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A general method is described of building up open-shell multideterminant wave functions
which are eigenfunctions of the spin operators S and S,. In the present case, that of a mol-
ecule with an Abelian symmetry group, the wave functions obtained are easily adapted for
spatial symmetry. The matrix elements of the Hamiltonian are derived. The method gives
a building up of the matrix elements of the irreducible representation Q&, n2] symmetric
groups which, as far as the author knows, is original. While many of the specific results
are not new, the author believes that the presentation which he used is both new and interest-
ing. This method will be extended later to more general cases.

INTRODUCTION

There exist many mays to build up sym-
metry-adapted molecular or atomic mave func-
tions and also many types of symmetry within the
framework of the Pauli principle. The simplest
case is the one we are dealing with, i.e. , the
eigenfunctions of S with an Abelian spatial sym-
metry gxoup. Increasingly complex are the anti-
symmetrized eigenfunctions of 8 (j —j coupling),
I. , S (I -S coupling), and S with a non-Abelian
spatial symmetry group.

The exlstlng methods used ln the problem of
symmetry-adapted wave functions of S are of two
types: (i) those using the symmetric groups and
constructing the eigenfunctions in a manner spe-
cific to S, and (ii) those dealing with the S' prob-
lem as an example of a general procedure for ob-
taining covariant eigenfunctions. The method of
Van Vleek, Serber, and Yamanouchi' is of type
(i). These authors were the first to use matrix
representations of the permutation groups to con-
struct the wave functions corresponding to differ-
ent multiplicities. Goddard used R similar pro-
cedure to derive eigenfunctions of S which satisfy
the PRull pl lnelple. This author Rpplled his
method to a great number of problems: atoms,
molecules, and solids. Of type (i) also is the use
of Young's operator by Matsen. ' This, however,
is limited to a small number of electrons. From
the group-theory point of view, McIntoshe dis-
cussed the symmetry-adapted functions belonging
to the symmetric groups. The foxegoing con-
structions deal specifically with the invariant S .
The Lowdin method, of type (ii), uses projection
operators acting on Slater determinants to select
the desired multiplicity; the Lowdin projection-
operator method can be used for dynamic opera-
tors other than spin. It seems that the process is
quite tedious; yet many useful applications have
been given. Lefebvre and Prat used a rotational

projection operator, whereas Pratt derived
eigenfunctions of S using a spin-operator method.
Lowdin's method mas studied also by Rotenberg
and Shapiro. " Another approach was given by
Pereus Rnd Hotenberg Rnd by HR1'1'ls Rnd

I auncz. "
The method me present here is essentially alge-

braic and is closely related to annihilation and
creation operators. ' In the ease of S, it also
immediately gives the orthogonal standard rep-
resentation of the pex mutation group, and is then
connected with Yamanouchi symbols. The use of
a dual space to construct spin eigenfunctions by
means of spinor invariants is originally due to
Kramers. " ' This method has been applied by
a few other authors: %olfe, 7 Brinkman, '8 and
Bijl. ' Orthogonal S eigenfunctions with only
integer coefficients have been given by the au-
thorao using D and A, Kramer's operators, and a
very simple process.

I. BUILDING UP EIGENFUNCTIONS OF S'

Genemlities. Consider a system of electrons, the
wave function of which is expanded in a set of
spin orbitals g~'(i), where i designates the number
of an electron, ( the set of quantum numbers of
the spatial part, and o = + & the spin state:

g" (i) = y '(i)li'(i)

Then considering the SII(2) group, we construct
a vectorial space F. on the complex field g of
repxesentations for this group, such as to be a
direct sum of irreducible vectorial subspaces E
(one for each S, with S=Q, 2, l, . . ., corresponding
then to the spin)":

%e then choose R basis set in each E~8~,

IzfQ~ I= S, -8+ 1, . . . , S
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so that the spin states of an electron i are the
components of a vector belonging to E~' 2':

""'e()= ()I .'") (4)

polynomials with degree 2S:

& S+NZS - N

[(s+M) l(s-M) I]'"
s+ lit S- N'

. (10)
SN

[with the Einstein summation convention on the
index o = + -„(this convention will always be im-
plicit in the following)]. In the same way, the
spin states of an n-electron system for the values
S and M are the components of a vector of E's':

"'e(1, 2, ..., n) = X",(1, . .., n) z„') . (5)

It is useful to consider E ' as a dual of the
space with spin state S. ' '9 is then a duality
bracket, that is, an invariant bilinear form (spinor
invariants of Kramers) Th. e Xs are covariant
irreducible tensors with respect to the SU(2)„
transformations of states; the Ized), contravariant
irreducible tensors. ' 'e is invariant with respect
to the SU(2)„8 SU(2) set of all the diagonal pairs
[(a@)cSU(2)„&&SU(2)].

Introduction of operators inE. We now introduce
the irreducible tensorial operators [Z] with re-

ct to E '/ ' the components of which for th
basis lz,'/'), are"

Ct
$ $, (6)

They act in E and are such that for a vector jzs)
', we have by definition

S M+o~

where
511 m2 J3 )

is a Clebsch-Gordan coefficient in a covariant

form, and [S]= 2S+ 1 is the dimension of the space
gfs]

There exist two [Z]~ operators which effect the

decomposition

Et1/2] @ @ts] ELS+1/2]
)

@I:1/2] (3 @f.s] Ets-1/2]

Explicitly (7) gives

The $, operators have the realizations

1/2g, 1/2f
$1/2 z+t $ g/s z- i

$-&/S& . -&/St8 8 (11)
-1/2

Application to the building up of the spin func
tions. %e use a step-by-step method in which
every spin function ys obtained for a given n-elec-
tron system and a given S and M corresponds to
a path y on the branching diagram, or equivalently,
to a Yamanouchi symbol. ')" Hence the mapping
8 y is one to one.

Suppose we have built up eigenfunctions in the
case of a (n —1)-electron system,

4„-(1,..., n —1) -=X"„-s (1, . . ., n —1)~zus), (12)

where S is the spin quantum number and y dis-
tinguishes any eigenvectors degenerated with re-
spect to S. [A bar is used in the (n —1)-electron
systems; no bar in the n-electron systems. ] If

x "(n) is the spin state of the nth electron, to
which is associated the vector

~e(n) = X
" (n)

~
z s)EEt1/21

~n

then the operator [Z„]t corresponding to the

foregoing vector is

x~n(n) $~nt
~n

These operators are precisely equivalent to the
Kramers's D„and A „operators'

A. —x'"( ) $.'„", D. —x'"( )$,"" (14)

%e will use the more concise notation

x~~(n)$E„t $E„t

Applying these operators to 's e~(1, .. . ,
n —1), we obtain

$1/st [ s) (S~ M+ 1)1/2 )z s+ 1/2)
1/2

$-i/S
1/St (zs) (S M~1)1/2~zs+1/2)N- 1/2 )

«1/2
S,/s [zus) = (S —M)' lzu. 'g/~s),

$""i.')=-(S M)'"i" '")
«1/2 Zg

Realization (Ref. 21) of the $~t oPerators in

the polynomial space of tu/o comp/ex variables

z,(o=+&). We denote z, =zg/sj z z f/s and take

for basis vectors in a space E ' of homogeneous

C. ~n~) &)
= X'"(n)X„"--(1,. . . , n —1)

=x'"()x,"-;(1, ", -1)
1

[S] /S +
~~

S+

that is to say,

'$&„&"5„-( , .I. . , -n)=I"4„( , .I. . , )n, (»)
with S=s+Z„, y= (Z„,y),
and X„"s(1,. . . , n) = [S] /

X "(n)X~g (1, . . . , n —1)



DUAL-SPACE-OPERATOR TECHNIQUE

s SMf
g„37S j

' (17)
then, when antisymmetrized, the functions remain
eigenfunctions of S (8 commutes with the anti-
symmetrization operator):

It is now easy to build up the spin functions,
starting from individual spin states:

= x "( )x
" '( - )' ' '

x '(1)

&$Ent$E+. g 0 $Ey tl
+n ~n-1

where iz ) is the vector generating E
The index y which distinguishes the e with

identical S can be identified with the ordered set
Z„Z„g ~ ~ Zg, that is to say, with a path y on the
branching diagram. S is simply given by

(18)

S= Zg+Z~+ ~ ~ ~ +Z„

(The branching diagram for 8= 1; n = 4 is shown
in Fig. 1.) The paths are

Adj oint operator of $, . An inner HermitianE~

product is defined in E, such that
s' s ss'(zs zz)=~

We show in Appendix A that the adjoint of $, is
then

(20)

where

[$E1$$psf
3

gE1+ os~ Oz
eg P F2 g~gg (22)

(23)

II. BUILDING UP OF DETERMINANT&L COMBINA-
TION EIGENFUNCTIONS OF S2

One first forms spin-orbital combinations, ei-
genfunctions of S, using the preceding prescrip-
tions:

g~« t&(s) ''g &~&(1)$~nt. ..$1~i )' (24)

($ct)t $z ( 1)P,.$.~,
(21)

Commutation relations [ $, , $, ). These areCsE) t C2t

trivial if one used the realizations (i1):

hsj@ &l&N
f

s)

=C„@(&l&'+ ~ ~ ~ &l&'&'&)$, ...$, ' lz ) . (25)

C„is a normalization constant, and @ = (n l)
&& ( I) p, being the idempotent antisymmetrization
operator (p is a permutation of the number of
electrons).

III. RELATIONS BETWEEN THE DIFFERENT SCALAR
PRODUCTS - REDUCED MATRIX ELEMENTS

The Hilbert space of the physical states is de-
noted by 8 and the scalar product in Sis written
( l). We consider the invariants (As,' and Bss &=8).

[s,g& &us, fzs, ) ass&B
Bus lzss) (26)

and the scalar product

&~"",IO".
I
B".s),

where Os is a tensorial irreducible operator act-
ing in S. The signer-Eckart theorem can be
written

&&22(O."]22"2)=( ' '
&&2, &&O21~1222,). &av)

Considering then the unit operator u& (with com-
ponents m„) such that (z ~llu& llz s) = 1 and using
the signer-Eckart theorem in the space E:

(z &fu) fzs')=(-)' &
f

' ' (z 'llw llz s)
(ASS

)2, (
1 &

S2&~~ =(S2 MM2)

(23)

The reduced matrix element in (27) is connected
with the two scalar products above by the relation
(where summation goes over M, M„and Ms)

&&s,'los I&s ) (zs, lu& Iz&&t )

S
3/

I
2

s

eg

)222( 1

) (
1

)
x&&s, llo, 18,,) =(a,, llO, lg, ,) . (29)

Since the left-hand side depends only on

"~'~=~ &fz'~), "s'B=B"sfz's) "'O=Os~'(30)

we shall use the notation (30) in the reduced ma-
trix elements, and (29) will be written

(&s' I Os I
Bs') (z&'s,'I &'«

I zs', )

FIG. 1. Bqanching diagram for S=1 and m=4. -=((' "A
f

' '0
f

' s'B)) = Q.s, llOs llB s, ) . (31)
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Considering the fundamental relation to calcu-
late the matrix elements, we suppose now that
the states A. $~, 8$' can be put in the form of lin-
ear combinations

gNj pc $j Nj @N~ ~vD$2M2 1/ ~vE g$y p, s $3 v

and that there ex/sts operators ~~ and & „3 in
E such that

~."le')=0 "'lesl) ' ~"le'&=8""'les&)

It has been proved in Appendix B that the reduced
matrix elements take the form

&(1813g
I

ls30
I
Ess3R)& &» I0ulbw

« 'I&sl' '~s2I ')

IV. CALCULUS OF THE MATRIX ELEMENTS

(32)

&tj"r's
I
o

I
tt'".s &

buu'b [s]
— /2 (( s]@

I
0

I

183@
))

where 0=0uo= [8„] '"0,
1s3@ 0 it(g»». . .( 1 1]' g.(S. , ) ~

E]t"'~ =«9'~'"C'1 1}D,(S,. )I").
Hence (32) gives

&(r.sl@i I0I 181@ )) 01»c [g]-1/1

x &8($1»»» ~ ~ ~ |!/11»lf
I
0

«fltyg»»» ~],~1

~'n

x( 'IS;," S."S.

0 is symmetric and does not act on spin space,
so we obtain

&8{&"'"" 0"")I0l~t(4'"'""'0'"'&&

= &t'""" ( ' 'Io
I ~(4 """

& '"&&

=(.!)-'~,(-1)'«: ~ ~ ~ ~: I0lp~. "p& &

after integration over spin. The last bracket is a
concise form for

Matrix elements of a polyelectronic symmetrical
(Ref. 24) operator Let 0. be a scalar polyelec-
tronic symmetric operator acting on space coor-
dinates. Then using (31) we can write

Now (34) becomes

((183@I
I
0

I

183@ )) [g] 1/8( !)-101»0

~~, (-1)'&('"('I0lp& ~ ~ p( )

)"
g E„E„t

&&g(,OIS ".S "S ".
el Po'n en{fy)

It is demonstrated in Appendix 0 that

Ds, ;.(p) =(d,.(n)d, (n))-'"~ ("IS,."

Egt. .S
I )

~a~
x S. .S'.

leo) (35)

is a matrix element of the permutation p in the
irreduc1ble 1'epl'esellta'tloll of S(n) assocxated wl'tll

the spin S. This representation is the standard
one —i.e. , orthogonal and with y = (Z„~ ~ Z, ),
y' =(Z'„ . Z,'), in a one-to-one correspondence
with the Yamanouchi symbols. d„(n) are products
of dimensions along a path y, on the branching

diagram:

~&, (-1)'D,', (p) &&.
'

~ t,'I0"
I p(; p& &

'"
(3V)

This particular result can be easily connected
with the Yamanouchi-Kotani' and Goddard meth-
ods. Our g~ (—1) D~~., (p) p is a Wigner projection
operator of the same kind as the one which
Yamanouchi and Kotani denote by $~01, (p) p and
Goddard as g, f/, „r

Normalieation of ' ' @„built up on an ortho
normalized set of orbitals y '. Re[nation (3V)
can be written when all y ' are singly occupied:

&("'+'I'"~,)& = b„ I0, I d,(n)fn! [~]'"
=5,„[s]' '

Then we obtain

C,=(.t[.]fd,(.}}'" (38)

In the case of c doubly occupied orbitaES, the
normalization constant is

C~N, with N, = 2 '~

(3V) becomes

&("'~,'.
I
0

I

'"e,}&= t/, .t/, Q, (-1)'L1,',„(p)

~«' ~ ~ ~ l0lpr. ~ ~ &. (4o)

d„(n}= [Z,]&&[Z,+Z,]x ~ ~ x [Z +Z + ~ ~ +Z ] (36)

Equation (34) finally becomes

&('"+'r
I
0

I
"'+,

)&
= 0',* 0,(d, (n)d, (n))'/2[~] '"(n!)-'
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Creation and. anni7rilation formalism. Using the
creation and annihilation formalism, let a»'t cre3te
the state «p»', and a»' annihilate the same state;
then a normalized g-electron determinantal pro-
duct state ls

products
Et 8' M'

(zj/ I$ &y) = [s]~a
~N'-N, fy&

at~„t. . . afyegt
I o) ( t)l /s@(+4„s„... ggs~)

Then we may define cr cation and annihilation
operators which act simultaneously in the two
dual spaces like

(-I)' ($-." ': l)= ('I$,"!)
for any 8, 8', M, M'. Furthermore,

$I: ( I)L+s $-«

8' =a" $, and its adjoint g =a '$
APPENDIX 8: DEMONSTRATION OF EQ. {32)

g(Q ( I)c+ Gaga $ ( I)1/2+8'a EP $
p

where a»' is the tensorial operator associated
with a '. This formalism will be developed in
Paper II.

CONCLUSION

We have given a method for building up deter-
minantal combinations, eigenfunctions of 8 in the
problem of g-electron Abelian m -kecules. Every
combination obtained is directly associated with
a path on the branching diagram. The wave func-
tions, which are mutually orthogonal, are con-
structed by step-by-step application of irreduc-
ible tensorial operators [Z] acting in a dual
space of the quantum state space. Being of a
tensorial character, the process can be used to
calculate the matrix elements of irreducible ten-
sorial dynamic operators. We have given the
matrix elements only for a symmetric scalar op-
erator between two eigenstates. In this case, the
matrix elements of irreducible standard repre-
sentations of the permutation groups appear, and
the commutation rules and contractions of the
[Z] operators simplify their calculation. More-
over, the [Z] are closely connected with creation
and annihilation techniques.

This formalism, using dual space operators, can
be generalized to (j-j) coupling and j symmetry-
adapted combinations of determinants. Graphs and

mathematical apparatus of the theory of angular
momentum are then very useful. We hope this
will be the object of a next paper.
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Et
APPENDIX A: ADJOINT OPERATOR OF $

'Using (A ss la~)=(s„. IAs„) for any S, S', M,
M' to define the adjoint, we compare the scalar

If 's"A=As& le~')=-a" & 'I& )N& p

""II=Bs', l&2)-=& ~.'I& )

then the reduced matrix elements can be written,
using (29):

(([sq]~
I

[s&O
I

E ss~+))

= &&", I
0".I&™:)( ",I:I:;)

=("lo"lf,
"p (.oIes~~l s~)

N)Np

Furthermore, we have

g lissy sslgsslzo)
N2

= ~ I -")(')l~: I")=~:I"),
S' &'

2 2

g' S'
because /san„mls„sI)(s„&l = 1. The same relation can
be proved for S„and (32) is demonstrated.

APPENMX C: DEMONSTRATION OF

g$~ $« =~" [Z+S.,]

Applying to an arbitrary [sg ):

P.$.'$„"= I.„)=P, (-I)'"$ "$."I..')
[S]1/2[S Z Zl]l/2

0 -M-0 M

o -M-g M s, c
S+Z S+Z-Z'

(no summation on M)

= [S+Z]g
cc' (for any S, M)
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Q $'$"= s" [z+s, ]

where S„is an operator in 8 such that S„lz»»)
= S Iz»~») .Note that the foregoing expression is

A

nothing else than the coupling of two [Z] opera-
tors in their scalar component.

APPENDIX 0: CONNECTION BETWEEN Dt '„"(P)
AND MATRIX ELEMENTS OF I.R. OF THE GROUP S(n)

Summation on y is done as

Z with& Z»=S
~n

and one obtains

~ [S,]~.„.-=d„II ~.„„~;
then

(i) The D~'„"(P) form a representation of S(n);
that is to say,

Q DP„(P)D„'„"(q) = Z (d„d„")
"'

y (0")

x ( oI$~j, „.. .$4„

In order to prove this, we use a summation
formula on the Z:

x$I'n't. . $~»'tIgo)
an

Z $'» "Iz")(z"~~ "'
at+1 gk N [-01+1

8]t C~p f
(ii) The matrices Dog) are real because they

are combinations of. Clebsch-Gordan coefficients.
(iii) The matrices D (»O) are orthogonal:

with S]~) =S]+Z(+j q M],( = M]+ o],)
D'(f)*= (d„d„,)-'&oZ (z'Irr ($ g)

(e)

which is easily demonstrated using (V) and the re-
lation

f jg jo m j mg

Im, mo j m j~ jo

Then we have

d d

y (iy) (fy") y y

&&(o"')I*')I

= «' ' ) '"~ ("Irr($' ) rn$,'.: ) Igo)]
v

=I(dt d„) ~oZ (z Irr($~» )rr($&»t)Izo)~
(e)

lent

Ds -1)

(zoI$E', $r' $E„t . .$E»tIz.o)

x (goI$E» $Ef$ $znt $EItIgo)

Thus Do(p)'Do(p) = l.
Finally, the matrices D'(p) are standard ortho

gonal irreducible representations of S(n) corres-
ponding to the partition [—,

' n+ S, —,
' n- S] of n.

S. Yamanouchi, Proc. Phys. Math. Soc. Japan 18,
623 (1936).

R. Serber, Phys. Rev. 45, 461 (1934).
3M. Kotani, A. Amemiya, E. Ishiguro, and T. Kamura,

Table of Molecular Integral', 2nd ed (Maruzen Co. ,
Ltd. , Tokyo, 1963).

4W. A. Goddard III, Phys. Rev. 157, 73 (1967); and
following papers.

5F. A. Matsen, J. Phys. Chem. 68, 3282 (1964).
~H. V. McIntosh, J. Math. Phys. 1, 453 (1960).
P. -O. Lowdin, .Phys. Rev. 97, 1509 (1955); and also

Advan. Phys. 5, 1 (1956); Rev. Mod. Phys. 34, 520
(1962); 36, 966 (1964).

R. Lefebvre and R. Prat, Chem. Phys. Letters 1,

38S (1967).
9G. W. Pratt, Phys. Rev. 92, 278 (1953).
A. Rotenberg, J. Chem. Phys. 39, 512 (1963).
J. Shapiro, J. Math. Phys. 6, 1680 (1965).
F. E. Harris, Advan. Quantum Chem. 3, (1966);

R. Pauncz, J. Chem. Phys. 43, S69 (1965).
~3J. K. Percus and A. Rotenberg, J. Math. Phys. 3,

928 (1962).
J. Schwinger, in Quantum Theory of Angular Momen-

tum, edited by L. C. Biedenharn and H. Van Dam (Aca-
demic, New York, 1965), p. 229.

'~H. A. Kramers, Proc. Boy. Soc. (London) 33, 953
(1930); 34, 956 (1931).



DUAL-SPACE-OPERATOR TECHNIQUE 145

H. A. Kramers, Quantum Mechanics (Dover, New

York, 1964), Parts 61 and 76.
H. C. Wolfe, Phys. Rev. 41, 443 (1932).
H. C. Brinkman, Z. Physik 79, 753 (1932); and Ap-

plications of Spinor Invariants in Atomic Physics (North-
Holland, Amsterdam, 1956).

i~D. Bijl, Physica 11, 287 (1945).
J. F. Gouyet, Compte Rend. 265A, 701 (1967).
V. Bargmann, Rev. Mod. Phys. 34, 829 (1962).

22We use the notation $", which includes spin creation
and annihilation operators: We have the following con-
nections with Schwinger (Ref. 14) and Bargman (Ref. 21)

operators:

=s =s ' Q =( i)i/2 + =( j)f/2 y
6 az~g

23We have adopted the definition of Racah.
24Here symmetrical is taken in the sense of "invariant

by permutation of the electrons. "
25B. R. Judd, Second Quantization andAtomic Spectros-

copy (Johns Hopkins U. P. , Baltimore, 1967), Sec. 6.1.
A. P. Yutsis, I. B. Levinson, and V. V. Vanagas,

Mathematica/ Apparatus of the Theory of Angular Mo-
mentum {Israel Program for Scientific Translations Ltd,
1962).


