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Vibrational and Rotational Excitation of Molecular Hydrogen by Electron Impact
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The close-coupling approximation is used to calculate integral and differential cross sec-
tions for pure vibrational excitation o(e =0 1, &j=0) and o(v =0 2, Aj=0), and for si
multaneous rotational-vibrational excitation o (g = 0 l, 4j= 2) of H& by slow-electron impact.
Static-field and electron-exchange effects, long-range quadrupole, . and gn effective polarization
potential are included in the e-H2 interaction. Pure vibrational cross sections are found to
depend on the initial rotational state j of the molecule, but the total vibrational cross sec-
tion is almost independent of j. Cross sections are compared with experiments for energies
E~10 eV. For 2«&5 eV, o(e =O-l, 4j=0) and o.(v =0 l, j=l-3) are 50%larger
than experimental values while agreement is better in the remaining energy regions. For
1 &E &3 eV, o'(e =0 2, Aj=0) is in good agreement with experiment but is understimated
for &&3 eV. Differential scattering cross sections for vibrational excitation are found to
be dominated by the polarization potential at low angles, and by the short-range potential
at l,arge angles.

I. INTRODUCTION

In this payer, we present calculations for inte-
gxal and differential cross sections for pure vi-
brationai excitation o(o = 0-1, &j= 0) and o(o= 0- 2,
4j= 0), and for simultaneous rotational excitation
o(n = 0-1, hj= 2) of the ground electronic state of
molecular hydrogen by electrons with energies
8&10 6V.

An early theoretical investigation' of vibrational
excitation of H~ by electron impact yielded values
for the cross section which were much smaller
thRD those obtR1ned from experiment. Cax'son
used the Born approximation and included only
short-range interactions between the electron and
the molecule. Takayanagi used the polarized
Born ayproximation in his study of the relative
importance of various parts of the interaction
potential, and found that the symmetric portion of
the polRx'1ZRtlon fox'ee 1s Inost important. This
gives a long-range term in the potential and it
arises from the interaction of an incident electron
with the induced dipole moment of the molecule,
%hen a potential of this type is used, the resulting
cross section has a magnitude comparable to ex-
perimental data.

A knowledge of the variation of the interaction
potential with internuelea, x separation is required
in order to calculate vibrational-excitation cross
sections. Breig and Lin used Haman intensity
data to determine this variation and they investi-
gated a number of approximations for the short-
range cutoff parameter for the polarization poten-
tial. Truhlar et al . ' performed calculations in

the polarized Born and Born-Oehkur-Budge ap-
proximations. They extended the wox'k of Brelg
and Lin to include, in the potential, contributions
from long-range quadrupole Rnd polarization terms
and from short-range interactions.

Bardsley et a/. , and Abram and Herzenberg, 6

using a different approach, obtained results which
are in fair agreement with experiment for both
integral and differential cross sections. They
assumed that the e-H2 interaction can be described
in terms of a resonance between the electron and
tne molecular potential. In this model, an elec-
tron is trapped in a temporary negative-ion state
of H~, and potential energy curves for this state
are constructed from experimental data on the
yosition of the resonance.

This single-particle resonant state occurs be-
cause the electron is trapped by a. combination of
polarization. , exchange, static-field and centrif-
ugal-barrier effects. %6 will attempt to incor-
porate all these effects in the e-H~ interaction
potential,

The theory discussed in See. II is based on the
work of Ardill and Davison who generalized the
scattering formalism of Arthurs and Dalgarno. 8

%6 have extended this treatment to include vibra-
tional excitation in a manner similar to that given
by Massey. The short-range and long-range
interaction potentials, given in Sec. III, are then
used in a close-coupling calculation. The imyox-
tanee of static, short- range, Rnd polarization ef-
fects on pure vibrational excitation of Ha by elec-
tron impact is discussed in Sec. IV, where inte-
gral and differential cross sections for total vi-
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brational and simultaneous rotational-vibrational
excitation are compared with experiment. The
principal conclusions are summarized in Sec. V.

A (r, , s) =Q E .,(r, , s)Z(v "j"Is),

In the adiabatic approximation, the wave function
for the ground electronic state of molecular hydro-
gen may be given by

C = Q o(r „r os) Z (vj I s),

where the electronic wave function Qo satisfies

[Tq + Ug(rg» ro» s) —E(s)]Q'o {ry» ro» s) = 0

and the vibrational-rotational wave function Z sat-
lSfles

[ T„+e(s) —E„,] Z(vj I s) = 0,

where v and j represent the vibrational and rota-
te.onal quantum numbers, respectively. The po-
tential U, denotes the Coulomb interaction of all
particles; r, and rz are the electronic coordinates
with respect to the midpoint of the nuclei, s is the
vector joining the two nuclei; T, and T„are the
electronic and nuclear kinetic-energy operators,
respectively, given by

T=- .'(~', ~+,'), T.=-(1/-2) )~.'.

E -(r„s)=~,'u~, .„(r,) yJ, .;.(0„s).
Here u~. , (r, ) are the radial functions which de-
scribe the motion of the colliding electron, n -=vjl,
and the angular momentum Eof the colliding elec-
tron is coupled with j to form 4, the total angular
momentum of the system. The quantum numbers
J and M =m&+m, represent the magnitude and com-
ponent of Jalong the z axis. The angular basis
functions are the eigenfunctions of J and J, and
are given by

Pf„(~„s)= P C(jIJ;.m, m, M) r, (s) r;., (~,), (10)
mimi

where C(jIJ'; m, m, M) are Clebsch-Gordan coef-
ficients, and F,. are spherical harmonics.

Substitute Eqs. (8) and (9) into (7), use Eq. (3),
multiply by 'g&. , (r", , s)Z(v'j'ls), and integrate over
ds dr"„and we obtain a set of coupled equations
for the radial functions u, which may be written

I '(I'+ 1) +a'„. u', , ~,
'V3

The wave equation for a system of an electron
colliding with molecular hydrogen may be written
(we shall use atomic units throughout)

[T, + T„——,
' &, —E —E„&+U, + V(r„, ro, r„s)]+= 0, (5)

where V(r, r, , r, :s) is the potential energy of the

interaction of the incident electron with the nuclei
and with the molecular electrons; r3 is the co-
ordinate of the colliding electron with respect to
the midpoint of the nuclei; E„&and E are the ener-
gies of the initial state of the molecule and the
kinetic energyof the incident electron, respectively,

We may expand the total wave function in the
form

—2Z (n';8 VIn"; Z)u, ",{oo)

g2Z fo K(n» n; JIrq, x )uo~"~ (y )dy = 0 (11)

where k„.o is the channel wave number given by

h'.;=h'..—[j''(j''+1) -j(j+1)VI- vo(v'- v), (»)
where J is the moment of inertia of the rigid ro-
tator, and vo is the vibrational frequency. The
direct interaction potential is given by

(n '; ZIVIn"; Z) = fy~,*., (r"„s) Z( vj' sI) V(r„r„r,:s)

+ l4'o(rx» ro» s) I 'jjzt ~ 'i »(~o» s)Z(v j Is)

where the summation is over cyclic interchanges
of electrons, and X(1, 2;3) is the doublet spin func-
tion.

Substitute Eq. (6) tnto Eq. (5), use Eq. {2),
multiply by g (r, , ro s) Xt(1, 2; 3), integrate over
Qr)613, and sum over spin, and we obtain

[,'v', —(T„+(&oIT„I-&o))+E+E„, e(s)—
—ff V(r„rro'os)IAo{ri, ro s)

I
&ridro]A(ro ')

+ (exchange terms) = 0.

& dr, dr&dr3ds.

The exchange terms are contained in the last term
on the left-hand side of Eq. (11). If we assume
that the wave function for the ground state of the
hydrogen molecule is orthogonal to the radial
function which describes the motion of the free
electron, then only one term contributes to the
exchange kernel. Thus, we have

Nn n 'Zl'ri ~o) =fe:,'i (~o s)Z(v'~'l. )~o(r„ro, s)
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x I„It((0(r„r„s)y~s, „ I„{I„s)~(v"j"~s)

x drldrIdt'Sds. (14)

Dalgarno, Rnd %6 hRve

(v' vI (I „s)v")= JZ(v'j ' s) v, (I"„s)Z(v"j" s) ds.

Tile coupled equations (11) hRve to lie solved sub-
ject to the boundary conditions

M„. (0}=0

II~., (r)„- sin(k, . I ——,'f'II)5„,„
+cos(k ~ r ,'f'-w)-ft~(o(', (I), jF, )0

„=.Bxp(-i}'I...iI), a'. ..&0,
(i5)

where the R matrix is related to the T matrix
through

T=2iB (1—iit) l.

The elements of the 8 matrix may be used to ob-
tain the differential cross section for ej-e'j' tran-
sitions averaged over all mz and summed over mj. .
%6 obtain

—(vj-v'j' ~e) = . , QAIPI (cose), (11)
2+ en ((-0

(23)
The dependence of this matrix element on rota-
t1OIlRl QQRntum j 18 omitted, since %6 1gnore the
j-dependence of the nuclear wave functions Z. We

may then write Eq. (3) in the form

&,+mv[z„, -a(s(])z(eo ~s)=o,
(3')

where p, is the reduced mass of the hydrogen
IIlol (cule. Tile electronic 81181'gy 8(s) ls given by
Kolos and Wolniewicz, ' and we solve Eq. (3a) to
obtain the vibrational wave functions which are
required in Eq. (23).

A, Short-Range Potential

%6 use the wave function given by Wang' to
repx'esent the ground state of H3. If we ignore
the cross terms in ~P,

' in calculating the elec-
tron-molecule interaction potential, we may write'

V(r„s) = V( )r, + —,'8 ))+U{(r,——,'sj), (24)
where A), coefficients are defined by Arthurs and

Dalgarno, Rnd a factor 2m fx'om integration over
azimuthal angle has been included, The expres-
sion for the total cross section is

(„g „'j')= P g (u'+1)
~

T (o(, o(')~,
2g+ 1 (t

(18)

V(r) = [I I+a(s)] exp[- 2s(s)rj.

The effective nuclear charge s(s) is a function
of the 1nternuclear separation 8, Rnd hRS been
calculated by Rosen. ' A fit to Rosen's results
yields

(2s)

where l and t" take on Rll values consistent with

j,j', and J'.

This potential, which has been averaged over the
electronic coordinates of the molecule, may be
represented by

i'(rs, 8) =Lv.(I'3, s) & «3's}. {21}

Thus, the direct matrix element mRy be reduced

&II"&
I
V'III"* &&=~g (& 'f'» "f"'~)&v (v.(I.3, s)(v &,

(22)

where the fl coefficients are given by Arthurs and

IH. e- 82 POTENTIAI. S

The direct-interaction potential for the e-H3
system glvell by Eq. (13) 111Ry be wl'ltteI1

&Q'; J ~v~cK";Z&=1'y"„*, (I"„'8)Z(v'j'~s} V(r, s)

x IJgI(tI ~ i{I'3&8)+'{v j ~s) dYlds&
19

where

V (r„s)=&y, ~V{r„r„r„s)~y, &.

s(s) = i+ (O. 803 —O. 3ios) exp(- O. S4is). (2S)

We expand (24) 111 R sel'188 of Legelldr'8 polynolI11Rls
and obtain

v, (I „s)=(2&+1)1,V(~) S, (f)df, (2'f)

Solutions of Eq. (3) are combined with expression
(27) in Eq. (23) to yield the coefficients of the
short-range interaction potential, averaged over
the internuclear distance.

Values for &v ~vo(I'~, s) ~v'& and (v
~
v2(I"1, s) ~v'& are

given 1n Figs, 1 Rnd 2~ x'espectlvely„ for 8~5 =Oy

1, and 2. Circles represent the shoxt-xange po-
tential caLculated by Lane and Geltman, ' who
used the Wang function at equilibrium internuclear
sepal Rtlon RDd so did not Rvex'age ovex" 8. Curves
(A), (C), and (F) represent averages over v{=v')
=0, 1, and 2, respectively. For these curves, Rs
the vibrational quantum is increased, the potential
wells become less deep and the minima occux' at
smaller values of xs. This is a consequence of
the potential v„(I'„s) increasing with increasing
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the averaged short-range potential. In order to
have the correct asymptotic behavior for the inter-
action potential, we add long-range, electron-
quRdrupole Rnd polarization interRctlons to the
short- range portions.

The quadrupole interaction may be represented
by"

v2 (r„s)= —Q(s) r, '(1 —exp[- (r3/ro) ]), (29)

where the quadrupole moment Q is a function of
internuclear distance and so= l. Bao. This choice
for xo is consistent with the general behavior of
the unperturbed e-H2 potential as calculated at the
equilibrium internuclear separation by Dalgarno
and Henry. '

An effective adiabatic polarization potential may
be represented by'

vf(r, , s) =- [o.,(s)/2(r', +r', )']f1 —exp [-(r,/r. )'])
-l.o

v, (r„s)

—' l.2—

I

0.5
I

I.O
I

I.5
I

2.0 F3&0, 5

(31)

(-[+2(s)/2(r, —r, ) ]11—exp[- (r,/r, ) ]J, r3&0 5

], 0,

FIG. 1. Spherical part of the short-range potential
averaged over initial v and final e' vibrational states.
Curves (A} v=0, y'=0; (8) v=0, p'=1; (C) g = 1, y'=1;
(D) @=0, v'=2; {E) v=1, v'=2; (F) v=2, v'=2. The

open circles correspond to the unaveraged potential of
Iane and Geltman, (Ref. 13).

0.5

s for r, & O. 6@0, and of the weighting in integral
(23) provided by the factor Z(v'O~s) . For v =0,
this factor has a maximum at s = 1.43ao,. for
v'= 1 maxima occur at l. 24 and 1.V2ao, and at
1.15, 1.51, and 1.93ao for v'=2. Thus, as v'in-
creases, the first maximum in the factor Z~ shifts
to smaller s and the larger values of v, (r, , s) are
weighted less. For r3 & 1.0go~ vg(rs, s) decreases
with increasing s and so curve (A) is less attrac-
tive than curve (F).

Curves (8), (D), and (E) represent averages
( 0)I 1), ( Olt 2), and ( 1(i 2), respectively. Averaged
potentials over vibrational levels which differ by
~v =1 are repulsive for small values of x3, and
attractive for r, & 0. Bao. For curve (D), the aver-
aged potential xs repulsive for 0, 65& y3& 2. 000.
This barrier may be important in calculation of
v = 0-2 vibrational cross sections and may lead
to values which are much lower than experiment.

B. .Long-Range Potential

-0.5

0.5 l,o

r{a,)

i

I.5
i

2.0

FIG. 2. Anisotropic part of the short-range potential
averaged over vibrational states e and e'; Curves (A}-(F)
and open circles as in Fig. l.

Asymptotically, our choice of molecular wave
function results in exponential behavior for all
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%'6 calculate cross sections fox' simultaneous
x'ot, RtlonR1 Rnd vlbl Rtlonal excitation of IQolecular
hydrogen by electron impact by solving the set of
coupled equations (ll) subject to the asymptotic
conditions (15). The numerical solution is obtained
by using Numerov's method to integrate the equa-
tions outwards and inwards, with subsequent
matching to obtain a final continuous solution. 'Fhe
asymptotic method of Burke and Schey is used
to determine the 8 matrix from the function
M~. ,(~). A combination of these methods has been
outlined by Smith, Henry, and Burke. Since
there is no significant change in results fox cross
sections as a function of energy, me ignore valves

TABLE I. Asymptotic factors in Eq. (33) avex'aged
over internuclear distance.

0.484
0.088
0.536

—0.011
0.123
0.586

5.4j.4
0.739
5.885

—0.07j.
l.070
6.373

l.349
0.406
l.658

—0.0075
0.623
1.995

sphere the spherically symmetx'ic and anisotxopic
polarizabilities eo and o, a are functions of inter-
nucleax' distance. Parameters x„xz, r„and x~

are 1.22, 0. 1, 1. '7, Rnd 2. Gao„respectively, and
are chosen to fit the nonpenetrating scaled polariza-
tion potentials calculated at the equilibrium intex-
nucleRx' sepRx'Rt1OD by Lane Rnd Henry.

%6 assume that the long-range interactions ax'e

in the form

(32)

Then, Eq. (23) reduces to

(v ~v~ (r, , s) ~v')=(e(6, tv'}g„(x,). (33)

Table I gives factors (v([v') for the quadrupole
IQoIQent Rnd polRrlzRblllt16s %hich hRve been cRl-
culated fx'om the functions given by Kolos and%ol-
niemicz, 1 and %olniemicz, ' respectively.

For the exchange kernel (14), we employ the ex-
pression calculated by Henry Rnd I ane' who used
the five-tex'IQ 81ngle-ceDtex' Huzlnaga function to
describe the Ha molecule. If ere neglect the de-
pendence of the moleeulax' function on s, then the
exchange tex'm reduces to that given in Ref. 17„
Eq. (24), times a scaling factor (e'le"), where

of l'& 5, thus reducing the number of channels
involved in Eq. (11). However, to ensure that the
expansion in Eq. (17) converges at all angles for
the differential cross sections, me include values
k &8 for certain energies.

ID order to illustrate some of the features of the
problem, we consider an electron incident on a
hydrogen molecule which is initially in its p = 0,
j=1 state, and examine cross sections for n =0 1,
hj= O„@which m'6 calculate in several approxima-
tloDs, For Rll the curves of Flg. 3, exchRnge
tex'IQs RDd R long-range quadrupole tex'IQ Rx'8 1D-

eluded in the interaction potential in the manner
described in Sec. III. For curves (A}, (8), and (C)
ere have included v "=0, 1 and j"=1, 3 in the sum-
mation over o',

" in Eq. (11). Curve (A) results
%hen we Rssuxne thRt there is coupling bet%"een
v'= 0 and v "=1 states for both short-range inter-
Rct1oD Rnd long-range polar izRtlon terIQS. Ho%'-

ever, to obtain curve (8), we assume vibrational
coupling of polarization terms vrhile omitting the
coupling between e'=0 and v"=1 states for short-
range terms. They are given by the Wang poten-
tial of Ref. 17 times a factor 6„.„»» . Similarly,
curve (C) results when we ignore off-diagonalvibra-
tional coupling tex ms for the polarization interaction
but retain the corresponding short-range terms,
Curves (D) and (E) are obtained when we include
v"=0, 1, j"=1and v"=0, 1, 2, j"=1, respec-
tively, in the summation over o. ", and the same
potentials are used as in curve (A).

An analysis of individual contributions to the
v1bx'Rt1onRl-exc1'tRt1on cx'oss sectioD sho'ws thRt
the dominant contribution comes fx om incident
and final p-wave electrons. ' The total angular
IQonlentuIQ cJ vRlues which hRve 1 = 1 RssoclRted
with them contribute 99% of the cross section in
the energy range 1, 0 &8 &10.0 8V. Due to the
centrifugal baxx'ier, slow incident P electrons vrill
Dot penetrate the 1nner regions of the molecule
and so only the outer portion (~ & I.oao) of the po-
tential is important for the energy range under
consideration. From curve (8) of Figs. 1 and 2,
we note thai the short-range interaction is attrac-
tive for x & 1.Dao. If we ignore the off-diagonal
vibx'Rtional coupling terms for the short-range
interaction, the electron-molecule interaction
mill be less strong, and the resulting cross sec-
tion miB be lovrer than that obtained when all po-
tential terms axe retained. Thus in Fig. 3,
curve (8) is lower than curve (A}. Similarly, the
polarization yotential is attractive and ere expect
its om1ss1OD to yield lo&er cx'oss sect1ons. As
the energy is increased, p-a&ave electrons will
penetrate further into the molecule and the short, -
x'Rng8 1nt, ex'Rctlon %'ill becoIQe IQox'8 1mportRnt rel-
ative to the long- range polarization terms. Thus,
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FIG. 3. Pure vibrational cross section for scattering
of electrons by H2 as a function of energy. See text for
description of curves {A)-R).

curve (C) becomes larger than curve (B) as the en-
cl gy 1nc1 eases.

The effect on vibrational cross sections of cou-
pling between different vibrational and rotational.
levels can be deduced from comparing curves (A),
(D), and (E) of Fig. 3. The greatest change in the

v = 0-1, ~j= 0 cross section is seen to occur in

going from e"=0, 1, j"=1, to v"=0, 1, j"=1, 3,
since there is relatively strong coupling between
the rotational levels, and the j"=3 state is sepa-
rated from j"=1 in the upper vibrational level by

only 8% of the energy difference between vibra-
tional levels. However, it is not anticipated that
further inclusion of higher rotational states would
yield significant changes in the cross section.
Since the dominant contribution to the pure vibra-
tional cross section comes from J=O and 2, the
rotational state j"=5 would give rise to coupling
with l = 5 and 3 = 3 and 5, respectively. The
addition of a higher vibrational level changes the
v =0-1, &j = 0 cross section by less than 10%. In
this case, the e = P, level is weakly coupled to the
v =0 and 1 levels and is well separated in energy
from the upper vibrational level.

Figure 4 gives the v =0-1, hj = 0, pure vibra-
tional-excitation cross section for H~ as a function
of electron impact energy E. For the curves, all
direct and exchange terms are included in the man-
ner described in Sec. III. The terms in the sum-
mation over e"which are retained are e"=0, 1,
and j"=j, j+2, where j =0, 1, and 2 for curves
(A). (B), and (C), respectively. The chief feature
of the results given in Fig. 4 is that, for the po-
tentials used in this close-coupling calculation,
the pure vibrational cross section depends on the
initial rotational state of the molecule, This ap-
pears to be due to the different ways in which the
spherically symmetric and anisotropic portions of
the interaction potential v, (r, s) and v, (~, s) are
combined for the various rotational states.

lD
QQ

Q

& o.s-
tt

b

E (ev)

FIG. 4. Pure vibrational cross section for scattering of electrons by H& as a function of energy. Curves {A), {B),
and {C) represent results obtained vrhen the initial rotational state is j=0, I, and 2, respectively.
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TABLE II. Cross sections in units of 10 ' cm for
the folio@ring processes: A 0(e= 0 1 j=0 0). 8
Q.'(y =0 1 j=O 2) C 0'(v = 0 1, j=l 1) D
0(v = 0 1, j=l 3).

1.0
2.0
3.0
4.42
5.5
7.0

10.0

0.06
0.30
0.37
0. 27
0. 20
0.14
0.08

0.05 0.11
0.34 0.64
0.46 0. 83
0.35 0.62
0. 26 0.46
0.17 0.31
0.09 0.17

D C+D

0.09 0.03 0.12
0.49 0. 21 0.69
0.59 0.28 0.87
0.42 0. 21 0.63
0.31 0.16 0.47
0.21 O. 10 0.31
0.11 0.05 0.17

To illustrate this point, let us consider only in-
cident and final p-wave electrons interacting with
an 8, molecule which is in rotational state j. %e
will assume that there is no change in rotational
state due to the collision. In the distorted-wave
approximation, the vibrational-excitation cross
section is proportional to the square of the matrix
element (u„,Vu„.&), where V(r) = (v I v 0(r, s) +

tv, (r, s) I e'). Wave functions u„&(r) and u„&(r) depend
on (5 I

'U 0(f', 8 ) +f2v p( r, 8 ) I 5) and (U I
50(t, s ) '+

fzv2(r, s) I v ), respectively; i.e., they represent the
radial motion of p electrons under the influence
of the corresponding vibrationally averaged inter-
action potential. If the molecule is initially in ro-
tational state j= 0, only total angular momentum
J' = 1 can lead to l = 1, and in this case f, = 0. If
the initial rotational state is j= 1, then the values
of J are 0 and 2, and those of f, are -', and z', , re-
spectively. Thus, in this particular approxima-
tion, the cross sections are seen to depend on the
value of the initial rotational state.

However, in our case, we use the close-coupling
approximation which reduces to the distorted-wave
ayproximation in the weak-coupling limit. Further,
since we do not restrict the orbital angular mo-
mentum to only p waves, the situation is actua11y
much more complicated than the case used as an
illustration,

Let us consider a hydrogen molecule which is
initially in its v = 0, j=1 state and include v"= 0,
1 and j"= 1, 3 in the expansion over n." in Eg. (11);
then cross sections for four processes may be
calculated. These are elastic scattering v = 0-0,
~j=O; rotational excitation v =0-0, j=1-3; vibra-
tional excitation v =0-1, 4j=0; and simultaneous
rotational-vibrational excitation e = 0 1, j= 1-3.

An experiment has been performed by Crompton
eta/. in an attempt to corroborate the above sug-
gestion that the vibrational cross section depends
on the initial rotational state. They measured the
drift velocity of electrons in normal and parahydro-
gen at 7V 'K at energies far away from threshold.

Ol
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FIG. 5. Pure vi'brational cross sections 0(y = 0 1,
&j=0) and rotational-vibrational cross sections 0 {v
=0 1, j=l 3} as a function of energy are given by
curves (A) and (B), respectively. Experimental results
for corresponding processes obtained by Linder (Ref.
24) are given by open circles and open squares.

They found that to within 0. 25%, the relative ac-
curacy claimed in this energy region, the drift
velocities are the same in both gases. Energetic
swarms lose the same total energy in rotational
excitations in both normal and parahydrogen at
'77 K, since the ratio of pure rotational-excita-
tion cross sections o(j=0-2)/o(j= 1-3) is approxi-
mately 3, which is just the inverse of the ratio of
threshold energies for these processes. Thus, as
the swarm energies are the same in both gases,
the total vibrational cross sections are the same„
If we interpret the total vibrational cross section
as the pure vibrational o. (v =0-1, bj=0) plus the
rotational-vibrational (n = 0-1, &j= 2) cross sec-
tion, then from Table II, we have that the sum of
these cross sections is the same to within 7/q for
the j= 0 and j= l. Hence, the theoretical results
are consistent with experiment. Further, from
Table II, at energies far enough away from thresh-
old, the ratio of simultaneous rotational-vibra-
tional excitation cross section (B:D) is appro»-
mately 1.63, which we note is very close to the
ratio of pure rotational-excitation cross sections.
Since the rotational-vibrational cross sections are
not equal, it follows that the pure vibrational cross
section depends on the initial state of the molecule.

In Fig. 5, curves (A) and (B) represent cross
sections for pure vibrational excitation 0'(5 = 0 1,
bj= 0) and rotational-vibrational excitation o (v = 0-1,
j= 1-3) of H2 as a function of electron impact
energy E. Circles and squares denote values for
these respective cross sections which have been
measured by Linder, ' who used a crossed-beam
technique to measure the energy dependence in the
range 0. 3 & E & 10 eV and the angular dependence
(0'-120') of the differential cross sections for
the above four processes. By extrapolating mea-
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surements to 180 ', integrating over the angular
range, and normalizing his results to the absolute
total cross sections of Golden et a/, ' Linder ob-
tained cross sections for the different processes
in absolute units. For the curves, all direct and

exchange terms are included in the manner de-
scribed in Sec. III. For curve (A) we have taken
a weighted average of the results given in Fig. 4.
We assumed a relative distribution of initial ro-
tational states to be 13.6: 67. 1: 19.3 for j=0, 1,
and 2. This average corresponds to the Boltzmann
distribution at room temperature under which con-
dition the experiments of Linder were performed.

For pure vibrational excitation, the present cal-
culations have a maximum in the cross section at E
= 2. 8 eV while the maximum in experimental cross
section is at 3. 5 eV. The ratio of these maxima
is 1.5. For simultaneous rotational-vibrational
excitation the maxima in theoretical and experi-
mental cross sections are at 3. 0 and 4. 0 eV, re-
spectively, and their ratio is 1.9. The ratio of the
maximum of our total cross section to that of
Golden et a/. is 1.2, and so, if the results of
Linder were normalized to our total cross sec-
tions, the discrepancy in magnitude of the pure
vibrational and rotational-vibrational cross sections
would be decreased. However, the calculated
cross sections would still lie well outside the ex-
perimental error limits, particularly for energies
in the range 2. 0 & E & 5. 0 eV. This may be due to
the manner in which polarization effects are in-
cluded in this calculation. We have assumed that
the long-range potential can be factored as in Eq.
(32). If, however, the vibrational average pro-
duces long-range potentials which are similar in
shape to those given in Figs. 1 and 2, then, as a
result, we overestimate the polarization potential,
and thus obtain cross sections which are too large
when compared with experiment.

Total vibrational cross sections o(v = 0-1) and

o(v =0-2) are compared with experiment in Fig. 6.
Curve (A) is obtained when we assume a room-tem-
perature Boltzmann distribution of initial rotational
states for normal hydrogen, and represents o(v
= 0-1). Circles represent the experimental results
of Ehrhardt et a/. ' which are identical to those of
Linder, ' and results from another scattering ex-
periment by Trajmar et al. are given by squares.
Electrostatic-energy-analyzer studies of Schulz

are presented as triangles, and diamonds denote
cross sections deduced by Engelhardt and Phelps
from analysis of transport data. The dashed curves
near threshold energies represent the results of
Burrow and Schulz who used the trapped-electron
method to measure the slopes of the vibrational
cross sections. They obtained 4. 3~10 ' and 7. 2

x 10 ' cm eV ' for v "=1 and 2, respectively.
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FIG. 6. Total vibrational cross sections 0.(v =0 1)
and 0.(v = 0 2) as a function of energy are given by
curves (A) and (B), respectively. Experimental results
for 0(v =0 1) are given by: 0, Ehrhardt et al. (Bef.
26);, Trajmar et al. (Ref. 27); p, Schulz (Ref. 28);
0, Engelhardt snd Phelps {Ref.29); ---, Burrow and
Schulz (Ref. 30). Experimental results for (v =0 2)
are given by: g, Ehrhardt et al. (Bef. 26); ---, Burrower

and Schulz (Bef. 30).

Curve (B) is obtained when we include v "=0, 1,
2, j= 1 in the summation over n" in Eq. (11), and
all direct and exchange terms are included in the
interaction potential. The inverted triangles de-
note experimental results of Ehrhardt et a/.
Note that vibrational cross sections for v =0- 2
have been multiplied by a factor of 5. In Fig. 3,
it was shown that cross sections for one vibrational
quantum change were significantly affected by inclu-
sion of the j"=3 level in the expansion of the total
wave function, and a similar effect on o(v = 0-2)
may occur if we include v "= 0, 1, 2 and j= 1, 3,
in the summation over n" . Further, simultaneous
rotational-vibrational cross sections are included
in the experimental results and this may give an
additional explanation as to why the theoretical
results are lower than experiment.

Differential cross sections for v = 0-1 vibrational
excitation of molecular hydrogen by electron im-
pact are given as a function of angle at E = 10 eV
in Fig. 7. Theoretical curves are calculated with
all terms included in the direct and exchange po-
tentials, and v"=0, 1, j"=j, j+2 included in
summation over n" . Circles and squares denote
experimental results which were obtained from a
study of normal hydrogen at room temperature by
Ehrhardt et a/. ' and Trajmar et a/. ,

"respec-
tively. These measurements refer to total vibra-
tional cross sections and have been normalized
using the absolute total scattering cross sections
obtained by Golden et al. Curves (A) and (B)



VIBRATIONAI AND ROTAT IONAI EXC IT ATION

2.0

E l.5
O

C)

1.0
~ ~

0 0.5

b

0
0 20 30 40 80 IOO l20 l40 l60 l80

Scattering Angle 8'

FIG. 7. Differential cross sections for vibrational
excitation of H2 by electron impact, as a function of
angle at E=10 eV. Curves (A) v=0 1 4j=0 for n-H2
at 293'K; {8)e = 0-1, Aj=0 for p —H~ at 77'K {C) e
=0 1, Q j=0+4j=2). Experimental results for total
vibrational excitation are given by 0, Ehrhardt et al.
(Bef. 26) and Q, Trajmar et al. (Bef. 27).

represent present results for pure vibrational
excitation of n-Hz at 293 'K and P-H2 at V7 'K,
respectively. %e note the difference in angular
behavior predicted for these gases. In particular,
for the gas with all molecules initially in j= 0 ro-
tational level, the angular distribution varies ap-
yroximately as cos 8. The sum of pure vibra-
tional and simultaneous rotational-vibrational
cross sections for n-H~ at 293 'K is given by
curve (C). This theoretical curve may be com-

pared with the experimental points. For the an-
gular range 20' & 8 &120', the shape and magni-
tude of the present results are in good agreement
with experiment. However, theory fails to re-
produce the large forward peak for low scattering
angles.

Figure 8 gives the ratio of pure vibrational a(U
= 0-1. 4j= 0) to simultaneous rotational-vibra-
tional o(v = 0-1, &j= 2) cross section for n-H, at
293 'K as a function of scattering angle for E = 4. 42
eV. Circles represent measurements of Ehrhardt
and Linder. " Curve (A) represents the calculation
of Abram and Herzenberg who used an adiabatic
approximation, and curve (8) depicts the present
results. Agreement of theory with experiment is
poor for small angles but improves with increasing
angle. This failure of theory at small angles may
be due to the manner in which polarization is in-
cluded in the present treatment. An analysis of
our results shows that the magnitude and shape
of low-angle differential cross sections for vibra-
tional excitation is determined yrimarily by the
long-range polarization potential, whereas, the
short-range potential is important for large-angle
scattering. Thus, relaxation of the assumption
that the polarization potential can be factored as
in Eq. (32) may lead to improvement between
theory and experiment for both integral and dif-
ferential vibrational-excitation cross sections.

V. SUMMARY

Static-field and electron-exchange effects, a long-
range quadrupole, and an effective polarization
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PIG. 8. Ratio of pure vibrational to
rotational-vibrational cross section as
a function of angle at E=4.42 eV. Circles
represent measurements of Ehrhardt
and Linder (Ref. 31). Curves (A) Abram
and Herzenberg (Bef. 6); (8), present
results.
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potential are included in the e-82 interaction.
Omission of either the short-range terms or the
long-range polarization term causes a decrease
by a factor of 2 in the pure vibrational-excitation
cross sections over those calculated with all terms
retained. Differential scattering cross sections
for vibrational excitation are found to be domi-
nated by the polarization potential at small angles,
and by the short-range potential at large angles.

For pure vibrational excitation, larger cross
sections are obtained when the states v" = 0, 1,
j"=1, 3 are included in the close-coupling ex-

pansionn,

than when state v "=0, 1, j"=1 are re-
tained. Inclusion of a higher vibrational level
changes the cross section o(v = 0-1, hj= 0) by less
than 10/p.

Pure vibrational-excitation cross sections de-

pend on the initial rotational state. Consequently,
an experiment which measures scattering of elec-
trons on parahydrogen at VV 'K would obtain
smaller cross sections than an experiment on
electrons in normal hydrogen at room temperature.
However, total vibrational cross sections o(v = 0-1,
hj=0)+o(e =0-1, Aj=2) are almost independent
of j. Thus, for example, results of Crompton
et al, and Ehrhardt et al. should yield the same
values for the cross sections since they measure
total vibrational excitation of p-H2 and n-H2 by
electron impact.
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