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A center-of-mass—transformed Hamiltonian is used to study the molecular structure of
methane, ammonia, and water, where the protons as well as the electrons are described by
Slater determinants of one-particle Slater functions. The matrix elements of the Hamiltonian
are given for a wave function constructed from a product between a sum of Slater determinants

for the electrons and a sum of Slater determinants for the protons.

The ground states of the

protons were the 3S multiplet of the sp® configuration at —39. 137 64 hartrees for methane, the
P multiplet of the sp® configuration at —55.445 22 hartrees for ammonia, and the *P multiplet

of the sp configuration at —75.500 05 hartrees for water.

The energies of the other protonic

multiplets of the above configurations are given also, as are the energies of the protonic mul-
tiplet of the s?p? and p* configurations in methane, of the s% and p? configurations in ammonia,
and of the s® and p° configurations in water. The errors in the wave functions are discussed.

INTRODUCTION

In the Paper I of this series, ! we discussed the
results of a variational solution to Schrédinger’s
equation for the ammonia molecule. In that calcu-
lation, the nitrogen atom was fixed at the origin
of the coordinate system, and both the protons and
electrons moved about it. The Hamiltonian, there-
fore, included the kinetic energy operators of the
protons as well as those of the electrons. We used
a product-type wave function made up of Slater-
type orbitals (STO’s) to find an approximate solu-
tion to the problem. We feel that the results of
that calculation were novel enough to warrant fur-
ther study.

In this paper we will discuss in detail the meth-
odology of molecular quantum mechanics using the
Hamiltonian

25 ) w
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where m; and ¢; are the mass and charge of the ith
particle, and the summation indices run over all
the particles of the molecule. We will not use the
Born-Oppenheimer perturbation expansion of the
Hamiltonian.

CENTER-OF-MASS TRANSFORMATION

We wish to transform Eq. (1) into ¢. m. coor-
dinates. We will do this by setting the origin of
the relative coordinates on one of the particles
which we will call particle a. Our relative coor-
dinates will be defined by

Riz;i";a ’ i#a (2)

where ?a is the position vector particle a. The
remaining three coordinates are given by the vector

2

to the center of mass, which is
—R’=2,~Wl,~;i+ma‘f'a/2imi+ma 5 (3)

where now the sum over i excludes i =a. The
transformed Hamiltonian is

1 1 1
P Vz.__<2 Sy -v.>+V @)
2M ia 21 1 ma\T i P ’

i and j #a, where the 7 and j indices now refer to
the relative coordinates defined by Eq. (2):

M:Zimi+ma, wi=mom/(mg+m;) . (5)

The transformation does not change the potential
represented now by V.

Since we will not be concerned with the motion
of the center of mass, the Hamiltonian we will use
is

H=H'-T |, (6)

where T is the kinetic energy of the center of mass.
If we want to make the cross terms in the Kki-
netic energy as small as possible, the form of Eq.
(4) tells us that m, should be the most massive
particle in the molecule. Note that for m, -, our
Hamiltonian reduces to the Hamiltonian which we
used in Paper I. As an example, we consider hy-
drogen fluoride. The most massive particle inthis
system is the fluoride nucleus of mass m,. It also
has a proton of mass m,, and ten electrons of mass
m (m =1 in our choice of units). The Hamiltonian

is
IR
H=- Vet V2| > v v,+ 2 V. )|+ V.
w2 2w, P omglin P\

("
WAVE FUNCTION AND MATRIX ELEMENTS

A system of particles which interact has a wave
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function which must be a function of the interpar-
ticle distances; but, of course, we do not know
how to solve that problem for more than two par-
ticles. However, a wave function constructed from
products of single-particle functions has been very
successful. Although approximate, it can be made
as accurate as one likes. We will only deal with
this type of wave function. Furthermore, we will
restrict our discussion to a system containing only
two different types of particles, since the extension
to more than two different types is obvious.

The wave function can be written as

Y=2f(1)f5(2)- « +folx)

where f’s are the single-particle functions and x
is the total number of particles. I we are de-
scribing # electrons and m protons, we should
antisymmetrize the electrons and protons. Con-
sequently, we write

U=m!) V2 0 (- VP PLf1 (1) of,(0) ] m 1) V2
X2 (=1)%Q[g, (1) - g, (m)] , (8)

where we have distinguished the electron functions
from the proton functions by using the symbol f for
the former and g for the latter, and P and @ are
the usual permutation operators. I, instead of
protons, we were describing m bosons, our wave
function would be written as

U=F (m,lmylesom m!) 2

X EQQ[gl (1).. g1 (m1)g2(m1+1)' .

X g2<m2)"'gz(m—m2+1)"'gz(mz)] ) (9)

where F represents the antisymmetrized product
of electron functions, and m,,m,,...,m, are the
number of bosons in each function (};m;=m). In
general, we want our functions which describe the
electrons and the protons to be sums of antisym-
metrized products, each of which we will call a
configuration, i.e.,

\I’=2iC£FiEaCaGa=EizaciaFiGa s (10)

where F represents an antisymmetrized product
of electron functions and G, represents an antisym-
metrized or symmetrized product of fermion or
boson functions, respectively.

When we use the variational theorem to obtain
an approximate solution to the time-independent
Schrédinger equation, we obtain the usual secular
equation

[Hog—ES 1 =0;

but now
Hoe= [ F¥G}HF,;G,dV = (ia|H|jb)
Sas= [ F¥G¥F;GydV =(ialjb) |

)

where the index « is related to ¢ and a through the
relation

A=A +Apay (i = 1)

and similarly for the 8 index. In what follows we
will restrict ourselves to orthogonal configura-
tions. The overlap integrals are very simple:

[ F¥G¥F;G,dV= [ F¥F,dV, [ G¥G,dV,=5;;5,,

(11)
where dV, is the product of the electronic volume
elements, and dV, is the product of the protonic
volume elements. This result for the overlap in-
tegrals holds for G being an antisymmetrized or
symmetrized product. We can partition the Ham-
iltonian in the following way:

H=H,+H,+H,, , (12)

1 1
- Vi_— Z}(———_—v.v>:|,(13)
2u ! 7’1+J>1 rrg om0

1, 1 (1 1 )]
H,= -—— VS ————,.
’ A|: 2u, A+"’A+3§q Yap Mm VasVe) | (14)
1 1
Z)E(—v.v -—> ,
~ e\ Vi A+1,IA (15)

where 7, and 7, are the distances of the électron
and proton from the heavy atom of mass m, re-
spectively. A typical matrix element is

(i@ |H,+H,+H,,ljb) = (i|H,|j) 05 + (@ |H, D) 6,

+(GalH,,ljb) (16)

where
(@|H,lj)= [ FYH,F;dV, , (17
(@!H,1b)= [ G¥H,G,aV, , (18)
(ia|Hy,ljb) = [ F¥G¥H, F;G,dV,dV, . (19)

Save for the V. V', the development of Egs. (17)
and (18) into integrals over the one-particle func-
tions can be found elsewhere?; therefore, we will
treat only those operators. We will begin with the
electronic operator:

G122 VeV, 1) =) [ 2 (- 1)
I J>I P
X P[f; (1) Sin) ¥ 2 2 Ve Vs
I J>
X)@H- 1D9Q[fy, (1)« f;,00) ]dV,y- - -aV,
=f [fu(l)---fi,.m)]*; f?, VeV [fi (1)
X firDfjq @)oo e=Fi0 (D)o efir W) fj5 )]
XdVye«edV,dVye..dV, .
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This integral will have a different development for
four different cases:
(a) If i=j, then the integral equals

SO v )avy [£E(2) Yy, (2)dV,
I J>I
- [V, (V)aVy- [ £5(2) Y, f1(2)dV,]
(20)

(b) Ifi#j and F; and F; differ by only one func-
tion, with f, in F;, where f, is in F; then the in-
tegral equals

HZ; [[rFQ) vy fr(Dav,. [ £ (2) v, f,(2)dV,

- [FFQ Vi, (1) avy- [ £ (2) v, £1(2)dV,] . (21)

(c) Ifi#j and F; and F; differ by two functions
with f, and f; in F;, where f, and f; are in F;, the
integral equals simply

[ Q) v, f, (D) avy- [ FH2) Vo f(2)aV,
- [V f (D avy. [ ) v, £, (2)av, . (22)

(d) If F; and F, differ by more than two functions
the integral vanishes. The treatment of the pro-
tonic operator is exactly the same. All that needs
to be done is to changei toa, jtob, ftog, ItoA,
and J to B.

It will be easier to consider the two parts of H,,
separately, beginning with

(ia 1;4}‘, VeV, |jb)=fF;‘G:§§ V1 VAF;G,dV
:fF’,“? V,F,dve-fcjéz VaGypdV,
= [ F)--- :;m); Vif () ofin0)dV,
.fg;l(l)...

For this integral we need to consider only cases
(a) and (b) since both the electronic part and the
protonic part will vanish for cases (c) and (d); but
we will have four different developments because
we can have case (a) electronic-case (a) protonic,
case (a) electronic—case (b) protonic, case (b)
electronic-case (a) protonic, and case (b) elec-
tronic-case (b) protonic. The four results are as
follows:

For case (a) electronic~case (a) protonic, the
integral equals

; [ velf,u)dvel-ZA)f &%5(1) V,184(1)dV,,.(23)

an (m)ZA> Va&p1(1)e gy m)dv, .

For case (a) electronic—case (b) protonic, the in-
tegral equals

[gx) vmgsmdvm-; [FEQ) Vo fr (D) AV, . (24)

For case (b) electronic—case (a) protonic, the in-

L. THOMAS AND H. W. JOY

()

tegral equals
ff:(l)ve,f,(l)dvel-§ [gk() Vuga(1)av,, . (25)

For case (b) electronic—case (b) protonic, the in-
tegral equals

[ VYLf,(0)dV,- [ (1) Vg, (1)dV,, . (26)

We have left to consider the 1/7;, operator. This

integral is
(ia PP jb) - [F¥Gy L X F,G,av,av, .
1 A%Ia 1 A71a
(27)

We will have for this integral four results anal-
ogous to the four which we found for the integral
involving the V;-V, operators. Again cases (c)
and (d) need not be considered since the integral
vanishes for these cases.

For case (a) electronic—case (a) protonic, the
integral equals

; § [rf@)fie)/r)gh(p)gap)av,dv, . (28)

For case (a) electronic—case (b) protonic, the
integral equals

_213 [rr@)frle)(1/r.)gr (p)gs(p)dV,dVp . (29)

For case (b) electronic—case (a) protonic, the
integral equals

{J [FE@)f1(e) (1/7,,) g% (p)ga(p)AV,dV, .(30)

For case (b) electronic-case (b) protonic, the
integral equals

[fr@)fie)(1/r) gk (p)gs(p)dV,dV, . (31)

The development of Eq. (18) into integrals over
the one-particle functions when G, and G, are sym-
metric products is given in a separate paper. 8

WAVE FUNCTIONS FOR CH,, NH,, and H,0

All the basis functions were of the form

forg=(22)""2[T(2n +1) V29" e Y . (0, ¢) ,
where z and z are the orbital parameters. Since
noninteger 7n’s were used, the basis functions are
not labeled 1s, 2s, etc., but rather s, s’ where the
letter denotes the angular momentum, i.e., s=0,
p=1, etc.

The electronic part of the wave functions of meth-
ane, ammonia, and water was a 'S, s%s"?p® con-
figuration. The orbital parameters are given in
Table I. The orbital parameters for the protonic
part of the wave function are given in Table II
along with (# - 1)/z, the maximum of the function,
and the experimental “internuclear distance”. One
can see that our agreement with the experimentally
determined maximums (i.e., internuclear dis-
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TABLE 1. Electronic orbital parameters for methane, ammonia, and water,

CH, NH;j HyO
Function n F4 z n z
s 0.9857 5.5875 0.9885 6.5835 0.9903 7.5748
s’ 2.0623 1.4772 1.9972 1.7728 2.0004 2.1371
? 1.5835 0.9943 1.5162 1.1823 1.5005 1.4401

tances) is not bad.

For methane, we used the sp® configuration with
the %S, %D, *P, %, 'D, 'P multiplets, the s®p? con-
figuration with the °P, D, S multiplets, and the
p* configuration with the 3P, 'D, 'S multiplets. For
ammonia we used the sp? configuration with the
‘P, %D, 2P, %S multiplets, the s?p configuration with
the 2P multiplet, and the p° configuration with the
%S, %D, 2P multiplets. For water we used the sp
configuration with the *P, !P multiplets, the s?
‘configuration with the !S multiplet, and the p? con-
figuration with the °P, D, 'S multiplets.

EFFECTS OF CENTER-OF-MASS TRANSFORMATION

The masses of the electron and proton which we
used are 9.1091x107% and 1.67252x107% g, re-
spectively.* In our Hamiltonian, all masses are
in electron mass units. From the two numbers
given above, we get 1836. 1 for the mass of the
proton in our units. The value of an amu in elec-
tron mass units is 1822. 8, which was found by
dividing 1836.1 by 1. 007 276 63 — the mass of the
proton in amu. * The masses of the other nuclei
were found by multiplying 1822. 8 by their weighted
average atomic weight as given on a periodic chart
based on carbon 12 and subtracting for the elec-
trons. Table III gives these data.

Two calculations were done with each molecule.
Water will be used as the prototype in the discus-
sion which follows. In the first calculation, the
mass of the oxygen nucleus was infinite. Hence,
the reduced electronic mass was 1, the reduced
protonic mass was equal to the protonic mass, and
the third term of Eq. (4) was zero. The second
calculation differed from the first because we used
the correct mass for the oxygen nucleus and the
c.m, -transformed Hamiltonian. The results of
these calculations are given in Tables IV and V.

In Table IV we have given the values of the sum
of the kinetic and one-particle potential energies.
Note that the increase in energy due to the reduced
electronic mass is 0. 002 54 hartrees (i.e., the sum
of the differences between calculations one and two
multiplied by two since the orbitals are doubly oc-
cupied) while the increase in energy due to the re-
duced protonic mass is 0. 000602 hartrees.

Table V gives the integrals which involve the
(1/m,) V;+ V, operator. Note that here also the

largest contributions to the energy come from the
electronic coordinates. Finally, from Table VI
we see that the difference in total energies be-
tween calculations one and two is 0. 005 hartrees.
This is a negligible quantity when compared with
the total energy; but it is not negligible when com-
pared to the bond energies since it amounts to about
3% of an OH bond. It is about as large as a hydro-
gen bond and as large as or larger than barriers
to inversion or barriers to internal rotation.

In Table VI we give the ground-state energies
of H,0, NH;, and CH, for the infinitely massive
central atom Hamiltonian and for the c. m. -trans-
formed Hamiltonian., Note that even though H,0
has the largest difference between the two calcu-
lations, that difference is the smallest percentage
of the ground-state energy, as would be expected,
since oxygen has the most massive nucleus. Table
VII summarizes the c. m. -transformation effects
for all three molecules. It is interesting that the
total kinetic energy given in the third row is nearly
constant for the three molecules even though the
kinetic energy per particle decreases from H;O to
CH,. For whatever they are worth, we give some
interesting ratios in Table VIII, where we see that
the ratio of the masses or charges of the central
nucleus to that of the oxygen nucleus is nearly the
same as the change in electronic kinetic energy
between the two calculations. We find the same
ratios again in the column where we took the ratios
of the V.V’ integrals of the molecules to the V.V’
integrals for H,O. The last column shows that the
ratio of the change in kinetic energy to the V.V’
integrals is nearly constant for these molecules.

It is tempting to make use of the ratios of Table
VIII to estimate the (V- V') term for other mole-

TABLE IIt+ Protonic orbital parameters for methane,
ammonia, and water.
CH, NH, H,0
n 125.27 124.58 115.30
z 56.889 62,913 62,792
(_n%l_) 2.184 1.964 1.820
R? 2,067 1.916 1.810

3G, Hertzberg, Infraved and Raman Spectra
(Van Nostrand, New York, 1950).
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TABLE III. Nuclear, reduced protonic, and reduced figuration.
electronic masses (mass of electron=1.0). We note from Table IX that for methane the 3P
Mass C N 0 multiplet of the sp? configuration is much higher

in energy than the °S multiplet of the sp® configura-

leus 1888. 2 . . . s .
nucﬂeuq 21 692 g i’,?f; g 2513 ;gs g tion. The opposite is found for electrons in carbon.
y . . . L, .

My 0.999 95 0.999 96 0.999 97 The reason for this is that electrons have sufficient

kinetic energy to pair while protons do not. We
can state as a general rule that the lowest multi-
plet of a configuration which has paired protons
, , will be higher than the lowest multiplet of a con-
(Ve')i= (my/mo) (Ve V )0 figuration which has no paired protons. We also
where i refers to a molecule and j to the mass of find from Table IX that the rules governing the
the nucleus at the origin of the relative coordinate order of the multiplets of a given configuration

system; we can get a similar relation for the ki- are the same for protons as for electrons. These
rules are as follows: The state of highest multi-

plicity lies lowest, and for states with the same

cules, since from the table we find that

netic energy:

I m; (ﬂ*ﬁ) . multiplicity, the state with highest angular mo-
m; mo \ Mo mentum lies lowest.
We will pursue the validity of these relations as Since the protonic transitions are governed by
we complete calculations for more molecules and the same selection rules as the electrons, ° the
for atoms. transitions which can occur are exactly those which
one would expect if the spectra of Table IX were
CALCULATED PROTONIC SPECTRA electronic.
The protonic energy levels of CH,, NH;, and CONCLUSION
H,O are given in Table IX. These levels differ If the results of the calculations described in
from those given in Refs. 1 and 5 because there this paper and in Refs. 1 and 5 are correct, it
we used a nonspherical electronic charge distri- will be necessary for quantum chemistry to modi-
bution for NH; and H,O, a set of hybrid protonic fy its views on molecular structure. We hope in
orbitals for H,O and NH; which resulted essen- this section to examine some of the errors in these
tially in a p? configuration for H,0, and a fixed calculations.
central nucleus. Here we used a spherical elec- The most obvious source of error is the lack of
tronic charge distribution for all calculations; we correlation in the wave function of the motion among
did not use hybrid orbitals, and we used the c.m. - the electrons and protons. We can, however, get
transformed Hamiltonian. estimates of this error which we will call electro-
A nonspherical electronic charge distribution nic error, protonic error, and protonic-electronic
does give a lower ground-state energy for NH;. error, by comparing the ground-state energies
The improvement, however, may be accidental which we got using the fixed-central-nucleus (FCN)
because our electronic functions are by no means approximation with the ground-state energies got
the best. We will pursue this question when we from the fixed-nuclear-framework (FNF) approxi-
have better electronic functions. The difference mation using the same electronic function for both
in the ground-state energy is small: 0. 0002 hartrees. calculations. The assumption on which our esti-
In water, however, the spherical electronic charge mates depend is that the error in the electronic
distribution gives a better energy by 0. 0009 har- part of our wave function is the same as the error
trees for the *P multiplet of the sp protonic con- in the electronic function of the FNF calculation.

TABLE IV. Effects of center-of-mass transformation on one-particle integrals in HyO.

Electronic functions in integral® Protonic functions in integral
Cale.® S, s s',s'® p,p¢ s,s P, p° Total energy
1 -31,93559 —6,779598 —5.778373 4,361449 4.361614 —175.494 986
2 —31.93460 —6,779509 —5.778309  4.361726 4.3613896 —75.500 045

ayalues are for the sum of the kinetic plus one-particle potential energy. The orbital param-

eters are given in Table I.
bCalculation 1 used an infinitely massive oxygen nucleus. Calculation 2 used the c.m.-trans-

formed Hamiltonian.
s’ function is the Schmidtorthorgonalized second electronic function of Table I.

9n this calculation DPe=bDy=D-
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The ground-state energies of the FCN and FNF TABLE VI. Ground-state energies of H,0, NH;, and CH,.
calculations are given in Ref. 5. We will use the

FNF energies for HF, H,0, NH;, and CH, and the fil.cu; 1O
FCN energies for NH; and CH, given there. The aron ° NH CH,
correct FCNground-state energy of H,O is — 75. 4941 1 —75.494 94 —55.44110 —39,13437
hartrees and the FCN ground-state energy of HF 2 —75.50005 ~55,44522 —-39.13764
without the approximate c¢. m. -transformation used By —0.005 09 - 0,00412 - 0.00327
in Ref. 5 is — 99.6484 hartrees. % 0.0066 0.0074 0.0082
Let E’ be the true ground-state energy of the FCN
Hamiltonian for HF. The calculated energy E is 2Calculation 1 used an infinitely massive central atom.
related to E” as Calculation 2 used for the c. m. -transformed Hamiltonian.
, P The symbol A,; stands for the difference between calcu-
E'=E.+E,+E,, , lation 2 and calculation 1, The last row, labeled %, is
where E, is the electronic error and E,, is the pro- ?;Zf:;cent of the energy of calculation 2 which 4, rep-

tonic-electronic error. If E is the true ground-

TABLE V. (1/m,) V;*V; integrals in H,0.

Integral? Electronic-electronic Protonic-protonic Protonic-electronic
(ss/ss) 0.002006 6826 0.0000101722 0.0001428719
(ss/ss’) —0.0005061058 —0.0000360337
(ss/s’s) —0.000002466 1 —0.0000001756
(ss/s’s’) 0.000 3085397 0.000021 967 4
(ss/sp,) 0.000 2735251 0.0000138377 0.0000194745
(ss/s'py) 0.0003059196 0.0000217809
(ss/pp) 0.000 2517894 0.0000101722 0.000017 926 9
(ss/pxDy) 0.000 292008 9 0.0000119838 0.0000211196
(ss/pypy) —0.000 2920089 —0.0000119838 —0.0000211196
(s’s/ss’) —0.0000778169

(s's/s’s) —0.000000 379 2

(s’s/s’s) 0.000 0474399

(s's’/spg) 0.000 042056 2

(s"s/s'py) 0.000 047037 0

(s"s/pp) 0.000038714 2

(s"s’ /byby) 0.000 0456090

(s's"/pyby) ~0.000 045 6090

(spa/spy 0.000037 283 4 0.000018824 2 0.000026 4921
(sp4/s'ba) 0.0000416990 0.0000296296
(sp,/pp) 0.000034 3207 0.0000138377 0.000024 386 9
(spa/DuDy) 0.0000404331 0.0000119838 0.0000287301
(spo/Dyby) —0.0000404331 —0.0000119838 —0.0000287301
(s'po/s"'P2) 0.000 0466376

(s'p./DD) 0.000 038 385 4

(s'po/DxDy) 0.000 045 2217

(s'Da/Dyb) —0.000045 2217

pp/pp) 0.000031 5934 0.0000101722 0.000017926 9
Gp/pby 0.000 0372201 0.0000119838 0.0000211196
Gp/bypy) —0.0000372201 —0.0000119838 —0.0000211196
Gyby/Dxby) 0.0000324849 0.0000141181 0.000024 8810
(BrDy/DyPy —~0.000032484 9 -0.0000141181 —0.0000248810
(pyDy/s8) 0.000 168316 9
(pypy/ss") —0.0000424512
(pyby/s"s) —0.000000 206 9
(pDy/s’s) 0.0000258798
piby/sps) 0.0000229428
PxDy/s'D2) 0.000 025 660 0
(pyby/DD) 0.0000211196

2The symbol (ffo/f3fy) represents the integral [ [f*(1)fs*(2)(1/my) V{*Vyfy(1) f1(2)dVdV,. In the
protonic-electronic integrals, particle 1 is the proton and particle 2 is the electron.
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TABLE VIL. Effects of center-of-mass TABLE IX. Calculated protonic energy
transformation in H,O, NH;, and CHy. levels of CH;, NH;, and H,O in hartrees.
Quantity® H,0 NH; CH,
Mole - Config- Multi-
A, 0.002 52 0.002 14 0.00176 cule uration® plet Energy
A, 0.00067 0,00094 0.00121
A, 0.003 19 0,003 08 0.00297 CH, 31)3 5s —39.13764
(V-V’) -0.00828 -0.007 20 ~0,00624 D —38.86341
*A, represents the difference in total electronic kinetic 25 —28' 863 38
energy between calculations 2 and 1. A, is the same as 1 —38.59223
A, for the protons. A is the sum of A, and 4,, (V°V’) 1D —38.59070
represents (1/m,) Z;Z;5; V;°V; obtained by subtracting P —38.59067
A from A,y of Table VI. 2,2 3
sp P —38.84821
p —38.75626
is —-38.71031
state energy of the FNF Hamiltonian for HF and
E,is the calculated energy, then 't 3p —38.72845
E=E,+E, , 11) —38,63651
S —38.59059
where E, is the electronic error. By assumption
2
Ee:Ee’ ’ AE=AE.-E, , NHy s ;g :ggigiii
where ip —55.14043
AE-=E-E' ,AEczEc“Ec' : S —54,99058
or 3 is ~55.31222
E,=AE .- AE 2D ~55.159 00
The AE is equal to the kinetic energy of the pro- P 9513897
tons. For this kinetic energy we will use the value s% 2p —55.208 68
of the protonic kinetic energy from our calculation,
0. 0053 hartrees. One could perhaps use the ex- H,0 sp 3p —75.50005
perimental vibrational plus rotational ground-state p —175.174 50
energies, but then one would have to remove the
center-of-mass effects which are included in the »? jP —75.42833
experimental results. The end result of the pro- é) ”Zg'géi i;
cedure would probably result in as great an error T
as the error in our kinetic energy. Also, the true s? 1g —75.318 84
kinetic energy of the protons for the FCN Hamil-
tonian must be greater than or equal to that which aFach confi G . .
we have already got because we certainly do not ach configuration was diagonalized separately.
expect an increase in the protonic wavelength as
the protonic function is impx.-ove‘d. ‘Therefore, the €y ilT)Epe: —0.00114 (32)
use of our calculated protonic kinetic energy at
least gives us the direction of the error. AE,is is the proton-electron error per pair. We realize,

—0.0167 hartrees, so
E,,=-0.0114 hartrees,

or, since there are ten possible proton-electron
pairs,

of course, that the proton interaction with the s
electrons is less than with the p electrons and that
e, is only an average.

The relation between E’ and E_ for water in the
FCN calculation is

TABLE VIII. Some interesting ratios.
y =0 y= HQO
x My/My=2y /2y x Dy /Ay (VeV’),/VV"), A, /(WY
(0] 1.00 Hy D 1.00 1.00 0.26
N 0.88 NH;y 0.85 0,87 0.23
C 0.75 CH, 0.70 0.75 0.21
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E'=EC'+E3'+E”+E,, ,
where E, is the protonic error, and for the FNF
calculation, the relation is

E=E +E, .
Again, by assumption,
Ee"“Ep ’
E,=AE,~ AE-E,,
=AE,- AE - 20e,, ,

since there are 20 possible proton-electron pairs
in water. When we substitute the values for AE,
AE, and from Eq. (1), e,, we get

E,=-0.0154 hartrees.
Thus, our estimated error per proton in H,O is
e,=3E,=-0.0077 hartrees.

The estimated error per proton for NH; and CH,
are found in the same way. These data are sum-
marized in Table X.

The values of E, should not be confused with cor-
relation energy, since that quantity is defined as

Ew=E-Egr ,

where E is the true ground-state energy and Eyp
is the Hartree- Fock ground-state energy. Our E,
is necessarily a larger negative number than E .y
since we centainly do not have the Hartree-Fock
solution. An atomic minimal-basis calculation for
fluorine gives an energy of — 98. 94211 hartrees’
while the Hartree-Fock solution gives an energy of
- 99.40928 hartrees.® The difference is — 0. 46717
hartrees, which when added to the correlation en-
ergy, ~ 0.324 hartrees, gives a total of — 0. 791
hartrees for what we would call the electronic er-
ror. This electronic error is what would corres-
pond to our protonic error, since we also use a
minimal basis. When we divide - 0. 791 by 9, we
get — 0. 0879 for the electronic error per electron
in fluorine from a minimal-basis calculation while
the correlation error per electron is — 0. 036 har-
trees. In oxygen, we find — 0. 065 hartrees for the
error per electron and 0. 032 hartrees for the cor-
relation energy per electron. In helium we get

— 0. 0281 hartrees for the error per electron and

- 0. 0210 hartrees for the correlation per electron,
and in lithium we get — 0. 0199 hartrees for the er-
ror per electron and — 0.0131 hartrees for the cor-
relation per electron. Therefore, we might expect
that the correlation per proton is something of the
order of 50-80% of the values given in Table X.
One might infer from the results given above for
fluorine and oxygen that the correlation energy for
protons could be less than for electrons, but since
the electrons are paired and the protons are not,

TABLE X. Estimated errors in CH;, NH;, H,0, and HF.

CH, NH H,0 HF
AE,  -0.3713  —0.2365  —0.0477 —0.0167
AE -0.0145  —0.0133  —0.0095 —0.0053
Epp —0.0456  —0.0342  —0.0228 ~0.0114
e —0.0778  =0.0630  —0,0077

such an inference would be incorrect. Nor is it
true that our many-configuration wave functions
correct for much of the correlation because the
20-configuration solution for CH,; was only - 0. 0007
hartrees better than the single-configuration wave
function.

Another obvious question which can be raised is
the following: What about the “vibrational and ro-
tational” spectra? We are not prepared to go into
detail to answer this question at this time, but we
hope that the next paper in this series will be de-
voted to this question. What we said in the first
part of this series concerning the vibrational and
rotational structure we now believe to be incorrect.
The “vibrational and rotational” structure probably
arises from a much more obvious source. The
orbital parameter » is related to the principal quan-
tum number. For »n’s as large as are necessary
for the protons, the energy separation between two
n’s, say 100 and 101, must be small. It is along
these lines that we expect to interpret the vibra-
tional and rotational structure. [One of us (I.L.T.)
received this suggestion from Snyder of Bell Tele-
phone Laboratories. ]

We come finally to the experimental verification
of the protonic spectra. As we have shown in Ref.
6, the selection rules and intensities of the pro-
tonic transitions for excitations with light are the
same as those found for electrons. Therefore, it
would be difficult to assign unambigiously a tran-
sition to a protonic excitation. What one needs is
a source of energy which would excite protons but
not electrons. As Hulett of Oak Ridge National
Laboratory pointed out, neutrons do just that. We
hope that through the efforts of Mook, also of Oak
Ridge National Laboratory, the necessary experi-
ments will be done in the near future. We also hope
to use the “photoprotonic” effect to verify the pro-
tonic spectra. This effect should exist and should
be completely analogous to the photoelectric effect.
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A variational generalization of Brueckner’s theory has been applied to the calculation of hy-
perfine parameters for the ’p ground state of atomic boron. The computational method makes
use of a hierarchy of nth-order (or n-particle) variational Bethe-Goldstone equations defined
in terms of configurational excitations of a Hartree-Fock reference state. Hyperfine param-
eters are computed as the sum of net increments defined at each level of the hierarchy. Or-
bital basis sets are extrapolated to practical completeness for each one- and two-particle net
increment. Three-particle net increments are found to be small but not negligible. Com-
puted magnetic hyperfine constants are within roughly 1% of experiment. The electric field
gradient is computed, and its relative accuracy is estimated from that of the magnetic hyper-
fine constants. Combined with experimental quadrupole coupling constants, this implies val-
ues of the nuclear quadrupole moments Q(B1% =0.08472(56) b and Q(B!!) =0.040 65 (26) b, with

the indicated precision.

I. INTRODUCTION

The hyperfine structure of atomic energy levels
arises from the interaction between nuclear mo-
ments and the static electric and magnetic fields
produced at the nucleus by the atomic electrons.
A nuclear magnetic moment [ interacts with the
electrons through an effective Hamiltonian

ha,;1.3 , (1)

where T is the nuclear spin and J is the electronic
total angular momentum. If both I and J are ex-
pressed in atomic units (angular momentum di-
vided by %) then a; is in frequency units (energy
divided by #). There are three contributions to
a; of different tensorial character. ! For light
atoms, when the electronic wave function has def-
inite quantum numbers L and S, the Fermi con-
tact, spin-dipolar, and orbital contributions toa,,
in the state J=L +S, can be expressed in the form,
respectively, 2

ay,c= Y58 Xe
1
ar,a0="r138e Xaip » (2)

Az,000=YerXorn »

such that
A;=05,c+Q7,dp+ 27, 0rb

Here we have
g,=2.00232 , (3)
Y;1=Genthr/JII (4)

where (; is the nuclear magnetic moment in nu-
clear magnetons, I is the nuclear spin quantum
number, and

G,n=95.4129 MHz | (5)

using recently tabulated values of fundamental con-
stants.®

The dimensionless constants X, X4,, andX,,
in Eqs. (2) are operator mean values computed
for the electronic wave function of the state with
My=L,Mg=S, and M ;=L +S=J:

ﬁaﬁsxc=[§5]=<8"2isz¢5(;1)>Ls ,
fiag X gy =8 C ®1=(222;5 472 Ce” (0)) s, (6)

h’aﬁonrﬁ (1] =<E¢ 7’;3 Leidis



