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The contribution of the hyperfine contact interaction in the iron atom has been calculated by
many-body theory. Terms involving one and two Coulomb interactions have been included, and
our result for the contact constant is -4.55 MHz as compared with the experimental result of
—5. 1 MHz obtained by Childs and Goodman. Inclusion of an approximate relativistic correction
changes the calculated value to —4. 87 MHz. An estimate of higher-order terms gives a theoret-
ical result —5. 35 MHz or -5.72 MHz when the relativistic correction factor is included.

I, INTRODUCTION

The many-body perturbation theory of Brueckner'
and Goldstone is used to calculate the hyperfine
contact interaction in the iron atom. The methods
used to evaluate the diagrams of perturbation
theory are taken from our previous work. ' Our
methods for applying the Brueckner-Goldstone
theory to atoms have also been used in hyperfine
calculations by Dutta etal.

The effect of the contact interaction in the iron
atom has been analyzed previously by Watson and
Freeman who carried out an unrestricted Hartree-
Fock (UHF) calculation in an analytic expansion and
obtained the value —3.4MHz for the contact hyper-
fine-interaction constant C. A more accurate UHF
calculation using an analytic expansion was later
carried out by Bagus and Liu who obtained the val-
ue —4. 4 MHz for C. An experimental value for
C equal to —5. 1 MHz has been obtained by Childs
and Goodman from their measurements of the mag-
netic dipole hyperfine-interaction constants for the
5D4 3 p $ states of the ground term of Fe in an
atomic -beam magnetic- resonance experiment.

The contact contribution to the hyperfine splitting
is written

Ec=C I J,
where I is the nuclear spin and J is the electronic
angular momentum. The contact constant C may
be written''9

C =& p (gJ —1)ge 0 e'er(p Nll
x(LS, MI„Mz =S ~Z;5(r;)s„~LS, Mz, =L, Mz =S),

(2)
where

g =I+[J(J+I)+S(S+I)—L(L 1)+]j[2J(J+I].)(3)
The usual g factors of the electron and of the nu-
cleus are represented by g, and gl, respectively. "
The symbols JL(,, and p,„represent the Bohr magne-
ton and nuclear magneton. "

We may also express C in terms of
4m I.S; M, M = S r il (r; s„iLS; M, I& = 8).

(4l
In order to calculate Eq. (4), we require the state
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i LS; Mz„Ms = S). For the 'D ground state of iron,
we also choose Mz, = L = 2. The state i LS; Mz, Ms =S)
is an exact (normalized to unity) solution of the
Schrodinger equation

with

zl
I+ Z ~-'

+i 3

where g~ means that only "linked" terms'3 are to
be included. The perturbation one obtains is

N
a'= Z r, ,' Z-V. (-~,.) . (s)

The energy correction one obtains is

~E=E E,-z„(c,IB'(
' H')" I,,),

where L' restricts the sum to terms which are
linked' when the leftmost II' is removed for
n&1. The state i(0& is an eigenstate of L', S', Ls,
and S s if i Co) is an eigenstate of these operators
and if L and Scommute with II'. ' Since the state

i(0& has the normalization (COI Po&
= 1 and is there-

fore not normalized to unity, the normalized state
is given by

I
LS; M, = L, M, = S) =

I Po&/(qo I
qo&"',

where i 4 o) is an eigenstate of Ls and Ss with eigen-
values M~ and M~, respectively. We could calcu-
late )t by first calculating i $0& and then substitut-
ing into Eqs. (4) and (10). We may also use an
equivalent approach" which is to calculate all
energy diagrams in which there is one and only one
interaction with 4mS ' g, s„5(r;) and any number of
interactions with H' given by Eq. (8). The latter
approach is used in this paper. Extensive discus-
sions of the use of perturbation theory to calculate
hyperfine structure may be found in the articles of
Sandars. "

Atomic units are used throughout this paper. A
first approximation to i go) may be obtained by re-
placing gr, z by g";, V(x, ). Then I /0) is approxi-
mated by 140), where i4o& is a determinant con-
taining the N single-particle states P„which are the
lowest-energy solutions of

[-—,
' V' - Z/~+ V(~)]P„=~„Q„.

The N states occupied in 140) are called unexcited
states, and all other solutions of Eq. (6) are called
excited states. The unperturbed energy is Eo = p;, e, .
From the Brueckner-Goldstone perturbation expan-
sion, ' one obtains

II, CALCULATIONS

A. Single-Particle States

0

as'I' ~Iks

V
(b)

as ks

(c)

as) [ks

(d)

as
ks

as

(e)

FIG. 1. Lowest-order contributions to g for Fe. The
triangular symbol represents the hyperfine contact, opera-
tor s~&(r). Diagrams (a) —{c) also occur inverted as
shown in (d). (e) insertion on the hole line. These in-
sertions may be shown to modify the single-particle en-
ergies by the shift of Eq. (11).

The lowest-order diagrams contributing to y are
shown in Fig. 1 and involve one Coulomb interac-
tion. We note that )f is zero when i/0) is approxi-
mated by I@0) since the ns electrons with spin up
and spin down are paired. In Fig. 1, the triangular
symbol represents the hyperfine operator s,5(r),
which is the notation of Sandars. " The cross in
Figs. 1(a) and 1(d) represents interaction with
—V(r). In Fig. 1(b) there is a direct interaction
with a passive unexcited state, and in Fig. 1(c)
there is an exchange interaction. The symbol as
refers to 1s', 2s', 3s', and 4s'. Because of the
factor s, in the hyperfine interaction, Figs. 1(a)
and l(b) cancel for o.s' since as' and ns states
are calculated in the same potential. There is al-
so cancellation of Fig. 1(c)with all exchange inter-
actions except those involving the 3d electrons.
The ns' electrons have exchange interactions with
the five 3d' electrons, and ns electrons have an
exchange interaction with the single 3d electron.
The net effect is equivalent in this order to four
3d exchange interactions with each ns'. We must
also include the inverted diagrams as shown in

Fig. 1(d). An insertion on the hole line is shown in
Fig. 1(e). All such diagonal terms may be summed
geometrically and result in an effective single-par-
ticle energy E, shifted by the matrix elements of
the insertion. Diagrams in this calculation were
evaluated with these shifts included.

In calculating the single-particle states we have
used our V" ' potential & in which the excited states
represent approximate physical single-particle ex-
citations of the atom. All /=0 states were calcu-
lated with the Hartree-Fock 4s equation for neutral
Fe. We then have an orthogonal set of l =0 states.
However, the 1s, 2s, and 3s states are not Hartree-
Fock solutions although they were found numerical-
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TABLE I. Single-particle energies in a.u.
C

~NHF

ls
2s
3s
4s
2p
3P
3d

—261, 757 64
-32.31168
-4. 52458
—0.258 34

—27. 792 27
-3.10169
—0. 647 18

-261.373 41
-31.936 32
—4. 169 83
—0.258 34

-27. 413 73
-2.742 37
—0. 647 18

-261.373 ll
—31.936 23
-4. 16972
—0. 258 32

-27.414 31
—2. 742 42
—0. 647 10

Calculated with the potential of this paper.
& +4 (G,'), where & is given by Eq. (II).

'Hartree-Fock value calculated by Clementi, Ref. 14.

ly to be very close to the Hartree-Fock solutions,
the maximum difference in the radial part of the
wave function being 0. 001 a.u. As in the case of
oxygen, ' the single-particle energies. E, differ
appreciably from the Hartree-Fock values. How-

ever, when we include the shift for &, due to in-
sertions on the hole lines as shown in Fig. 1(e),
the single-particle energies are in close agree-
ment with the Hartree-Fock energies. ' Following
the discussion of Ref. 4, the shift for a state n is
given by

N

n (n) = 2 [&nn
~
v ( nn& —

& nn
~
v ( nn& 1-& n

I
1

I n&
n= I

where the sum over n includes all occupied single-
particle states. For l =0 states, h(n) equals
&n4s Iv I n4s) -&n4s Iv I4sn& plus extremely small
correction terms involving differences between our
orbitals and the Hartree-Fock orbitals used in our
potential V. The shifted and unshifted values for

are compared in Table I.
For the np states, our previous prescription

would suggest that we use the Hartree-Fock 3p
equation to calculate all l =1 states. However, the
complete set of single-particle states generated in
a calculation such as this should be applicable to the
calculation of many different atomic properties in-
cluding polarizabilities where the transition 4s-4p
should be very important. Also, we expect impor-
tant correlation contributions from 4s-4p excita-
tions. As a result, we decided to calculate all l =1
states in the field of all Fe electrons except for one
4s electron which is removed. Exchange interac-
tions are included so that a given 2p electron effec-
tively experiences a field because of interactions with
five other 2P electrons when the direct and ex-
change terms are canceled (similarly for the 3p
electrons). Our 3P and 2p states now are not Har-
tree-Fock states; but they were found to be rea-
sonably close to the Hartree-Fock states calculated
by Clementi, the maximum difference in the wave
functions being 0.004 a.u. We also note that the

TABLE II. Second-order contributions to X.

Excitation

4s k
4s n

Contribution

2. 001 051
0.640 074"

3s k
3s n

—0. 656 384
—0.030 331

2s ~k
2s n

-3.444 827'~
—0.024 462

ls k
ls n

Total

0. 020 844
0.000013b

—1.433 360 ~

~Contribution from continuum excited states.
"Contribution from bound excited states.
This value for X corresponds to C=8. 236 MHz, where

C is the contact constant.

necessary wave-function corrections may be cal-
culated by the perturbation expansion. Our values
for E» and E» are listed in Table I along with val-
ues corrected by the shift 4 of Eq. (11). For the

2P and 3P states, the shift of Eq. (11) is
(n4s IvIn4s& —&n4s Iv14sn& plus very small correc-
tions due to differences in our 2P and 3p wave func-
tions and the Hartree-Fock wave functions. The
l =2 states were all calculated with the Hartree-
Fock 3d equation. In calculating all of our states,
we used the Hartree-Fock orbitals given by Cle-
menti' to calculate the direct and exchange terms
of our potential. We have also calculated all /= 3
and / = 4 states in the field of all Fe electrons with
one 3d electron removed.

B. Second-Order Results

Contributions from the second-order diagram of
Fig. 1(c) and its inverted form are listed in Table
II. These results represent the lowest-order con-
tributions to y from core polarization. The calcula-
tions include the hole-hole insertions of Fig. 1(e)
since we calculated Fig. 1(c) with the shifted e'
of Table I. All of our calculations include these
shifts so that effects as shown in Fig. 1(e) are in-
cluded in all diagrams. Sums over the infinite
number of bound excited states were included by
our n rule. ' Continuum states were included3p4

by numerical integration. We have included con-
tinuum contributions out to k = 150 a.u. However,
only the 1s excitations to continuum states involve
appreciable contributions beyond k = 50 a. u. We
note in Table II that excitations to bound excited
states are most important for 4s excitations. In
order to convert from X to MHz, we multiply by
the factor 5. 74607. The total value for y in sec-
ond order corresponds to C = —8.236 MHz. We note
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that there is much cancellation in the contributions
from the different ns excitations.

aS-

as+

n

U
(b)

a

re (

(c)

(cI) (e)

FIG. 2. Third-order core-polarization diagrams. The
crossed interaction represents the net effect of inter-
actions with —V and with all passive unexcited states.
There are also inverted diagrams corresponding to (a)-
(d) .

C. Third-Order Results

In third order there are two interactions with H'.
There are diagrams with core-polarization effects
as shown in Fig. 2 and also purely-correlation dia-
grams as shown in Fig. 3. The crossed interac-
tion in Fig. 2 now is generalized to represent the
net effect of interactions with —V and with all pas-
sive unexcited states. There are also inverted dia-
grams corresponding to each of the diagrams of
Fig. 2. There are also diagrams corresponding to
Figs. 2(b) and 2(d), but with the crossed interaction
interchanged. Results of the contributions from
the diagrams of Fig. 2 to y are given in Table III.
Contributions not explicitly listed in Table III were
calculated or estimated to be small.

Among the correlation diagrams there is much
cancellation from interactions involving spin-up
and spin-down electrons. Most of the net contri-
bution is due to the fact that ns electrons may be
excited into the unoccupied 3d states with m, =+ 1,
0, —2. The basic diagrams of this type are shown
in Fig. 3, and contributions from these diagrams
are listed in Table IV. There are exchange dia-
grams for Figs. 3(c) and 3(d), but the exchange dia-
grams for Fig. 3(c) give zero contribution. There
are also exchange diagrams such as Fig. 3(b) with
3d replaced by kl'. In these diagrams, the hyper-
fine interaction may also occur on the line labeled
k/ when l = 0. Contributions not explicitly listed
were calculated or estimated to be small. They
will be listed in a future calculation which will in-
clude higher-order terms. We note that there is
much cancellation among the various contributions
of Table IV.

(a)

ks

&I~ ~~3d D-—i»i3d
k's

Q
(e)

ks
I

~
k)li i/P

(CI )

FIG. 3. Third-order correlation diagrams. There
are also diagrams such as (b) with Bd replaced by kl'.
The hyperfine interaction also occurs on any particle
line of (b) when l =0 for that line. The diagram of (d)
also occurs inverted.

D. Higher-Order Terms

Our total result for y from second- and third-
order diagrams is given by the total of Tables II-
IV, and is equal to —0.792.

An estimate has been made of some of the higher-
order diagrams expected to be important for g.
These diagrams are shown in Fig. 4 and were found
to be important in calculating the contact interac-
tion in atomic oxygen. As discussed in Ref. 5,
Figs. 4(a) and 4(b) add to give a product of the sec-
ond-order hyperfine diagram times a second-order
energy diagram divided by the negative of the de-
nominator in the hyperfine diagram. Higher-order
terms such as Figs. 4(a) and 4(b) give a geometric
series which may be summed to shift the single-
particle energy & in the second-order diagram by

E„„(n,P), where E„„(o., P) is the pair corre-
lation energy for electrons in states n and P. Dia-
grams such as Fig. 4(c) with higher-order interac-
tions may be approximated also by a shifted denom-
inator in the basic diagrams of Fig. 1. A more
complete discussion of higher-order terms of these
types is given in Ref. 5. In Fig. 4(d) is shown a
higher-order diagram involving interactions of the
types shown in Fig. 2. Fourth- and higher-order
terms involving the interactions of Fig. 2 were es-
timated geometrically &' to contribute to X approxi-
mately 0. 175 a.u. The interactions of Fig. 2 also
modify Fig. 3(d) as shown in Fig. 4(e). This con-
tribution to y was estimated geometrically to be
—0.052 a.u. In order to calculate the contribution
of Figs. 4(a) and 4(b) which contribute to the denom-
inator shift QE„„(o., P), we must first calculate
the pair correlation energy for n with all other
electrons. This work is now in progress but is
not yet complete. Our estimate of an appropriate
denominator shift for the second-order diagram is
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TABLE III. Contributions to g from the diagrams of
Fig. 2.

TABLE IV. Contributions to g from the diagrams of
Fig. 3.

Diagram

(a) ns =4s
(b) ns =4s
(a) ns =3S
(b) Qs =3s
(a) ns =2s
(b) ns =2S
(a) ns =1s
(b) ns =1S
(c) Q=4S; P=3S,
(c) Q=3s; P=4s,
{c) Q =2s P=4S,
(c) n=ls; p=4S,
(d) n =4s P =3S,
(d) Q=3S; P=4S,
(d) Q=2s; P=4s,
(d) Q =1S; P=4S,
(c) P=3d; n =4s,
(c) p=3p; n =4s,
(c) p=2p; Q4S, 3
(e) n, p= 4S, 3S,
Total

2s, 1s
2s, 1s
3sj 1s
3S» 2S
2s' j ls
2sj 1S
3sj 1s
3s, 2s
3s, 2s, 1s
3s, 2s, 1s
s, 2s, 1s
2s, 1s

Value

0.243 210
0.243 210
0.002 709
0.002709

—0. 032 092
—0. 032 092

0. 000 000
0.000 000

—0. 000 852
0. 087 808
0. 027 378

—0. 017 709
—0. 000 216d'

0. 075 292"
0. 033 489"

—0. 012 531~
0. 003 377
0. 104 998

—0. 075 333
—0. 012 290

0.641 065

Diagram

(a)
(a)
(a)
{a)
(a)
(a)
(a)
(b)

{b)
(b)

(b)

(b)

(b)

(c)
(d)

(d)

(d)

n, p =4s-].s;
Q, p=4S—1S;
Q j P=4S—1sj
n, p=4s-1s;
n, P =4S-1S;
Q, P=4s —1s;
Qj p=4S—lsj
Q, p =4s—ls;
Q, P =4s-1s;
Q j P =4S—1sj
n, P =4s-1s;
QjP =4S—1sj
Q j p=4S—lsj

Q =4s-1s
Q = 4S-ls;
Q = 4s-1s.
Q=4S-1s;

Total

f=3dj
f—3d'

7—3d
3p 0

3p 0

7= 2P
2P j
3d j
3d j
3p 0

3p 0

2p 0

2P j

P =3d;
P =3d.
P =3d.

l=o
l=2
l=4
l=1
l=3
l=l
l=3
l=2

l=1
l=3
l=1
l=3

l=0
l=2

0.018 232
0.082 041
0.060 988
0.013471
0. 128 493
0.000 720
0.005 086

—0.043 360
—0.009 198
—0.049 664
—0.080 266
—0.003 055
—0.003 647

0.045 192
—0.072 554
—0.110788

0.019052
0.000 743

The notation 4s-1s means that Q, p includes 4S, 3s,
2s and 1s.

~Letters refer to the diagrams of Fig. 2.
%verted diagrams are also included.
'Diagram with the hyperfine interaction and the crossed

interaction interchanged is also included.
Diagram in which the hyperfine interactions occur

below the crossed interaction is also included as well as
the inverted diagrams.

—0.05 a.u. The diagrams of Fig. 1(a)-1(d) were
recalculated with this shift and the change in X

was found to be —0.262 a.u. Most of this result
is due to a reduction in the 4s contribution. Our
total estimate for y from higher-order diagrams
is then —0.13/ a. u.

Our results are summarized in Table V and are
compared with other calculations. In Table V we

l)g
(c)

TABLE V. Results for g in a.u.

Calculation

Second order
Second and third order"
Second and third order
with relativistic correction'
Including higher orders
Including higher orders plus
relastivistic correction
Analytic UHF '
Numerical UHF
Multideterrninant UHF I
Experiment"

—1.433
—0.792

—0.847
—0. 931

-0.996
—0.768
—0.648
—1.062
—0.89

have included the effect of multiplying our calcula-
tions by a relativistic correction factor 1.07 taken
from Kopfermann. An analytic-expansion UHF15

calculation by Bagus and Liu resulted in X equal
to —0. 768 a. u. Recently Fischer' and Bagus, Liu,
and Schaefer have carried out numerical UHF
calculations for Fe and other atoms, and for Fe
they obtained y equal to —0. 648 a. u. Fischer has
also carried out a multideterminant UHF calcula-
tion in which mixing of the (3d) (4s) and(3d) (4P)

(e)

FIG. 4. Typical higher-order diagrams. (a) and (b)
contribute to a geometric series which results in a shift
in the basic second-order diagram. (d) represents a
higher interaction of the core-polarization diagram of Fig.
2(a). {e) illustrates a modification to the basic diagram
of Fig. 3(d). Diagrams {a)—(e) also occur inverted.

~Taken from Table II.
~From Tables II-IV.
'Relativistic correction estimated from Ref. 15.
Results from Tables II-IVplus our estimate ofhigher-

order terms.
'prom Ref. 8.
From Refs. 16 and 17.

gFroro. Ref. 16.
"From Ref. 9.
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c pfigurations is included. The result is a signif-
icant reduction in the 4s spin density w)iich is pos-
itive, and y becomes —1.062 a. u. The experi-
mental value for X (- 0. 89 a. u. ) was obi:ained from
the experimental result of Childs and Goodman
that the contact constant C = 5. 1 MHz.

III. CONCLUSIONS

Our value for X through third order is in fairly
good agreement with experiment, particularly after
multiplication by the approximate relativistic cor-
rection factor. ' Our rough estimate of higher-
order terms brings our nonrelativistic result into
a little closer agreement with experiment. How-
ever, when the relativistic correction factor is
included, our result "including higher-order terms"
is in worse agreement with experiment than our
result through third order. It is desirable that a
much more careful study be made of higher-order
terms. In estimating some of the higher-order
terms, we used a denominator shift —0.05 a.u. for
the second-order diagrams, the principal effect of
which is the reduction of the 4s spin density at
the nucleus.

None of the UHF results in Table V include the
relativistic correction factor 1.07. The difference
between the analytic UHF results and the numeri-

cal UHF results' " is evidently due to an incom-
plete basis set for the analytic expansion. The
UHF results must be obtained to great accuracy
since there are very large cancellations between
spin-up and spin-down densities at the nucleus.
We also note that in UHF calculations the wave
function is no longer exactly an eigenstate of S .
In the UHF calculations listed in Table V, S was
calculated to be 6.018 for the analytic case,
6.0185 for the numerical case, ' and 6.0161 for
the numerical multideterminant calculation. ' In
many-body perturbation calculations we note that
the wave function is an eigenstate of S since we
start from an eigenstate of S, and since the per-
turbation H' commutes with S.

Although the results of this calculation are in
reasonable agreement with experiment, we see that
contributions from terms beyond third order may
be large and should be calculated carefully. We
plan to investigate the higher-order terms after
we have calculated the correlation energy of Fe.

ACKNOWLEDGMENTS

We wish to thank Dr. P. S, Bagus Professor
C. F. Fischer, and Professor G. B. Bess for help-
ful discussions.

*Research sponsored in part by the Aerospace Re-
search Laboratories, Office of Aerospace Research,
U. S. Air Force, Contract No. F 33615-69-C-1048,
and by U. S. Atomic Energy Commission.

~Present address: Department of Theoretical Physics,
The Hebrew University, Jerusalem, Israel.

K. A. Brueckner, Phys. Bev. 97, 1353 (1955); The
Many-Body Pxoblem (Wiley, New York, 1959).

J. Goldstone, Proc. Roy. Soc. (London) A239, 267
(1957).

H. P. Kelly, Phys. Rev. 131, 684 (1963); 136, B896
(1964).

H. P. Kelly, Phys. Rev. 144, 39 (1966).
H. P. Kelly, Phys. Rev. 173, 142 (1968).
N. C. Dutta, C. Matsubara, R. T. Pu, and T. P.

Das, Phys. Rev. Letters 21, 1139 (1968); Phys. Bev.
177, 33 (1969).

R. E. Watson and A. J. Freeman, Phys. Rev. 123,
2027 (1961).

P. S. Bagus and B. Liu, Phys. Rev. 148, 79 (1966).
W. J. Childs and L. S. Goodman, Phys. Rev. 148,

74 (1966).
' R. E. Trees, Phys. Rev. 92, 308 (1953).
"N. F. Ramsey, Nuclear Moments (Wiley, New York,

1953), p. 52.
D. J. Thouless, The Quantum Mechanics of Many-

Body Systems (Academic, New York, 1961).
13P. G. H. Sandars, in La Stxuctuxe Hypexfine des

Atomes et des Molecules, edited by R. Lefebvre and C.
Moser (Editions du Centre National de la Recherche Sci-
entifique, Paris, 1967), p. 111;Advan. Chem. Phys. 14
365 (1969).

E. Clementi, IBM J. Res. Develop. 9, 2 (1965).
H. Kopfermann, Nucleax Moments (Academic, New

York, 1958), p. 445.
C. F. Fischer (unpublished).
'P. S. Bagus, B. Liu, and H. F. Schaefer, III (unpub-

lished) .


