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A variational generalization of Brueckner's theory has been applied to the calculation of hy-

perfine parameters for the 2P ground state of atomi. c boron. The computationa] method makes

use of a hierarchy of nth-order {or n-particle) variational Bethe-Goldstone equations defined

in terms of configurational excitations of a Hartree-Fock reference state. Hyperfine param-
eters are computed as the sum of net increments defined at each level of the hierarchy. Or-
bital basis sets are extrapolated to practical completeness for each one- and two-particle net

increment. Three-particle net increments are found to be small but not negligible. Com-

puted magnetic hyperfine constants are within roughly 1/& of experiment. The electric field

gradient is computed. and its relative accuracy is estimated from that of the magnetic hyper-
fine constants. Combined with experimental quadrupole coupling constants, this implies val-

ues of the nuclear quadrupole moments Q(B ) = 0.08472 (56) b and Q(B")=-0. 040 65 (26) b, with

the indicated precision.

I. INTRODUCTION

The hyperfine structure of atomic energy levels
arises from the interaction between nuclear mo-
ments and the static electric and magnetic fields
produced at the nucleus by the atomic electrons.
A nuclear magnetic moment p interacts with the
electrons through an effective Hamiltonian

such that

~ J' +J', c++J', «p+ J,orb

Here we have

g, = 2. 00232

&sr = Gen Pr/JI

(2)

(4)

1~J, c= &F17;g.Xc,
1~J,dig J'I 2gtx«y

J,orb ~JIXprb

(2)

ha~ I J (&)

where I is the nuclear spin and J is the electronic
total angular momentum. If both I and J are ex-
pressed in atomic units (angular momentum di-
vided by I) then a~ is in frequency units (energy
divided by h). There are three contributions to
aJ of different tensorial character. For light
atoms, when the electronic wave function has def-
inite quantum numbers L and 8, the Fermi con-
tact, spin-dipolar„and orbital contributions toa~,
in the state J=L+S, can be expressed in the form,
respectively, '

where p. l is the nuclear magnetic moment in nu-

clear magnetons, I is the nuclear spin quantum

number, and

G,„=95. 4129 MHz

using recently tabulated values of fundamental con-

stants.
The dimensionless constants X„X«„andX„„

in Eqs. (2) are operator mean values computed

for the electronic wave function of the state with

ML ——L, Ms ——S, and MJ —-L+8=J:

Ka 'X, = [s5j =(Smg;s„5(r;)) I,,

Kaa Ãd„=[s C ' 'j=(2+;s„rCO '(8;))~~, (6)

m X.,„=[i j =(Z, r,-'i„)„.
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Here Co ' is the spherical tensor function

C+'(8) =(-', w)"'Y (8$) =P (cosa)

defined in terms of the normalized spherical har-
monics Y, (e, P). Two other mean values evalu-
ated in the present work are

[5]=&«&» 5(r~)&is,

[c "']=&+,~,'c,"'(e,))„. (7)

p (B ) = 1.800 84

p, (B")= 2. 68856
(8)

The mean value [s5] is sometimes denoted by f and
referred to as the Fermi contact parameter.

W'hen recalibrated for the current value of the
proton magnetic moment (2. 792782 p„), the mag-
netic moments of the two stable isotopes of boron,
in p.„, are

These factors should be included in any results
quoted to four or more significant decimals. For
the sake of consistency, they have been included
in the conversion factors used for all data con-
sidered in the present work.

In the P ground state of boron, with numerical
values for the coefficients as discussed above,
Eqs. (2) give the three independent contributions
to a»2. The Z= 2 coupling constants, derived
from the signer-Eckart theorem, ' are

al/2 c a3/2 c

aq/3, «, = —10a3/p

1/R, orb 2a3/P, orb

(14)

A nuclear electric quadrupole moment eQ inter-
acts with atomic electrons through the mean value
[C ' ']. Hyperfine structure due to this interaction
is determined by the quadrupole coupling constant
eqQ, where

Then the constant in Eqs. (2), for Z= ~, is
q= —2e[c"'] (15)

m =0. 548593

M(B' ) = 10.01294

M(B ) =11.00931

(12)

Then the mass correction factors, to be multiplied
into the computed hyperfine parameters, are

y~, (B )=0.9998356

y,g, (B ) =0.9998505

y„~(B 0) =0. 9998S04

y„g(B ) = 0. 999900 3

y~l (B ) = 38. 1830 MHz

yzl (8 ) = 114.0103 MHz

The natural atomic units used in ab initio atomic
calculations set the reduced mass of the electron
equal to unity. Thus the units depend on the ratio
of the electronic mass m to the nuclear mass M.
Because the Bohr radius ao is defined for infinite
nuclear mass, the computed mean values [s5] and
[s C +'] mustbemultipliedby a factor

y,~
= (1+m/M) (10)

the mass correction for ao . In the case of the or-
bital hyperfine interaction, the Bohr magneton also
depends on the electronic reduced mass, requiring
a mass correction to the constant G,„of Eq. (4).
This can be combined with the correction for ao
by multiplying [I] by the factor

y„g ——(1+m/M)

In C mass units, the electronic and isotopic
masses are

is the electric field gradient at the nucleus due to
the atomic electrons.

The P ground state of boron, with electronic
configuration Is 2s 2P, provides a simple exam-
ple of polarization of nominally closed orbital sub-
shells by the unbalanced spin and nonspherical
spatial distribution of an unfilled valence shell.
%ithin the Hartree-Fock approximation, the self-
consistent field acting on the Is and 2s electrons
is spin dependent and nonspherical. Unless spe-
cific constraints are imposed, this has the effect
of inducing a nonzero net spin density in the Is
and 2s shells, and of mixing the Is and 2s orbit-
als with virtual orbitals of d symmetry. This
spin polarization of the inner shells introduces a
nonzero Fermi contact hyperfine interaction, and
the virtual d/s excitation has an important effect
on all of the hyperfine interaction parameters. To
examine these effects, it is necessary to carry
out calculations of greater complexity than tradi-
tional Hartree-Fock calculations with the usual
orbital symmetry and equivalence constraints. '

Calculations on the 2 P excited state of Li, whose
configuration Is 2P is similar to that of P boron,
indicate that specific electronic correlation effects
must be taken into account, in addition to spin and
orbital polarization, in order to compute hyperfine
interactions with high enough accuracy for useful
comparison with experimental data. '

There are several calculations of the hyperfine
parameters of B( P) that go beyond the traditional
Hartree-Fock approximation. Results of three of
these calculations, converted from the original
atomic units to MHz, using the constants given
herein Eqs. (2), (S), and (13), areshownin Table I.
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Goodings' has carried out a Hartree-Fock cal-
culation without the traditional constraint requiring
the lsP or 2sP spatial orbital to be identical with
the 1sa or 2s& spatial orbital, respectively. Al-
though referred to by Goodings as a UHF (unre-
stricted Hartree-Fock) calculation, this terminol-
ogy is inappropriate, because the constraint of
neglecting d/s polarization was imposed, even
though the P state of boron had been discussed
previously as an example of such polarization.
The structure of Gooding's wave function causes
[s C ' '] and [1 ] to depend on a single parameter,
the mean value (r ) for the occupied 2p orbital.
With a more accurate wave function this interde-
pendence of the hyperfine parameters is broken
down by d/s polarization and by electronic corre-
lation effects. Despite these limitations, Gooding's
values of a»& and a3/2 shown in Table I, are in
reasonable agreement with experiment.

A more recent calculation, by Goddard, "uses
a wave function that allows for limited electronic
correlation in the 1s and 2s subshells as well as
for spin polarization of these shells by the 2P va-
lence orbital. No d orbitals are included in the
calculation, so d/s polarization and correlation
involving virtual excitation of d orbitals are ne-
glected. The computed magnetic hyperfine con-
stants, shown in Table I, are further from the
experimental values than are Goodings's spin-
polarized Hartree- Fock results.

The effect of virtual excitation including d or-
bitals has been considered by Schaefer, Klemm,
and Harris. Their variational wave function,
used for calculations of the hyperfine parameters
of B( P), consisted of a superposition of the Har-
tree-Fock function 40 with all singly excited con-
figurations obtained from a given orbital basis
set. This wave function is expected to give an
internally consistent treatment of polarization
effects but not of the detailed effect of electronic
correlation. As shown in Table I, the computed
magnetic hyperfine constants are within approxi-
mately 2/~ of experiment.

In order to consider the quantitative effects of
electronic correlation as well as polarization, a
theoretical method is needed that provides inter-
nal criteria of accuracy and convergence and
that is free of obvious constraints such as those
incorporated in the traditional Hartree-Fock ap-
proximation or its immediate generalizations.
The method used in the present work is to carry
out calculations based on a convergent hierarchy
of Bethe-Goldstone equations, where an ~-particle
Bethe-Goldstone equation is defined as the Schro-
dinger equation for e ~N particles of an N-particle
system, with the wave function constrained by or-
thogonality to N-n orbital functions of an assumed

TABLE I. Results of previous calculations. Data for
B"only (MHz).

Goodings Goddard" SKH Expt

Q(/2 o

i/2, dip

Qg/2, orb

Qg/2

Q3/2 c
Q3/2, d&

Q3/2, orb

—8.22
178.49
178.27

348.54

8.22
—17.85

89.14

17~ 31
180.89
181.10

344. 68

17.31
—18.09

90.54

—3.51
189.45
174.97

360.91 366, 077

3.51
—18.94

87.48

Q3/2 79.51 89.76 72.05 73 347

D.
"w.

H.
Phys.

H.
'G.
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Hartree-Fock Fermi sea. ' This method is based
on the many-particle theory of Brueckner. To
avoid convergence difficulties indicated in earlier
hyperfine structure calculations by this method, "
which was originally described in terms of virtual
excitations of individual orbitals (one-electron
functions), the method has been restated in terms
of configurational excitations in a recent applica-
tion to the 2 P state of Li. Earlier calcula, tions
by an equivalent method were carried out on the
P ground state of B by Schaefer and Harris.

The contact hyperfine interaction in B( P) was
computed by this method, ' but with orbital basis
sets less complete than those considered here.
A detailed comparison of results will be given
below.

The calculations reported here are based on con-
figurational excitations. In contrast to the pro-
cedure used earlier, the wave functions obtained
variationally at each stage of computation are
eigenfunctions of L and S . This has the effect
of preventing spurious contributions to the hyper-
fine interaction parameters from appearing at a
low level in the hierarchy or results, only to be
canceled out at a higher level after laborious com-
putations.

Details of the calculations will be given in Sec.
II, and results for the magnetic hyperfine inter-
action parameters will be described in Sec. III.
An important result of the present work is to com-
pute [ C ' '] and hence the electric field gradient q
to an accuracy not previously attained. In Sec. IV
this result is used to determine the nuclear quad-
rupole moments of B' and B ' from experimental
data on the quadrupole coupling constant.
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II. COMPUTATIONAL DETAILS

The procedure followed in the present work has
been described in detail in an earlier paper. A

given set of basis orbital functions generates a
Hilbert space [C] of N-electron wave functions,
whose basis is the set of normalized Slater deter-
minants defined by virtual excitation of a reference
state determinant 40, usually taken to be an ap-
proximate Hartree- Fock function. Individual or-
bital functions are designated by the quantum num-
bers (f, n, m„m, ), where l, m„and m, have their
usual meaning, as does the principal quantum number
n for occupied orbitals of Co. For unoccupied or-
bitals, always a finite set of normalized functions,
e is just a counting index. Sets of basis functions
are used that can be extended to countable com-
plete sets. Virtual excitations of 40 are defined
in terms of replacement of occupied by unoccupied
orbitals. Unless m„m, are specified, excitations
refer to configurational excitations. For example,
relative to the ground-state configuration 1s 2s
2P of boron, the excitation (nd/2s) denotes the con-
figuration 1s 2snd2P. Only determinants with given
values of MI, and M~ are considered.

The Hilbert space [C'] is the direct sum of dis
joint subspaces defined in terms of configurational
excitations. For example, (1s) denotes the sub-
space of configurations (nl/ls } for all values of n
and l represented in the given set of unoccupied
orbitals; (1s2P) denotes the subspace of configura-
tions (nl, n'f'/is, 2P) for all possible n, n' and f,
f . The reference configuration (containing 40) is
denoted by (0). A variational subspace is defined
as the direct sum of disjoint subspaces whose in-
dices (sets of nl values) form subsets of the indices
defining the variational subspace. For example,
variational subspaces are defined by

[is2s] = (0) + (1s ) + (2s }+ (1s2s )

[is 2P]= (0)+(ls)+(2P)+(1s )+(is2P)+(is 2P)

Variational calculations are carried out by find-

ing the lowest eigenvalue of the electronic Hamil-
tonian matrix within each variational subspace.
Mean values (F) of electronic operators are com-
puted from the eigenvector, whose components
are the coefficients of Slater determinants in the
variational wave function. The gross increment
4I' of any mean-valueproperty is defined as one
of these variational mean values, with the refer-
ence state value Eoo subtracted out. Net incre-
ments f are then defined by formulas of the same
structure as the decomposition of the variational
subspaces, exemplified by Elis. (16). The corre-
sponding formulas for gross and net increments of

some electronic mean value are

~Fls2s fo+fls+f2s+flsas

~Flslsap =fo+fis+f2p+flsis+fis2p+fl sls2p

This has the effect of defining net increments

fl,p, = ~&l,a, -fO fis--fas

(17)

flslsap ~Flsisap fO fis fap fisis Asap

TABLE II.Exponents g for basis orbitals r~& e (~ym~e

nl f list

lg
2s
2P
3d

4.4661, 7.8500
0.8320, 1.1565, 1.9120, 3.5213
0.8783, 1.3543, 2. 2296, 5.3665
1.428, 2.977

The general definition of a net increment with in-
dices n&l&, nal&, . ~ ~, is the difference between the

corresponding gross increment, directly computed

from a variational wave function, and the sum of
all distinct net increments of lower order whose

indices are a subset of those given.
As a consequence of these definitions, the ex-

act mean value (F) is expressed as the sum of Foo
and of all net increments whose indices represent
subsets of the occupied orbitals of the reference
configuration, if the orbital basis set is extended
to completeness. This decomposes (F) into a
finite sum of net increments obtained by succes-
sive calculations in a hierarchy of variational sub-
spaces of [C].

The orbital basis set shown in Table II was used
as a base for extrapolation. It contains s and p
orbitals from the Hartree-Fock calculation of
Clementi et al. " The two 3d exponents were ob-
tained, respectively, by minimizing the energy of
the [2s] and [is] variational wave functions. Pre-
liminary calculations indicated that f orbitals could
be omitted from this starting basis set.

Extrapolations were carried out by augmenting
the basis set of Table II with additional orbitals
of s, P, d, and f symmetry. These extrapolations
were carried out separately for each one- and
two-particle set of net increments and for each l
value. For virtual excitations of 1s, the aug-
menting orbitals have a common exponent
=10.085; for virtual excitations of 2s and 2P the
common exponent is (~=1.860. These exponents
were determined by variational calculations of
electronic correlation energy net increments. '
When both E- and L-shell orbitals are excited,
the basis set is augmented two orbitals at a time,
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one with exponent g~ and one with gL, . For each
exponent, basis orbitals were used in an increas-
ing sequence of powers of x.

Extrapolation of the net increments was done
with a standard formula equivalent to assuming
geometric convergence. ' For virtual excitations
within a single shell, five augmenting orbitals,
added in succession, allowed two cycles of use of
the three-term extrapolation formula. Because
of the complexity of the calculations, fewer terms
were computed in KL excitations. In cases of
obviously irregular convergence, mean values
computed for the final calculation in the sequence
were used instead of extrapolated values.

The extrapolated corrections of the hyperfine
parameters, obtained by a separate sequence of
calculations for each l value, are listed in Table
III and summed to give extrapolated estimates of
the one- and two-particle net increments of the
hyperf inc parameters.

III. RESULTS FOR MAGNETIC HYPERFINE INTERACTIONS

Final computed values of the hyperf ine par ameters
are listed in Table IV. The Hartree-Fock results,
denoted by (0), a,re obtained with the s and P or-
bitals by the addition of basis functions with ex-
ponent f&. The degree of convergence of the Har-
tree- Pock calculation is indicated by

This differs from [Is2s2P] by omitting the dis-
joint subspace (ls2s2P). The sum of intershell
three-particle net increments, computed with the
6420 orbital basis, but in truncated variational
subspaces as in Eq. (20), are added into (total)2
to give (total)~ in Table IV. In all cases the sum
of intershell three-particle terms is smaller than
the valence-shellterm (2s 2p). The sum g &~»& in
Table IV includes (2s 2P).

These results are multiplied by the conversion
constants discusse. i in the Introduction to give the
magnetic hyperfine coupling constants listed in
Table V. Comparison of the results for (total)q
with either (total)z or (total)3 shows that three-
particie correlation effects are not negligible,
although much smaller here than in previous cal-
culations formulated in terms of individual or-
bital rather than configuration excitations. '~ De-
spite large variations in a~ „ the effect of the
contact term is so small that the results of both
(total)~ and (total)3 are in excellent agreement with
the experimental hyperfine coupling constants. The
largest relative error is 2%fora3/g from (total)s.
The suma»2++3)3 which cancels out the effectof
a~ „is in error by only 0. 571& for (total)~andby
0. 26% for (total), .

IV. NUCLEAR QUADRUPOLE MOMENTS

[Is 2s 2P]3 = (0) + (Is) + (2s) + (2P) + (Is 2s)

+ (Is 2P) + (2s2P) (20)

(r )»=0. 77526635, Hoo= 24. 529052

(6, 4 basis),
(19)

(x )» = 0. 775 604 31, Hoo = 24. 529 053

(6, 9 basis),
ln a. u.

Net increments of the hyperfine parameters for
all one- and two-particle configurational excita-
tions possible for the configuration 1s 2s~ 2p are
included in Table IV and summed to give the sub-
total indicated by (total), . The (2s'2p) net incre-
ments have been computed, using the orbitalbasis
set 6420 of Table II without extrapolation. This is
added into (total), to give (total), in the table. This
three-particle contribution is not negligible, as
can be seen from the table. The various three-
particle net increments due to excitation of both
K and L shells were estimated by carrying out
calculations in which one- and two-particle ex-
citations were allowed to interact, but explicit
three-particle excitations were omitted from the
variational Hilbert space. For example, a trun-
cated variational subspace is defined by

If the quadrupole coupling constant eqQ is known,

then the nuclear quadrupole moment Q can be de-
termined from a computed value of the field gra-
dient q by the formula

Q(b) =eqQ(MHz)/234. 9649 q(e ao ) . (21)

The constant in this formula has been computed
from recently tabulated values of fundamental con-
stants. In atomic units, q is given by Eq. (15) as
just —2[ C +&], multiplied by the nuclear mass cor-
rection factor y,~ given by Eq. (10) and (13) for the
isotopes of boron. For B", this gives the values
of q indicated in Table VI from the computed val-
ues of [C ' '], Table IV.

The errors indicated for q in Table VI are ob-
tained by assuming that the relative error is equal
to that of the sum a»&+as, .z. This is justified be-
cause the contact term a~ „which is subject to a
loss of one significant decimal due to the near can-
cellation of 1s and 2s net increments, cancels out
of this sum. The data in Table IV show that no
comparable cancellationoccurs for [ C ' '], [s C ' '],
or [I] —all of which are dominated by the Hartree-
Fock value. Hence the relative error in [ C ' '] or
q should be comparable to that of a&,p+a3/p a lin-
ear combination of [s C +&] and [1]. Thus the
known error in the computed magnetic hyperfine
interaction can be used to estimate the error in
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TABLE III.

Increment

ls base
s
p
d

f
Total

Extrapolation

—0.018492
—0.000 629

0.000 002
—0.000 525

0.0
—0.019644

—0.748 697
—0.052 586

0.000 398
—0.000 119

0.0
—0.800 914

0.000 750
—0.000 000

0.000 000
0.006 533
0.0
0.007 283

for orbital basis set completeness. Net increments

[s6] [ C (2)]

of hyperfine

[sC ]
(2)

—0.006 521
—0.000 000

0.000 000
—0.000 711

0.0
—0.007 232

parameters (a.u. ).
fl]

0.000 025
0.000 000
0.000 000
0.000 015
0.0
0.000 040

2s base
s
p
d

f
Total

2p base

p
d

f
Total

ls2 base
s
p
d
f

Total

ls2s base
s
p

f
Total

ls2p base
s
p
d

f
Total

2s base
s
p
d

f
Total

2S2p base
s
p

f
Total

—0.411627
—0.012 306

0.000 119
0.002 582
0.0

—0.421 232

0.0
0.0
0.0
0.0
0.0
0.0

0.707 331
—0.743 039

0.495 681
—0.077 522
—0.027 090

0.355 361

0.302 214
—0.094 830

0.060 883
0.011167

—0.000 253
0.279 181

—0.185 912
—0.020 009
—0.014 562
—0.011646
—0. 010 549
—0.242 678

—0.840 067
—0.048 475

0.024 719
0.041 579

—0.000 080
—0.822 324

0.095 936
0.004 184

—0.003 346
0.004 183
0.001 809
0.102 766

0.881 823
—0.041 576

0.000 179
—0.007 611

0.0
0.832 815

0.0
0.0
0.0
0.0
0.0
0.0

—0.042 300
0.007 716
0.000 026
0.000 448
0.000 135

—0.033 975

0.082455
—0.010 130
—0.001 992
—0.003 487

0.000 024
0.066 870

0.024 343
0.004 692
0.000 436
0, 002 296
0.004 654
0.036 421

0. 116831
—0.007 317

0.000 266
—0.010 903

0.000 213
0.099 090

—0.033 725
—0.004 533
—0.002 178
—0.002 324
—0.005 473
—0.048 233

0.002 473
—0.000 000

0.000 000
0.000 321
0.0
0.002 794

0.0
0.0
0.0
0.0
0.0
0.0

0.000 344
—0.000 001
—0.000 027

0.000 112
—0.000 001

0.000 427

0.000 488
—0.000 001
—0.000 053
—0.000 010

0.000 000
0.000 424

—0.003 565
—0.000 011
—0.000 042
—0.000 548
—0.000 192
—0.004 358

0.009 257
—0.000 004
—0.000 055

0.000 119
—0.000 241

0.009 076

—G. 005 422
—0.000 013
—0.000 133
—0.000 331
—0.000 305
—0.006 204

—0.001 683
0.000 000
0.000 001

—0.000 618
0.0

—0.002 300

0.0
0.0
0.0
0.0
0.0
0.0

0.000 008
0.000 001
0.000 025

—0.000 107
—0.000 001
—0.000 074

0.000 168
0.000 000

—0.000 002
0.000 084
0.000 002
0.000 252

—0.003 347
—0.000 013
—0.000 101
—0.000 365
—0.000 025
—0.003 851

0.000 420
0.000 001

—0.000 006
—0.000 127
—0.000 142

0.000 146

—0.005 060
—0.000 008
—0.000 116

0.000 086
0.000 055

—0.005 043

—0.017 793
0.000 002

—0.000 003
—0.000 159

0.0
—0.017 953

—0.000 001
0.000 001
0.000 001
0.0
0.0
0.000 001

0.000 133
—0.000 001
—0.000 105
—0.000 002
—0.000 001

0.000 024

0.000 935
0.000 004

—0.000 151
0.000 039

—0.000 015
0.000 812

0.015 261
0.000 061
0.000 707
0.002 621
0.000 544
0.019194

—0.001 428
0.000 002

—0.000 009
0.000 290

—0.000 458
—0.001 603

0.027 835
0.000 051
0.000 763
0.000 469
0.000 880
0.029 998

the computed electric field gradient. The experi-
mental error in the magnetic hyperfine constants
can be neglected in this context.

This estimated computational error is combined
with the experimental errors in eqQ and the ratio
Q(B' )/Q(B") to give final estimated errors inval-

ues of Q computed by Eq. (21). The resulting
values of Q, for both isotopes, are shown in Table
VI. If the estimate of the residual computational
error is justified, the best result here [from
(total)~j represents a significant improvement on
the accuracy of currently accepted values of the
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Inc rement

0
ls
2s
2p
ls2
ls2s
1s2p
2s
2s 2p
(total),
2s 2p
(total),
&(i ~)
(total),

0 oa
—0.019644
—0.421 232

0.0
0.355 361
0.279 181

—0.242 678
—0.822 324

0.102 766
—0.768 570

0.119409
—0.649 161

0.025 869
—0.742 701

TABLE IV. Net increments

0.0
—0.800 914

0.832 815
0.0

—0.033 975
0.066 870
0.036 421
0.099 090

—0.048 233
0.152 074

—0.056 652
0.095 422

—0.104 456
0.047 618

of hyperfine parameters

[ C (2)j

—0. 155 120
0.007 283
0.002 794
0.0
0.000 427
0.000 424

—0.004 358
0.009 076

—0.006 204
—0. 145 678

0.003 944
—0. 141734

0.004 583
—0. 141095

(a.u. ).
[s C (2)

—0. 155 120
0.007 232

—0.002 300
0.0

—0.000 074
0.000 252

—0.003 851
0.000 146

—0.005 043
—0. 173 222

0.004 177
—0.169045

0.005 870
—0.167 352

[l7

0.775 604
0.000 040

—0.017 953
0.000 001
0. ()00 024
0. 000 812
0.019194

—0.001 603
0.029 998
0.806 117

—0.021 570
0.784 547

—0.027 218
0.778899

Hartree-rock value of [6j, 903.951 97 a.u. , is not included.

quadrupole moments of B' and B".

V. COMPARISON VfITH PREVIOUS CALCULATIONS

The calculations by Goodings' and Goddard, '
whose results are shown in Table I, both use rel-
atively simple wave functions that have a pre-
determined structure. Comparison of Tables I
and V shows the advantage of the present method.
If the purpose is to obtain quantitative results, it
is necessary to have a method such as that used
here, which can be systematically pushed to ul-
timate convergence.

The calculation by Schaefer et al. , included
in Table I, also represents a wave function of pre-

TABLE V. Hyperfine coupling constants (MHz).

determined form, but capable of representing all
important physical effects of orbital polarization.
The wave function is a variational function in the
Hilbert space

[»2s2Pj =(o)+(») (»)+(2P), (22)

Q(B ) =0. 08035 b, Q(B ) =0. 03856 b, (23)

representing all one-particle configurational ex-
citations and the interactions among them. The
orbital basis set used included s, p, and d orbitals
and was carried to practical completeness for the
assumed wave function. If a, /~+a3/~ is used as a
criterion of accuracy, the computational error,
neglecting the contact interaction, is l. 5% from
the data in Table I. Schaefer et al. compute[C ]
and q, and deduce the nuclear quadrupole moments
to be

i0
&i/2, c

i/2, di

+i/2, orb

+3/2, c
&3/2, dt, p

&3/2, orb

ii
~i/2, c
~i/2, cup

~ i/2, orb
Cl i/ 2

~3/2, c
~3/2, dip

3/2, orb

Q3/2

H. Lew and

"G. W'essel,

(total)
&

(total) 2

—l.938
66. 207
61.553

125.822

—1.216
64. 610
59.906

123.300

(total) 3 Kxpt

—0.607
63. 963
59.475

122. 831 122.585

l. 938
—6.621
30.777
26. 094

—5.785
197.690
183.793
375.698

l. 216
—6.461
29. 953
24. 708

—3.630
192.923
178.875
368. 168

0.607
—6.396
29. 737
23. 948

—1.812
190.991
177.587
366. 766 366.077

5.785
—19.769

91.897
77. 913

1.812
—19.099

88. 794
71.507 73.347b

R. S. Title, Can. J. Phys. 38, 868 (1960).

Phys. Rev. 92, 1581 (1953).

with an estimated relative error of less than 2%.
These numbers differ from the present results by
approximately 5%. Because of the detailed and

systematic treatment of electronic correlation in
the present work, the present results are ex-
pected to be more reliable.

TABLE VI. Field gradients and nuclear quadrupole
moments, including estimated errors.

(total) l (total) & (total),

q (a.u. ) 0. 291 31 (911) 0. 283 43 (162) 0. 282 15 (74)

eqQ(B") (MHz)' 2. 695 (16)

Q (B10)/Q (Bi1)b 2. 084 (2)

Q(B ) (b) 0.03937 (125) 0.04047 (33) 0.04065 (26)

Q(B ) (b) 0.08205 (261) 0.08434 (70) 0.08472 (56)

'G. Wessel, Phys. Rev. 92, 1581 (1953).
"H. G. Dehmelt, Z. Physik. 133, 528 (1952).
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All of the calculations considered here illus-
trate, the difficulty in obtaining an accurate value
of a~ „the Fermi contact interaction constant.
One major source of this difficulty is the inherent
cancellation between the (ls) and (2s) net incre-
ments of s6], shown in Table IV. Moreover, be-
cause [s6 vanishes in the traditional Hartree-Fock
approximation, the entire contact interaction is
due to electronic polarization and correlation ef-
fects.

A calculation of the contact interaction by a
method equivalent to that used here was carried
out by Schaefer and Kaldor (SK). '7 Their com-
puted one- and two-particle net increments of
[s6] are compared with the present results in
Table VII. While the one-particle net increments
and the two-particle increments (ls ) and (2s )

appear to be in reasonable agreement, there is a
striking discrepancy in the two-particle cross
terms, especially (Is2s). It is difficult to account

for the large magnitude of the (ls2s) net increment
in the SK calculation, since this is an intershell
correlation effect. The corresponding net energy
increment computed by Schaefer and Harris' is
an order of magnitude smaller than the largestpair
correlation energies, (ls ) and (2s'). Although the
SK calculations used an orbitalbasis set even larg-
er than the set indicated here in Table II, the pres-
ent results should be more accurate because of the,
systematic extrapolation to completeness sum-
marized in Table III. The present values of a& „
from any of the results shown in Table V, are in rea-
sonable agreement with the polarization function
result of Schaefer et a/. in Table I, while the
SK contact interaction is nearly twice as large as
the largest of these values (total), .

VI. DISCUSSION

The present results, together with similar cal-
culations on I I (2 I') reported earlier, indicate
that the method used here is capable of obtaining
hyperfine interaction constants within an error of
1% of their experimental values. The Fermi con-
tact interaction is obtained with considerably less

TABLE VII. Comparison of computed net increments of
contact parameter (a.1|.).

Increment Presenta SK" Increment Presenta SK

accuracy than this, but it makes only a small con-
tribution to the magnetic hyperfine interaction in
B('I').

Since the electric field gradient q is obtained
from the same computational procedure used for
the magnetic hyperfine interactions, the compu-
tational error in q can be estimated from the rel-
ative error of the magnetic hyperfine constants.
This value of q can be used to compute the nuclear
electric quadrupole moment Q from experimental
values of the quadrupole coupling constant eqQ.
This combination of experimental measurements
(of magnetic hyperfine structure and quadrupole
coupling constants) with systematic computations
of the hyperfine parameters provides values of Q
together with an estimate of the relative error.
The present method appears to give nuclear quad-
rupole moments for B' and B" that are substan-
tially more accurate than previously available
values.

The formalism used here originates in Brueck-
ner's many-particle theory, ' in the idea that each
two-particle subsystem in an N-particle system
can be dealt with exactly by solving the appropri-
ate Bethe- GoMstone equation and then by adding the
resultingpair correlation energies to give an es-
timate of the total correlation energy. This as-
pect of Brueckner's theory has been characterized
as the "independent-pair model. "

The present results on hyperfine structure make
essential use of several innovations that go beyond
the independent-pair model. Most important among
these innovations are the concept of a hierarchy of
variational Bethe-Goldstone equations, defining
n-particle correlation effects for n different from
2, and the use of a configuration interaction for-
malism that makes possible the calculation of gen-
eral mean-value electronic properties in addition
to the energy. ' '" Following the work of Schaefer
and Harris, "the reformulation of this method in
terms of configurational excitations has helped to
make accurate calculations of hyperfine interac-
tions feasible. The extensive extrapolation of or-
bital basis sets to completeness carried out in the
present work appears to be necessary in order to
avoid individual calculations of impractical com-
plexity.

The calculations reported here were carried out
on an IBM 360/91 computer, using 64-bit arithme-
tic throughout.

0 00 00
1s —0.800 91 —0.983 34
2s 0.832 81 0.808 09
2p 0.0 0.0
1s —0.033 98 —0.041 09

[s6] from Table IV.
bH. F. Schaefer, III, and

49, 468 (1968).

1s2s
ls2P
2s
2s2p

Total

0.066 87 0.530 19
0.036 42 0.062 10
0.099 09 0.095 67

—0.048 23 —0. 196 27
0.152 07 0.275 35

U. Kaldor, J. Chem. Phys.
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Level-Crossing Measurement of Lifetime and hfs Constants of the 2P3y, States
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Measurements have been made of the hyperfine structure (hfs) constants and lifetimes of the

first and second P&~2 states of the stable alkali atoms, except lithium, using the pure mag-

netic field level-crossing technique. The results for Na are

State

4 Py2

a {MHg)

18.9 +0.3
6.2+0. 2

b (MHz)

2.4+ 0.3
1.0 +0.1

&(nsec)

16.0+0.5
95 +4

The results for K have been reported previously. For Rb and Cs, hfs constants were
obtained that agreed with, but were less accurate than, previous work. The measured life-
times are

Element
Rb"

State
5 P3i2
6'P3

6 P3/2
2

7'PW2

&{nsec)
25. 5+0.5

118 +4

32.7+1.5
134.5 +2. 8

The error limits in these measurements are two standard deviations. The above results were
obtained by fitting the observed level-crossing signal to a theoretical line shape computed

from the Breit formula, using a, b, and 7 as parameters.

I. INTRODUCTION

The stable alkali atoms continue to be the ob-

jects of widespread theoretical and experimental

study. Their importance stems from their utility.
as frequency standards' and magnetometers, as
probes of interaction processes such as atom-
atom collisions and new effects such as light-


