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teraction (see Fig. 1).
We conclude that intrachannel interaction in the

continuum gives significant improvement in calcu-
lated photoionization cross sections near thresh-
old. Interchannel interaction so far seems to
have a minor influence on the gross spectral shape
of the cross section. Possibly, the sizable re-
maining discrepancies between experiment and
length and velocity results for the cross section
can be accounted for by ground-state correlations,
by interchannel interactions with series of doubly

excited levels, and by the development of consis-
tent formulas for the transition matrix element in
approximate calculations.
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The two-state Stueckelberg-Landau-Zener theory of curve crossings can be utilized to ex-
plain qualitatively many of the observed asymmetric-inelastic total cross sections. It pre-
dicts not only a broad maximum in the inelastic total cross sections as a function of velocity,
but also a rapid rise to this maximum followed by a slow decline past the maximum. If the
difference in the potentials between the two states possesses an extremum, oscillations super-
imposed upon the general velocity dependence of the inelastic total cross sections may also
be expected because of the existence of a stationary phase. At high velocities, the spacing
of these oscillations will be proportional to v

I. INTRODUCTION

The recent measurements of total charge-trans-
fer cross sections by Perel et al. ' ' on the alkali-
alkali systems in the 0. 5-10x 102-cm/sec velocity

range have shown prominent regularly spaced os-
cillations superimposed upon a smooth energy de-
pendence of the cross sections. These oscilla-
tions occur in the asymmetric systems
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(A +B-A+8+) where the process is inelastic as
well as in the symmetric elastic systems
(A++A-A+A+) where the effect is now well under-
stood. An example of one set of measurements by
Perel and Yahiku is illustrated in Fig. 1. Sever-
al other authors have also observed oscillations
of a similar nature.

For the case of resonant symmetric charge-
transfer systems, Smith' pointed out that the ex-
istence of an extremum in the difference between

the g and u electronic states dissociating to an un-

excited ion-atom pair would provide a natural
source for prominent oscillations of the sort seen
in these total cross sections. This prediction has
been substantiated by ab initio calculations on the
Li+- Li system by Peek, Green, Perel, and

Michels. Formulas for deriving the difference
potential from the experimental data have also
been set up. '

It is the purpose of this paper to point out that
the same feature, namely, an extremum in the
difference potential between the two electronic
states involved in the charge exchange, is the
source of the oscillations observed in asymmetric
cases, as well as those seen in symmetric cases.
This is substantiated by detailed calculations for
a hypothetical example, the results of which are
closely comparable with the experimental mea-
surements of Perel et al. The principal difference
between the symmetric and asymmetric cases is
that in the former the two states involved do not
cross each other, but have different symmetries
(g and u), and they become degenerate when the
particles are very far apart. In the asymmetric
case, the two ion-atom pairs involved in the
charge transfer have different energies at infinity,
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FIG. 1. Reproduction of the data of Perel and Yahiku
(Ref. 2) on the asymmetric systems K'+Rb K+Rb'
and Rb'+K Rb+K'.

but there may be a crossing (in the diabatic sense),
or a point of closest approach (a pseudocrossing
in the adiabatic sense) between the two electronic
states at some finite distance R„. If the difference
between the potentials has an extremum at some
position inside the crossing or pseudocrossing,
the conditions necessary for generating oscilla-
tions of this type exist just as much as they do in
the symmetric system (which can be considered
as a limiting case in which the crossing point has
moved to infinity).

Qualitatively, this point of view is related also
to an idea put forth by Lichten who suggested that
certain oscillations seen in symmetric ion-atom
scattering would appear almost as strongly in
asymmetric scattering, because the molecular
wave functions appropriate to a description of the
asymmetric systems have approximately g or u
character when the internuclear distance becomes
sufficiently small. There is, therefore, a transi-
tion between an outer domain in which the states
are best described as an ion and an atom with the
charge distribution well localized, and an inner
domain, where the states are best described in a
molecular framework with a delocalized charge,
but with approximate g or u symmetry. The tran-
sition region between these domains can be approx-
imately treated as a crossing, although it is per-
haps better to consider it as a region where the
nature of the coupling changes. Since the details
of this description are probably not very impor-
tant in establishing the major features under con-
sideration, we have chosen to use the simple de-
scription of a curve crossing for illustrative pur-
poses. The important factor is the extremum in
the difference potential inside 8„, not the nature
of the transition near A„.

The oscillations in question here should be care-
fully distinguished from some other types of oscil-
lations that have been seen and discussed recently.
First, there is the feature that the existence of
two or more electronic states, connected either
by a curve crossing or a degeneracy at infinity,
will lead to strong oscillations in the differential
cross sections even in the absence of an extremum
in the difference potential. However, when these
differential cross sections are integrated over an-
gle (or when the contributions from all impact
parameters are summed) to obtain a total cross
section, the oscillations disappear or become very
weak unless special phase relationships are fa-
vored in the summation or integration. An ex-
tremum in the difference potential provides the
source for such a special phase relationship and
results in strong oscillations.

Another situation, involving oscillations of a dif-
ferent type in inelastic total cross sections, has
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In the region where the two-state SLZ theory
is applicable, the inelastic total cross section is
given by'

4
&x

Q, 2=—b Z (2l +1)P, (1 —P, ) si nlrb, , (1)
1

where k, is the wavenumber of the incident partic-
les, and

P, =exp( —2n„/v, ), (2)

been pointed out by Rosenthal. ' He shows that the
rapid oscillations in the inelastic cross sections
for such systems as He+ by He arise from the in-
teraction of two or more crossings at very large
internuclear distances. These effects are seen in
the optical spectra of the states produced, but they
would not be seen in simple charge-transfer scat-
tering; and the Rosenthal mechanism does not ex-
plain the oscillations seen by Perel.

In Sec. II, the Stueckelberg-Landau-Zener
(SLZ) curve crossing theory" for inelastic colli-
sions is utilized to explain the source of the oscil-
lations. The effect on the total cross sections by
an extremum in the difference between potential
states is described both theoretically and via a
calculation of a hypothetical example.

II. THEORY

( "RV„(R)dR 1 Rv„(R)dR
If., ) (R2- »)" 'k-~,

(8)
Then Eq. (8) becomes

)
I

R()'„()()—)' (R)„]d)("= a. (')) -) )'~

so that if the difference potential &V(R) = V»(R)—
—Vab(R) possesses an extremum within R„, it is
possible for 7'(b) to have an extremum.

If we replace the summation of Eq. (1) by an in-
tegral and use the classical analog which speci-
fies that the impact parameter b = (I + —,')/k, then

Q„= 2w f "
b (P (b) db, (io)

where (P (b) is the over-all transition probability
from state 1 to state 2.

If we substitute for (P (b), then

Q,a=8' f bP(b)[1 —P(b)] sinai(b)db .

Equation (11) may be reduced to a tabulated func-
tion if we replace the rapidly oscillating sin 7 (b)

by its average value of 0. 5 (the random-phase ap-
proximation). Equation (11) may then be rewritten

in which the probability P, of transfer from one
state to the other at the crossing is a function of a
characteristic velocity v„and the radial velocity at
the crossing point v, . The characteristic velocity
is related to the parameters of the crossing point
A„ by

vV„'(R„)
k I V,', (R„)—Vb2(R„) i

q„=4~R„' [1 —V„(R„)/Z]G(~),

where G(X) is the tabulated integral

G(&) = f, e '"(1—e '")x 'dx

which has a maximum value of 0. 113 when

)(. = 2 V„/v [I —V, )(R„)/E] ~ = 0. 424

(Is)

where V,z is the interaction matrix and V,', and Vzz

are the first derivatives of V» and V» with respect
to R. The phase factor 7, is determined by the
quadratures

r = f'" g "'dR- f""g "'dR (4)

where

g, = -'(A+f2) ~ -'[(f, -fb)'+ (8I /k') V»(R)]'", (5)

When an extremum in 7.(b) exists, so will a sta-
tionary point' exist and an interference effect will
be set up. [In other words, there will be nonran-
dom contributions to Eq. (10) about the stationary-
point impact parameter giving rise to oscillations
in the inelastic total cross sections. ] The station-
ary-phase approximation may then be employed to
determine Eq. (1) to yield a smoothly varying and
an oscillatory term

2 2p (I +-.')'
ith f~ b=k~ b

—
@~ V~ 2b(R) (8) 4J (1-I')v"'b,

Q„=Q —
p,~(b/dbb

~

b, cos[2v(ba))+ bv], (15)
b=bp

Since V,z is usually small with respect to V„and
Vzz then

7; t' f,~'dR=f'"f,"dR— .

At high velocities, where v&=- vz= v and small im-
pact parameters b = (I+ b)/k, Eq. (7) may be
approximated by

where bo is the impact parameter at the stationary
point. (If the difference potential inside R„has a
minimum, then the —,'m within the cosine brackets
will be ——,'a. ) The smooth over-all behavior @of
Q» is simply given by Eq. (12) and may be conve-
niently expressed in terms of the reduced param-
eter
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A qualitative comparison of the calculations with
the experimental measurements of Perel et aE.' '
can be made. On Fig. 1 are representative inelas-
tic total cross sections for only one of the many

140
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duced units v„of Eq. (3) and Q,„of Eq. (16) are
employed (in this case, v„= 0. 0166 a. u. and

Q „=87. 8 a. u. ). Note the rapid rise of the in-
elastic total cross sections with velocity to a
broad maximum and then a generally slow de-
crease with increasing velocity.

We next examine the result when the full treat-
ment of Eqs. (1)-(6) is employed with the calcula-
tion of all quadratures. Figure 4 displays the re-
sulting inelastic cross sections with very pro-
nounced oscillations. As shown in the theory sec-
tion above, these oscillations are simply a result
of the difference potential possessing a maximum
within R„. The oscillations have been indexed and
plotted versus v ' (Fig. 5). There is a distinct
energy dependence which is expected. Equation
(9) is only the fir'st term in an expansion with the
next term proportional to v '. Also, at lower ve-
locities as the threshold is approached, the ap-
proximation v, = v2 is invalid. The high velocity
theoretical intercept of 8 is obtained.

IV. DISCUSSION

I I I I I I I I I I I

0
0

l I l I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4
vx/v

FIG. 5. Plot of the indexing numbers versus v ~

showing the energy dependence and the theoretical 8

intercept.

alkali-alkali systems measured by these workers.
As in most of their other cases the smooth portion
of the cross sections is similar to that predicted
by the two-state theory (Fig. 3). The oscillations
in turn are also proportional to v '. In Fig. 6,
the experimental oscillations of several systems
have been indexed and plotted versus v '. The os-
cillations are linear in v . However, the experi-
mental intercept is 8, which indicates that there
is a phase constant missing in Eq. (1). The ex-
perimental phase factor is therefore —,

'
m which is

not in accord with the work of Thorson and Boor-
stein" who found —,'m or our work here'6 in which
we find the phase factor to vary between 0 and —,'m.

The Stueckelberg phase factor tends to change with
the system studied and so the experimental —,'m is
not too surprising.

Also, the SLZ theory does predict identical
cross sections for A'+B -A+B' and B'+A B+A'.
The work of Perel, however, indicates that there
are slight differences in the magnitude of the cross
sections for the above reactions. This may be
seen in Fig. 2. The positions of the extrema,
nevertheless, remain fixed. This may indicate
another inadequacy of the SLZ theory.

40—

I ) I

4 6 IO

FIG. 4. Calculated reduced inelastic total cross sec-
tions for the potentials of Fig. 1. The reduced param-
eters are defined in Kqs. (3) and (15). The indexing
numbers N are also included.

V. SUMMARY

The SLZ two-state theory has been utilized to
show that if the difference between the potentials
of the two states possesses an extremum, oscilla-
tory structure may be observed on the inelastic
total cross sections. In the high-velocity limit,
the frequency of these oscillations will be propor-
tional to v '.

Qualitative agreement between experiment and
theory can be obtained with the measurements of
Perel et al. ' who investigated alkali-alkali asym-
metric charge exchange scattering of the type
A'+B-A +B'+~. Here the magnitude of the
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inelastic cross sections indicates that the transfer
of charge occurs at large internuclear distances,
approximately 15 a. u. The polarizabilities for the
various alkali atoms are very large and vary great-
ly among themselves. " The difference between the
polarizabilities of the atoms would yield a long-
range 8 ' difference potential that would rapidly
increase with decreasing 8 values. Ultimately,
however, the short-range forces would dominate
and for both initial and final states the same Cou-
lomb potential would apply. It is thus not unrea-
sonable to expect a maximum in the difference po-
tential for these reactions. Also, an extremum
may occur because of unusual features in the cor-
relation diagram. The applicability of the two-
state approximation is inferred by the fact that the
general shape is similar to that predicted and the
oscillations have a v ' dependence. The amplitude
of the oscillations are also compatible with theory.

It must be remembered that the SLZ is qualita-
tive in nature and may be employed only to better
understand the observed phenomena. It encompas-
ses only two states and at high velocities predicts
an incorrect v ' dependence in the inelastic total
cross sections. "

FIG. 6. Plots of the indexing numbers N versus v ~

for some of the experimental data of Perel et al. The
solid triangles refer to the Na +K Na+K" data, 2 the

solid circles refer to the Rb'+K Rb+K" data, 2 and the
solid squares refer to the Rb'+Cs —Rb+Cs' data. ~
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