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The convergence of the separable-expansion method for solving the Faddeev equations is
investigated for systems with pure Coulomb interactions between particles in each pair. Two
alternative separable expansions for the off-shell two-body amplitudes are utilized. It is ob-
served that the expansion method is capable of predicting qualitatively all the characteristic
features such as the three-body bound-state and resonance poles, the scattering length, and
the energy dependence of the phase shift in atomic systems such as the (e, H) system. Al-
though some convergence behavior is observed, this method in the present form does not pro-
vide the desired accuracy when reasonable numbers of terms are included in the expansion for
the attractive (e-p) scattering amplitudes. This behavior is interpreted as due to the failure
of the two alternative expansions for the off-shell two-body amplitudes to converge monatoni-
cally.

I. INTRODUCTION

A systematic method for solving the Faddeev
equations for atomic problems has recently been
proposed and investigated in Paper I of this series. '
Two alternative term-by-term separable-series
representations for the two-body off-shell ampli-

tudes were utilized in Paper II to reduce the Fad-
deev equations to a set of coupled single-variable
integral equations. Since these equations are
algebraic results, they are exact and independent of
the strength and range of the interaction. In prac-
tice it is always necessary to truncate the series;
this then leads to the problem of convergence with
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respect to the inclusion of the remaining terms
which may be regarded as perturbations. ' The
convergence behavior of these reduced equations
depends obviously upon the details of the conver-
gence behavior of the separable-series representa-
tions for each two-body off-shell amplitude.

For cases where the kernels of the tmo-body
Lippmann-Schwinger equations are compact for
each of the pair interactions, the tmo-body off-
shell amplitude may always be accurately approxi-
mated by a finite number of separable terms, and
the procedure for solving the Faddeev equations
described in Papers I and II should work mell. For
Coulomb potentials, the two-body kernel is no

longer compact; the problem of convergence for
these separable-series representations becomes
8erloUS

It has been observed' that these term-by-term
separable-series representations for the two-body
off-shell amplitude of an unscreened Coulomb po-
tential behave as n, indicating a logarithmic di-
vergence, where n is the principal quantum number
of the eigenfunctions in terms of which the series
representations are expressed. However, the two-
body off-shell amplitudes which appear in the Fad-
deev equations have one of their arguments inte-
grated once. This should result in a better con-
vergent set of equations. We have conjectured in

Paper I that these resultant equations should con-
verge reasonably rapidly. To test our conjecture,
the expansion method in the Sturmian-function rep-
resentation was applied to the (e, H) scattering sys-
tem. Very encouraging results were obtained for
the bound and resonant H states and for the phase
shift with a few terms in the leading partial maves.
As additional terms mere included, the results did
not converge uniformly towards the verified knomn

results but oscillated about them, although the
amplitude of oscillation appeared to decrease as
the number of terms increased. This then led to a

detailed examination of the separable-series rep-
resentation for the off-shell two-body amplitudes.

Two such term-by-term separable-series rep-
resentations for off-shell two-body amplitudes,
namely the Sturmian- and the Coulomb-function
series representations, mere investigated for the
unscreened Coulomb interaction. ' Significant
differences mere found in the convergence behavior
for these tmo series representations. It mas ob-
served that the oscillatory behavior found in the
SturIQiaD-fUnction sel les couM be contI'oiled only
after a prohibitive number of terms mere included.
The Coulomb-function series converged mith a rea-
sonable number of terms to a, limit which was
shifted from the exact value. The shift which
comes from the neglected continuum states was
usually small although its contribution to the three-
body scattering processes was not clear. In view
of these, a mixed-mode representation was pro-
posed in Paper II. In this representation, the
Coulomb-function (CF) representation was adopted
for pairs where the interaction potential is attrac-
tive. For pairs mhere the intera. ction potential is
repulsive and the continuum contribution is domi-
nating, the Sturmian-function (SF) representation
mas adopted.

The purpose of the present paper is to investigate
the convergence of the Faddeev equations in this
mixed-mode series representation. In this
mixed-mode representation, it is possible to in-
vestigate the convergence of the SF series for the
repulsive interactions with a fixed number of
terms in the CF series for the attractive interac-
tions. For the purpose of comparison with the re-
sult of Paper I, we will again take the (e, H) system
for our lnvestlgatloD. It may we11 be mentioned
that for systems with short-range pair interactions,
we expect rapid convergence for the expansion
method.

II. RESUME OF EXPANSION METHOD

In this section, we outline briefly the separable-expansion method for solving the Faddeev equations and

correct an error' which appears in the previous works in the angular momentum reduction. For further
details, the reader is referred to Papers I and II of this series.

The separation of the angular momentum states in the Faddeev equations can be carried out using the

relative angular momentum / between two particles, which is combined with the angular momentum I. of the

third particle to give the total angular momentum J in the over-all c. m. system. We have from Eqs.
(II2. 10)-(II2.15) the partial-wave Faddeev equations

(p, q, s)= 4„'(p, q, s) —~ ~ Q dp, , dq, X&" (pqn/f), q&n, ) 2 &' )I' ~) (p, , q, , s), i= 1, 2, 3
g» +@ e~

0 rP

z', ."()q»~~),. q;») f» d(»os»);; A„,, (»;,, , , 9,.;, 9;,;„)il(q' —q') )), p„)s —»'),

(2. 1)

(2. 2)
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X„„,(8,., 8-, -, , 8-, .-, ) =(-)"'-'-' (Ie~"'/q) (21'+ I)"'~,. t
I I

m, ml. -M

x Y", (8-.-., [1+(ij)]2m] Y'~ (8i ~. , v) FJ. , {8y g. , ), (2. 3)

where n —= (JMK), P, =P,. + q', —q, and 8;;, for example, is the angle between momentum variable p, and p,
%'e call attention to the fact that in the previous works' ' ' the azimuthal angles which appear in the

spherical harmonics are incorrectly taken to be zero. In the expression for A, , given by Eq. (2. 3) the
correct values for the azimuthal angles are given. These can be seen as follows. Since the angular de-
coupling is invariant under simultaneous rotation of the basis vectors, we may take p& along the g axis.
The azimuthal angles (in the spherical harmonics) which can either be equal or differ by w may be chosen
to be either zero or m. From the cross product of the basis vectors we have

p;&&p&= [ ~;~p; (fj-) P;;i;]&&p;= -(~i) J8;&p;&i;,

p %&
= py [('fJ) &&&p ~S &4] =

(2. 4)

(2. 5)

where (ij) denotes that (12)= (23) = (31)= 1 and (21) = (32) = (13)= —1 and where o.
& &

and p, &
are defined in terms

of the particle masses m&.

n;, =- fm, rn;/[(m;+m, ) (m, +m,.)]]'", P,., =- (I - o',)'~2 . (2. 6)

It is then clear that if we choose the azimuthal angle to be zero for tl, (remember that p& is taken along the
g axis), we have for q, the azimuthal angle m and for p, the azimuthal angle 2[1+ (ij)]m. It should be noted
that the previous error in the azimuthal angle does not affect the numerical results which are obtained for
the J=O case.

Returning now to Eg. (2. 1) we consider, for simplicity, only states corresponding to zero total angular
momentum. For this 8= 0 case, o. = (00ff) -=I and Eq. (2. 1) becomes'

e',"(P, q, s) = C I" (P, q, s) + Q Q J &fq2 J
"

dP', IiI';,"(q, P, , q, ; s) fI" (P, P, ; s —q') eI&' (P„q„s),
j~i ~'=0

with (-)"[(2f+1)(2f'+1)]"'
III'' q&P» qg& s =4

p (p2 3
)

P,((o;) I&,, ((o,), (2. 8)

~; -=cos8;.;.= (ij) [n,', (q', —q')+ p';, (q'-P', )]/2n;, p, , qP;,

(o, =- cos8;.; = (ij) (p', ,P,'. + n', , q,'-q')/2o. „p,,p,. q, , (2. 10)

where the limits of integration are given by the equations

~;;-=(o';, q&+q)'/ti;;, I;,-=(~;;q; -q) /, 8;,

The scattering amplitude between particles j and k with angular momentum I, f',"(P,P,. ; s —q2), which
appears in the kernels of Erg. (2. 1', """'~ ~' ' '" "»'H"" "~ ~he Lippmann-Schwinger equations

(2. 12)"*'{»P"@=I""{»p') -{'/') J dp"'" [p'/(p"'-&)] p'"(p p") t"'(p" p' &)

where V, ' (P, P') is the partial-wave two-body interaction potential. The two-body scattering amplitude is
normalized on the energy shell according to the equation

t',"(P,P; P') = —e" & (sinf&', ")/P . (2. 13)

Here P is the two-body c.m. energy. %'e remark that, for Coulomb potential scattering, the on-shell ex-
pansion given by Eq. {2.13) cannot be obtained from the off-shell amplitude t,(p, P'; E) of Eq. (2. 12) in a
straightforward manner. This is because the plane-wave states are used in obtaining Eci. {2.12) [or
t, (P, P; Z)]. The on-shell expansion can be obtained if the correct asymptotic Coulomb states are used.
However, in our intended applications, the two-body on-shell amplitudes are not required as long as we
stay below the three-body break-up threshold as we have already remarked in Paper I.

In the mixed-mode representation, the off-sheH. two-body amplitudes are represented, for attractive in-
teraction, by the series
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t(i)(p pi. g)
v ~~' (P ~n &(P ) y(i)s(~p) q(i&(npi)

n
~(g)

RDd, fox' repQlsive iDteractioD, bp the sex'les

(2. 14)

t)"(P, P'; E) =2
1 (;)(E) y'')'(P, E) 43I'(0', &) .

4l

The CF (i. e. , the ()&„","s) and SF (i. e. , the (t&(3I "s) are, respectively, of the forms

24)+5 ( E y) ) ij8 3+ ~(i)0"'( P) = ' '
f '(- )"'""'

nl
&( +f)) ' n (ps ((i)))+3 n- l ) ps ((i) (2. 16)

(i& E} 2 ( l ' )' f) g (sl+3)/3 P Cl+( P +E4)+3
y t 3 /2 l 3

I'(1 1+1& (p Z&' i ' —8) '

where C„, & 3Dd C)„& 1 Rx'6 th6 GegeDbRQer polpDGDlials. These fQDctioDs satisfy' the orthoDorxDRlity
properties

(&.*)(~P) t. )()3'P) P'~P= ~,

(1/v) f, es)(A E) es l(f, &) [)S/(P'-&)jdf'=&33

Their corresponding eigenvalues e„"and y„'I)(E) are given, respectively, by

~„")= -&'; //; /2n', ~3t)(E) = —X(- 2~//;)" '/~;,

(2. 18)

(2. 19)

(2. 20)

Mlhere p. ; 18 the redQced MR88 of sth pRir RQd Z; 18 the prodUct of the charges of the coDstitU6Dt particj. 68 lD
the ith pair.

When these series representations given by Eqs. (2. 14) and (2. 15) for the off-shell two-body amplitudes
are utilized in Eq. (2. V), we obtain the set of single-variable Faddeev equations in the mixed-mode repre-
8eDtRtlOD:

X l (q s)=3) ) ((f s)+ + + f d0 X l' (V)V/i s)X 'l'(9/
n' V jA'3 /&3

+~ f des+ n)', v)'(S 6'si s)Xv i( (h~ 3')~
( j,3) (3)

(2. 21b)

3 3 )/ 3 &(j&)
dpsfi(4/& ( p .

&)
(Pd '4 (P/ n' y(i)( p ) ~(/&

S —~."' -q' (2. 22a)

&&3
(i,3)+n) 3')'('S 0j x S)

~&3

Ps ll' ('%Ps ~ (hi ) 1 (3) 3 Pn~l ( P ) t(Y ((P)~ 3(h) ~

2 «,3) . P3+ 6'3 —S (~) (3) 2

)(.
t P S g3

(2. 22b)

3J (J)
3) n l (8 (f/vs) 2 ~P/+ll ((SP/& 0/i ~) (/) 3 43& (Pst ~ h) 4' (+)P/)
(3,g) . ~ a (3,g) . P9 ~n' . (3) 2 (J)

S-& 3 —Q'gL3»



FADDEEV EQUATIONS FOR ATOMIC PROBLEMS. III. ~ ~ ~ 1453

q,', '(q, s)= Q dq~ dp, B'„, (q p& q; s) pI, , (p~, s qs) 4', , '(p, , q, , s),
3~ (}

(2. 22b)

where we have chosen, for definiteness, the third pair (i. e. , particles 1 and 2) as having a repulsive inter-
action potential while pairs 1 and 2 have an attractive potential.

The X functions which satisfy the above equations are related to the off-shell three-body amplitudes:

&(l)
@r (P~ q~ s)=CI"(P, q, s)+ —Q -- «&", g„",'(nP)X„'I'(q, s), i=1, 2

n ~ ~n
(2. 24a)

(p q s) @I (p q s)++ ($)l 2i 1 'Cpxl (pi s q )Xxt ('5 s) I
'Yg (~-9 J -1 (2. 24b)

Once these X functions are determined, the three-body scattering amplitudes can be easily calculated by
taking appropriate energy limits to the energy shell.

III. INVESTIGATION OF THE CONVERGENCE

In this section, we investigate the convergence of
the set of single-variable Faddeev equations in the
mixed-mode representation as given by Eqs. (2. 21).
As a test case, we consider again the (e, H) sys-
tem. Equations (2. 21) may be solved for X(s) by
digitizing the continuous variables q and q& and in-
verting the matrix (I-X):

X(s) = [I -X (s)] rl(s) .

To calculate the bound states and resonances, we
need to determine the pole in the inverse operator
[I -X(s)] '. Since bound states are located at the
three-body energy region lying below the elastic
threshold, the matrix (I -X) contains no branch
point and is real. The bound-state pole may be
easily located by locating the energy s at which the
determinant of the matrix [i.e. , det (I -X )] is
zero.

A bound-state pole associated with the 'SH
ground state is obtained by taking only the 1s term
in the CF series for the attractive pair interactions.
The 1s-configuration result is shown in Fig. 1. The
interesting feature of this bound-state result is the
convergence behavior: the number of terms used
in the SF series for the repulsive e-e interaction.
It is seen that the three-body bound-state pole,
i. e. , the zero of det(I —X), moves towards the
accurate Pekeris result for the ground H state as
more terms in the SF series are included. Be-
cause these SF terms represent repulsive interac-
tions it is not surprising that the bound-state pole
should shift towards the right. The surprising fea-
ture is the manner in which the magnitude of the shift
decreases with increasing SF terms. This suggests
a convergence behavior. Such a convergence be-
havior (with respect to the SF series for the repul-
sive e-e interaction) with fixed configuration for the

-0.67125

1s - Term
-0.535II

-.0.53 I 20
=0.5285I~0.527 75(Pekeris j

(n=l I

0

-0.70 -0.65 -0.60 -0.55
THREE-BODY ENERGY s(a.u.)

I

-0.50 -0.45

FIG. 1. H bound-state calculation; the zero in the
function det(I —3l) gives the position of the pole in the
three-body T matrix. In this calculation, the e-p am-
plitude is approximated by ls hydrogenic function only,
and 1, 2, 3, 4 indicates the number of the SF included
in the s-wave e-e amplitude.

attractive interaction appears also in the results
for the H resonances.

The lowest resonance, in the singlet J= 0 (e, H)

scattering, appears in the elastic-scattering re-
gion where the corresponding matrix (I —K) be-
comes complex and contains a branch point associ-
ated with the ground state of hydrogen. As ex-
pected, by taking only the 1s term in the CF series
for the attractive pair interactions, it is not pos-
sible to reproduce the resonances with the inclusion
of any number of terms in the SF series for the
repulsive (e-e) interaction. The resonance is ob-
tained by the inclusion of the 2s term in the CF
series for the attractive interactions. In Fig. 2,
we have plotted both the real and imaginary parts
of the determinant of the matrix I -X as a func-
tion of the three-body energy s calculated with a 1s-
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I I I

Is —23 HYDROGENIC FUNCTION CALCULATION FOR THE
I O

R& 5S) LOV/EST SINGLET RESONANCE OF H ION

At the resonance energy so, the determinant
det{I—X) which ls colllplex, CRll lie expRllded Rs

hC[
I

CLP

0.5

-I.o

Im(hs)

Im(4s)
~&tI)(5S)

f(s) -=det(I —X ) = (s —so) Re[f'(so)]+ i Im[f(s)]
(3. 3)

Re[f'(s,)]=—, Re[i-3:(s)] I, „,8
(3 4)

where we have made use of Re[f(so)] = Q. Utilizing
the expansion for det(I —&), we obtain from Eq.
(3 2)

-.20
s (o.u. )

1C {s)li{s)I'/ [Ref'(so)]'
(s —so)'+ —,'I"'(s) (3. 5)

FIG. ~. 8-H lowest ~ resonance -state calculation~
(ns) indicates 18, 28, ~ ~ ~, ns partial waves are included
in the e-e amplitude. ~ Be and Im denote the real part and
the imaginary part of det(I -3'.), respectively. The
zeros of Be(I-X) are the positions of the resonances.

2s configuration for the attractive interactions. Ãe
observe that the resonance pole located at the zero
of the real part of det(I X)-shifts, as expected,
towards the left as the number of SP ln the 1 epul-
sive interaction increases. The magnitude of the
shift again decreases rapidly with the increase in
the number of SF functions. It is seen in Fig. 2

that the 1s-2s result appears to converge to a limit
at —0. 148V a. u. lying close to the known position
of the resonance at -0.14865 a. u. The present
1s-2s result is actually better than the correspond-
ing 1s-2s close-coupling result. The correspond-

18
ing 1s-2s-2p close-coupling result is —0. 14V a. u.

Since the y's are related to the three-body a,mpli-
tudes according to Eqs. (2. 24), it is not difficult
to see from Eq. (3. 1) that the scattering amplitude
~ may be written as

& =[&(s)/det(I-3')]q,

with

I'(s) = 2 Im[f(s)] /Re[f'(so)] (3. 6)

I

Im(&s)

4s)

where I (s) at s = so is the usual half-width of the
resonance. This permits us to calculate the reso-
nance width I" from the imaginary part of det(I- X )
and the slope of the real part of det(I —& ). It
should be lloted that this del'1VRiloll fol' I (s) Rs-
sumes that Im[f(s)] is a slowly varying function of
s in the neighborhood of the resonance energy.

Returning now to our calculation, we observe
that the rate of convergence with respect to terms
in the SF series for the e-e interaction appears to
become slower when the 2p term is included in the
CF series for the attractive e-p interactions. The
result for the ls-2s-2p configuration calculation
is displayed in Fig. 3. It is seen that more repul-
sive terms are needed to compensate for the addi-
tional attraction introduced by the inclusion of the
2p term. This is a discouraging result since the

where 8 (s) is usually a complex matrix coming
from the matrix {I-X)

In the elastic scattering energy region, there is
only one branch point in the matrix (I -3'), and the
inhomogeneous term t) is real. By utilizing the
indistinguishability of electrons, the three sets of
coupled single-variable Faddeev equations given

by Eqs. (3.21) may be reduced to a single set and

to two sets of coupled equations for both singlet and

triplet (e, II) scattering [see Eqs. (11 4. 1'I) and

(II 4 21)]. When these reduced equations a.re
adopted for the calculation, it is not difficult to see
tI1at the branch point associated with the 8 glound
state appears only in elements of one of the col-
umns of the matrix (I-X). Consequently, only

one column of the matrix (I —X ) is complex. In

this case, the matrix 6 in Eq. (3. 2) becomes reaL

(5s)

FIG. 3. e-H lowest '8 resonance-state calculation;
(ns) indicates 1s, &s. .., gs partial waves are included
in the e-e amplitude. Be and Im denote the real and

imaginary part of det( I—X), respectively. The zeros of
Re(I-) are the positions of the resonances.
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0,2

O. I

-OI—

O.I

-O. l

ION

& In=2
iTHRESHOLD

I
Re(4s,3d)

Re(3s,3d)

~ReBs,gd)

'/n=Z

THRESHOLD
l4

variable for solving Eqs. (2. 21) is available. Such
a method is discussed in Sec. IV.

We remark here that not all zeros of the real
part of the determinant det(I —&) are associated
with resonance poles of the system. A resonance
pole is associated not only with a zero in Re[f(s)],
but also with a zero in Im[f(s)] and in addition
with the sign and the slope of the imaginary and
real parts of det(I- X), respectively. A zero in
Re [f(s)] at s = so is to be associated with a resonance
pole in the ma.trix [I—3'. (s)] ' only when the sign
of Im[f(s)] agrees with the sign of the slope of
Re[f(s)] at s= so. The first zero of Re[f(s)] in
Fig. 6 does not satisfy these requirements and
therefore is not associated with a resonance. This
zero physically reflects the return of the bound-
state pole associated with the ground 'S H state.

IV. DOUBLE-EXPANSION METHOD

-0.2
—.20 —.I8 —.I6 —.14 —.I2

s (a.u. )

FIG. 4. e-H ~S resonance-states calculation; (ns) in-
dicates 1s, 2s, ..., ns and (n'd) indicates 3d, 4d, ...,
n'd partial waves are included in the e-e amplitude.
The zeros in the Re(I -g) are the positions of the res-
onances.

number of terms needed to obtain accurate results
increases rapidly. In addition, the inclusion of
the 2P term in the CF series does not provide us
with the description of the higher member reso-
nances in the singlet J = 0 (e, H) scattering system
as shown in Fig. 3.

Higher members of the resonances in the elastic
channel can be obtained by including further terms
in the CF series for the attractive e-p interactions.
The results for the 1s-2s-2P-3s and the 1s-2s-2P-
3s-3P configuration calculations are displayed in
Figs. 4 and 5, respectively. It is seen from
Fig. 4 that two resonances are obtained with the
1s-2s-2P-3s configuration calculation. The addi-
tion of the 3P term provides the description of
three resonances as shown in Fig. 5. These re-
sults, however, are very discouraging because when-
ever a new resonance appears, the entire sequence of
the resonances is shifted to the left. A large num-
ber of terms in the SF series for the repulsive e-e
interaction is needed to shift back the displaced
resonances. This behavior may be interpreted as
due to the failure of the expansion method to con-
verge. Further investigations with more terms
included will not alter this conclusion, unless a
prohibitive number of terms are included. In or-
der to take more terms into the calculation, a
method which does not digitize the continuous

I s -2s -2p-3s-3p
HYDROGENIG FUNCTION CALCULATION

—,l425

& n=2

Ml 05—
I

I

cD
CD

—.2l
I

—.I8

(Re(3s, 3d)
Re(3s)

I I

-O.I5 -O.I2

s (O. u. )

FIG. 5. e-H ~S resonance-states calculation; (ns) in-
dicates 1s, 2s, ..., ns and (n'd) indicates 3d, 4d, ~. ..
n'd partial waves are included in the e-e amplitude. The
zeros in the Be(I-X) are the positions of the reso-
nances.

The set of coupled single-variable Faddeev
equations both in the mixed-mode representation
[Eqs. (2. 21)] and in the SF representation [Eq.
(II 2. 28)] can also be solved by expanding the X

functions in terms of a suitable set of basis func-
tions. Such an expansion would reduce the coupled
integral equations into a set of coupled linear alge-
braic equations which may be solved by standard
methods.

Before proceeding with the expansion of the X

functions, we remark that the use of the separable-
series representation for the off-shell two-body
amplitude for variable reduction in the Faddeev
equations [such as, for example, Eq. (2. 'I) in
the 4= 0 case] is equivalent to the method of ex-
panding the off-shell three-body amplitudes as
follows:
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Is-2s-2 p-3s HYDROGENIC FUNCTION

Is-2s- 3s STURMIAN FUNCTION

0.6—

0.4—

rl,",'(q, s)= Z Z
oo U',

dqr f dpr rr' (q p, , q;; s)
JL;~

0.2

-0.2
jn=2
THRESHOLD

x p")(pr, s-q') Cr (pr, qr, s) (4 4)

In deriving Eq. (4. 2) we have utilized the ortho-
normality properties of the SF as given by Eq.
(2. 19) and the relation

Is HYDROGENIC FUNCTION

I s STURMIAN FUNCTION

l.2—

0.8

04

-0.4

Re (ls j

n=2

THRESHOLD-

1 ( ~

) d&)p &t&) pp a P&P
0 ~2

(t) a1
ri)r 2) rpXr (pr ~ S —q ) ~—y)t, qs —q

(4. 6)

-0.8

-1,2

Is)

—.50 —.45 -.40 -.35 -.30 -.25 -.20 -.I5
s (a.u.)

1
(p, , )-@"(p, , )= Z

y&' ~s —q ~
-1

& rP).'r'(P, s —q') X„", (q, s) . (4. 1)

This is evident from Eq. (2. 24). To illustrate
this, we will be working in the SF representation
only. By substituting y'r" (p, q, s) from Eq. (4. 1)
into Eq. (2. 7) and then projecting the resultant
equations onto the two-body rj)» state, we obtain

co

Xzi (q s) =r)),'r (q s)+ Z Z J

&& (q, qr, s) X&'r (qr, s), r = 1, 2, 2
(4. 2)

where

ctp2
X xl, l~l~(qt qri ) I (j) ( 2)

Lij )t )c s —q j

FIG. 6. Energy dependence of det(I —) in the range
of elastic threshold to the first excitation threshold. The
1s term alone in the e-p amplitude does not give rise to
resonances.

Xl*'(q, s) = &.cl".r (s) 0".'r (q s) (4. 6)

which can be derived from the Lippmann-Schwinger
equations [Eq. (2. 12)]. Equation (4. 2) which is
the set of single-variable Faddeev equations in
the SF representation is identical to Eq. (II 2. 28)
derived using the separable SF series representa-
tion of the off-shell two-body amplitudes. This
then demonstrates that the two expansion approaches
involving f'r"(p, p', s —q ) and @(p, q, s) are equiva-
lent.

The method of expanding 4r(P, q, s) outlined above
has some resemblance to the method developed by
Jasperese and Friedman. ' The important differ-
ence lies in our choice of Ein the SF g,", (p, E). The
constant & which is related to the two-body inter-
action strength is left to be an arbitrary param-
eter in the Jasperese-Friedman treatment. It is
clear from Paper II that E should be s —q so that
the final physical state may be specified when the
three-body amplitude is put back on the energy
shell. In the present treatment we expand, instead
of @r(p, q, s), the function C r(p, q, s) —C, (p, q, s).
This permits us to remove the 6 function in the
inhomogeneous term corresponding to the physical
initial state. The final-state poles are also fac-
tored out in the expansion adopted in Eq. (4. 1).
Because of this difference, our approach is not
restricted to bound-state problems and is free from
arbitrariness in the assignment of two-body inter-
action strengths.

When the X functions in Eq. (4, 2) are again ex-
panded in a set of basis functions (such as the SF),
we have

x B»', (q, pr, qr,' s)(& 9)

rprr (p s q ) rj)vr'(pr s —qr)

(4. 2)

Equation (4. 2) may then be reduced to a set of
algebraic equations

".', ( )= ",', ( )+ZZ "„',( ) ".", . ( ),
(4. 7)
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(a,Z) r ~
Xg l, A,

' p' l'~
8

0

dqg tp~( (q, s)

OO

v",,', (s)=, P'„",(q, s) q,",'(q, s), (4. 6)
0

PANSlON METHOD

E
ENERGY

N =2 E=-0.5256

(=4 E.=-0.5294
E =-0.5254

N=6 E =-0.5254
N = 7 E =-0.5254

X Xr,)pl&(qi qy~ S) /II ~ p (qy, S) ~

(4. 9)

The algebraic equations for the expansion coeffi-
cients, the e's, which are related to the off-sheQ
three-body amplitudes through the relations

c'" s
q) (pq

ques)=4(

(p, q, s)+ Q (g)(~ g)
xp. '4 &~-9' j

x y,",'(p, s —q') y", ,
'

(q, s),

may be solved by the standard method. The con-
vergence of the expansion for X» [given by Eq.
(4. 6)] is found to be in general rapid. A sample
result which demonstrates the rate of convergence
for the g-function expansion [see Eq. (4. 6)] is
shown in Fig. V. It is seen that only a few terms
in the expansion are sufficient to bring the expan-
sion result into agreement with the result obtained
by digitizing the continuous variable. This then
provides a poss1ble method for further lnvestlgatlon
of the convergence problem raised in Sec. III. We
remark that the convergence of the X-function ex-
pansion provides only an effective method for solv-
ing the coupled single-variable Faddeev equations
which are obtained from utilizing the separable
expansions [Egs. (2. 14) and (2. 15)]for the off-
shell two-body amplitude; it bears no relation to
the convergence of these separable expansions for

N

Xt, (q)=I c„,(s'l)„s (q, s)
6=1

X~,(ql-I C„,(s)$„,iq,Q

N=2 E=-0.5H75
N=5 E=-05H8
N=4 E=-0.5%8
N=5 E=-0.5538
N=6 E=-0.5558
N=7 E=-0.5338
N=8 E=-0.5M8

-,550

FIG. 7. Double-expansion method in terms of the SF
for calculation of the H bound state.

the off-shell two-body amplitude raised in Sec. III.
The X-function expansions, however, permit more
terms to be included in the investigation of the
convergence of the separable expansion.
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