + Tz 5pz,

6)L{,*=uz5T+ ze& 5p. , + zvz5p, z.
These may be solved to yield equations of the form

ceed we first need a, model for the critical thermo-
dynamics of the pure system as the critical point
is approached in a rather genera, l direction in the
(p, , T) plane denoting by p, the critical field. A
parametric model which compares quite well with
experiment has recently been proposed by Scho-
field. ' The two parameters in his model are x, a
quantity which gives a measure of the distance
from the critical point in p, —T space and 8, which
measures the distance along a contour of constant

The critical parts of the order parameter and
of the entropy are written in terms of these vari-
ables as

8go, =r'g8, iso„=r' 's(8),

(
BJU, Bp, Bp,

p =(Krc 'Ni) Ãa) ~
BT Bp, & BjtLz

5 pj = gy6T + by5p + cj5T

5p, z=az5T~+ b25JL(, ~+ cz6T.

The condition that x= n, /(n, + n, ) be constant is

(8)

It is seen that all three densities in (3) contain
both the nonanalytic behavior of the entropy and

that of the order parameter in the pure system. In

general, then, in contrast to the case studied by
Fisher, there will be no unique order parameter;
n„~~, or s or any linear combination thereof
exhibits coexistence curves as a function of T
when p, ~= p, However, we do not know how, from
an experimental point of view, to hold p,

~ con-
stant, while the coefficients in (3) are unknown. In
an experiment, the approach to the critical point
will be along some curve in p,

~- T* space, a
curve which will not in general follow the critical
isochore. We now consider the problem of de-
termining this curve in the cases where the crit-
ical point is approached at constant concentration
and either constant pressure or density. To pro-

c c c c BFo c c c c BF{)
(nl 2 n2 1) c+ ( 1T2 2T1)

Bp, BT

+ ~l ~ ~ j. + ~2 ~~ ~ + ~3 ~ T

in which the superscript c indicates that the quan-
tity is evaluated at the critical point in question.
Putting Eqs. (5), (6),and (8) in (9), we find

(
c c c c) 9 wreoy (ncTc nc Tc) s(84)rs (1-u)

+ c,r*(1—b 8* ) +czar*o'8*(1 —8* )+ c,ST=0,
(10)

where the asterisks indicate quantities in the solu-
tion. In a similar fashion, we find the condi-
tions for constant e and constant P to be, respec-
tively,
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( c c) g c& 48+ (Tc+ Tc)&(g 4)& a(1-n)

+d,)'*(1-t) 8 )+d8a) *8'8*(1—8* )+d65T=O,

(il)
e, 5T +e 8r*(l —5 8* )+e6x*8'8*(l—8* )

B2I" B2P
0 (5T4)-)' 0 (5Tc)-a

BT42 j

E BE,
,

BE
( )

BT Bp, BT Bp,

~ ~ a 8(6+1)p(g ) 0 (i2) B2P0 (5Ta)+ (8-1)
BTB

The various constants appearing in Eqs. (10)-(12)
are combinations of s„n;„and derivatives of
T*, p, ~, and g~ evaluated at the critical point.

Suppose now that the critical point is approached
at constant P and x. Since p&1 —o. &1& p5
& p(5+ 1), it is clear that (10) and (12) can only be
solved if, to leading order,

8*-(~*)'- -'+ " 5T-r*+ ~ ~ ~

[Note that s(0) c0, p(0) xO. j Thus, near the
critical point

(5T)86+1-a-8 (5T))'+1-a (14)

for P and x constant. The system is thus forced
to approach the critical point near the critical
isochore of I'o. It has of course been assumed
in the above that the various constants in (10)
and (12) are such that 5T= T —T, & 0 corresponds
to 5T*&0. The case 5T& 0 may be worked out

similarly. Here p. *=0 and the new variable re-
placing )'*88*is an average of ()E0/S)1* over the
two phases of the system. All three quantities n,
x, and s will exhibit coexistence curves with the
usual temperature dependence I GT (~. The results
for constant n and x are only slightly different.
A little inspection convinces us that in this case

c)1-a-8 5T ( a)1-a (5Ta)1 n-

g n (5T)(6+1-a) /()-a)

for n and x constant and for T& T,. The result
for T& T, is the analog of the previous one. n,

x, and s have coexistence curves with tempera-
ture dependence ( 5T t~"' ' in leading order. The
result ) 5T )

-
)
5T~)' ' is the same as that found by

Fisher for his more restrict~. d model. We note
in passing that the result Eq. (14) is quite different
from that at constant P and x= 0 owing to the fact
that the restriction x= const is, for x 10, a re-
striction on the "order parameter" 8E0/ Sp, *.
The restrictions n, x= const have only a slightly
different effect; thus the result of Eq. (15). The
approach to x= 0 in our model is quite similar to
that in Fisher's model and will not be dealt with

here.
When either (14) or (15) hold, we have several

additional relations from Schofield's model which

will be of use; these are

III. CRITICAL CORRELATIONS

We now turn to the calculation of critical cor-
relations. The general liquid-gas critical point
will be treated first; special critical points re-
quire special attention and will be discussed in
Sec. IV. Correlations may be calculated in a
straightforward manner from Eq. (2), We will
not go through the algebra in great detail; we will,
for the most part, just present the results for the
quantities of greatest interest experimentally,
and, for those, only the divergent parts near the
critical line.

First let us consider the compressibility at
constant temperature and concentration. We have

(gn 1 (nn) (xx) —&nx)

Isa, „n &xx)

(n,n, )(n,n, ) —(n,n, )' (17)=g 2 2
n8 (n)n1) —2n(nz& n(nz) + n1& nzn8)

where, for convenience, we have introduced the
correlation function notation

&ab) =P j d6rd'& '[&a"()')b" ()'')& —&a")&t)")].(18)

&n,n, )&n8n8) —&n,n8) = (T,(U8 —T8(U, )

Sq*"8 STn8- S„ce'T* +0 Sq*'8 ~ (19)

n'(xx) = n', (n,n, ) —2n, n, (n,n, ) + n', & n,n, )

+O 2 O

Bp.
gp (n8(U) —n)(U8) + 2 T g (n8(U) —n)(U8)

Bp, BT

B'+o
x (n, T, —n, T,)+ „8(n, T, —n, T, )

BT

+ (nondivergent terms). (20)

Combining (17), (19),and (20), we obtain

Now, each of the correlation functions in (17) con-
tains, as we see from (2), the three singular quan-
tities () E /8)0*,18 E0/g)(*ST*, and 88E0/ST*8.
Calculating the coefficients of these terms, we
find
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(
Bn " ncos(T*, p*) (T,u, —T,u, )'
BP r „T (B2wy —11)w2)

(21)

g gy+2 gyp' (22)

for the singular part (denoted by the superscript
cr) of (Bn/BP)r, „. Here

at constant x and P, finding

CJ'„=[C'; (T*, iL*)/(n, w, —n, w~) ]

&[(Tr(n, w~ —n2w, )+ wr(n2T, —nfTQ) f
—(s/n)(T, w, —T,w, )]'. (23)

is the specific heat at constant order parameter in
the pure system. Note the reduction in the degree
of the singularity in (22) which resulted from hold-
ing x constant; (Bn/BP)z p = (nn)/n has a term
proportional to B Eo/Bp* (here Z= p, , —p, z), the
isothermal compressibility in the pure system.
This sort of reduction will be a common feature in
all of our calculations, and may be thought of as
resulting from a restriction of the freedom of mo-
tion of the variable in question. Similarly, we
may calculate the critical part of the specific heat

Combining (14)-(16)with (21) and (23) we find'

(
86

P, x const
T pX

~5T~
" ', n, x const (24)

CJ'„- (BT~ ", P, x const

~BT~
" "", n, x const. (26)

ft is also instructive to calculate C„„and (Bn/BP), „
in the present model. We have, for example,

C„„Bo [(oo) —(ox)3/(xx)][(nn) —(nx) /(xx)] —[(on) —(o x)(nx)/(xx)]
Tn BT „„[(nn)—(nx)'/(xx)]

in which o is the entropy per particle (not to be
confused with 0., a symbol for an order param-
eter). Calculation shows that each of the terms
in square brackets in (26) has as its only singular
part a. term proportional to C,- (T*, p, *). Compare,
for example, (1V) and (23). The coefficients turn
out to be such that the terms proportional to
(COB)~ in the numerator of (26) exactly cancel,
leaving a term proportional to C;. Thus, the nu-
merator and denominator of (26) have the same
singular behavior. We find a precisely similar
result for (Bn/BP), „, so that we may write for a
general point on the critical line

C„„-const& ~ and —- -const& ~. (27)
fy, x

to the problem of comparing theory with experi-
ment. The lack of precise data prevents us from
doing much in this area, "but we can check two
things. Experiment' shows that for a general
critical point the quantities

(26)

approach constants. The numerators and denom-
inators of both expressions in (28) diverge in our
model, but in each case, the numerator and de-
nominator have the same type of divergence.
Straightforward algebra yields

These results are, indeed, required by rather
general thermodynamic arguments. ' We now turn

8'pg K +K
~X P P P22Kf Pl fKP

(29)

BP [Tz, (n, w2 —nzw, )+ wr(nzT, —n, T2) —cr(T,w2 —T2w, )]
8~ xn Tf soP —TPKf

(3O)

at a general point on the critical line. Many of the
conclusions of this section are invalid at special
points on the critical line. These points require
special attention, and we now turn to an examina-
tion of them.

IV. SPECIAL POINTS

A. Extremum m P

Let us first consider the changes in the above
results at a point where P, has an extremal value.
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By varying Egls. (2) and using the Dibbs-Dunhem
relation (Fo is constant on the critical line)

comes singular. Result (15) is again unchanged,
so that we summarize by writing

5P = s,5T, + n& 5 jib &
+ n2, $ P,2, (sl)

one easily finds that the condition that I', be ex-
tremal is

Tr(nggog —nggog) + ger(ngTg —ng Tg)

! 5T!-a/&g-n&

It'Bn ~n - const&~,
(~+ex ~+T x

(s8)

sq(Tg1Up Tggog (32)

From (23), we see that when (32) holds, C~ „
ceases to be singular. From (21) we see that the
singularity in (&n/&P)r „remains. Since

C, (ox)'
(33)

c
( xx» n

=(on)(xx) -(ox)(nx)
n ~Ts

g, g (Tggog TgNg)[Tr(ng&'g —nggUg)

fyg ~+ &xcJ x
(s5)

(Sn/SP), „becomes singular, with the same singu-
larity as (sn/BP)r „. The result (15) remains un-

changed so that we may write, for a critical point
where I', exhibits an extremum,

C„,& C „- const &

-e/&1-0! &

(s8)

for n and x constant. Combining (20) and (28) with
the above gives (BP/BT)„,„- i 5T (' Pgg ", n and x
are constants. Extrema in I', are quite common. 4

B. Extremum in T

It is easy to show by varying Egls. (2) that T,
shows an extremum when

(Tggog —TgKg) = 0.

The situation in this ease is complimentary to that
considered in Sec. IV A. From (21) and (3V) we
see that (&n/&P)r „loses its singularity and
(sn/8P)r „remains finite. From (23), C~ „re-
tains its singularity, and thus from (35),

iwr(ngT, —n, Tg) —s(T, zvg —Tggog)]+ 0 — o
8 p+2

(34)

it is clear upon comparing Egls. (23), (28), »d
(32)-(34) that C„, also remains finite. However,
since

for n and x constant. Combining (20) and (28) with
the above gives the result that (BP/8T)„,„ap-
proaches a nonzero constant. Extrema in T, are
also quite common,

C. Azeotropic Points

n2'Nj —n~y %2 = 0 (39)

holds at the critical point in question. We thus
take (39) to be the defining characteristic of an
azeotropic point. It might be thought that we
should also require n2'T& -n, T2 tobe zero, thus re-
moving all critical behavior in x. However, this
latter condition combined with (31) gives (3V), and
hence requires tha, t T, have an extremum a,t a,n
azeotropic point. " This phenomenon is not ob-
served experimentally. "

I.et us now examine some of the eonsequenees
of (39). First, note that (39) reduces x to the
status of an inert impurity va, riable, essentially
the case treated by Fisher except for the fact the
relation between the chemica, l potentials appearing
in I"

0 and x is somewhat more complicated. This
slight complication is of no real consequence; the
predictions of our model of an azeotropie critical
transition are in essence the same as those of
Fisher, the order parameter now being the density
n. When the transition is approached at constant
n and x [condition (15) is not altered],

(npTg ng Tg) 8 Eo
! !

&gg g &)

( c)2 s Tgg

(nn) - (go'+go')' ', —
! 5T!-""'- ',

g 2Q(nx)- ', ' (T;n,'—T;ng)n' ~ p,*ST+

e (40)

In addition, one finds after some calculation that

Cp „-!5T! " ', C„„-const &~,

%'6 next consider an azeotropic point as de-
scribed ln our model. Such a point ls one at which
the transition is rather like that in a pure system;
both phases have the same concentration below the
transition. From (9) we see that x will cease to
be an order parameter when
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sx p r (xx) (42)

a divergence in this quantity is observed experi-
mentally. There exists an experiment in apparent
disagreement with our prediction that C„, remain
finite at an azeotropic critical point. Voronel
et a/. "have observed what appears to be a loga-
rithmic singularity in C„„at the azeotropic point
of a carbon-dioxide-ethane mixture. However, in
this mixture there is a minimum in T, extremely
close to the azeotropic critical point. Since we
expect C„„to be weakly singular at this minimum,
we would expect the maximum in C„„atthe azeo-
tropic critical point to be quite large. Further ex-
perimental work is needed to clarify this point.

V. FURTHER COMMENTS

A thorough study of the critical line of a system,
such as HC1-Me, O (see Ref. 4), in which the crit-
ical line extends from x=0 to x= 1 and which con-
tains an intermediate azeotropic point, as well as
extrema in P, and T„would be a most exacting

- const & ~ . (4l)
~S /(y )

BP 8Pex

Finally, let us note from (40) that

test of the ideas presented here. In this connec-
tion it should be pointed out that correction terms
to our results might make it necessary to go rather
close to a given critical point before the limiting
critical behavior could be observed.

It is instructive to look once again at the as-
sumption involved in the theory. The theory, an
extension of the ideas of Fisher, has been based
on the assumption that the transition in the binary
system may be described in terms of a free energy
E, one term of which is the free energy Fo(p.*, T*)
of the pure system, but its conclusions are really
slightly more general. The predictions of the
model would be changed in no essential way if
Eo(p*, T*) were replaced by f(p„ iL2, T)FO(p, *, T*),
f being a regular function of its arguments. In
fact, it seems that if one is to be able to describe
the liquid-gas critical line in binary systems in
terms at all naturally analogous to those used for
one-component systems, one is forced to use a
model in essence the same as that considered here.
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