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A center-of-mass —transformed Hamiltonian is used to study the molecular structure of
methane, ammonia, and water, where the protons as well as the electrons are described by
Slater determinants of one-particle Slater functions. The matrix elements of the Hamiltonian
are given for a wave function constructed from a. product between a sum of Slater determinants
for the electrons and a sum of Slater determinants for the protons. The ground states of the
protons were the ~S multiplet of the sp3 configuration at -39.137 64 hartrees for methane, the
4P multiplet of the sp configuration at -55.44522 hartrees for ammonia, and the 3P multiplet
of the sp configuration at —75. 500 05 hartrees for water. The energies of the other protonic
multiplets of the above configurations are given also, as are the energies of the protonic mul-
tiplet of the s p and p configurations in methane, of the s p and p3 configurations in ammonia,
and of the s and p2 configurations in water. The errors in the wave functions are discussed.

INTRODVCTION

In the Paper I of this series, ' we discussed the
results of a variational solution to Schrodinger's
equation for the ammonia molecule. In that calcu-
lation, the nitrogen atom was fixed at the origin
of the coordinate system, and both the protons and

electrons moved about it. The Hamiltonian, there-
fore, included the kinetic energy operators of the
protons as well as those of the electrons. We used
a product-type wave function made up of Slater-
type orbitals (STO's) to find an approximate solu-
tion to the problem. We feel that the results of
that calculation were novel enough to warrant fur-
ther study.

In this paper we will discuss in detail the meth-
odology of molecular quantum mechanics using the
Hamiltonian

i and j 4a, where the i and j indices now refer to
the relative coordinates defined by Eq. (2):

M =Q(m;+m, , p, ; =m, m;/(m, +m;)

The transformation does not change the potential
represented now by V.

Since we will not be concerned with the motion
of the center of mass, the Hamiltonian we will use
ls

to the center of mass, which is

R =&;m; r;+m, r, /Q;m;+m,

where now the sum over i excludes i = a. The
transformed Ham'. ltonian is

rr' — v', —E = v', ——K Ew,"v,.) v, t4)
2M &~, 2IU, ;

' m,

H=H —T (6)

where m
&

and q; are the mass and charge of the ith
particle, and the summation indices run over all
the particles of the molecule. We will not use the
Born-Qppenheimer perturbation expansion of the
Hamiltonian.

CENTER-OF-MASS TRANSFORMATION

We wish to transform Eq. (1) into c.m. coor-
dinates. We will do this by setting the origin of
the relative coordinates on one of the particles
which we will call particle a. Our relative coor-
dinates will be defined by

Ri =ri —rg i WQ

where r, is the position vector particle a. The
remaining three coordinates are given by the vector

where T is the kinetic energy of the center of mass.
If we want to make the cross terms in the ki-

netic energy as small as possible, the form of Eq.
(4) tells us that m, should be the most massive
particle in the molecule. Note that for rn, -~, our
Hamiltonian reduces to the Hamiltonian which we
used in Paper I. As an example, we consider hy-
drogen fluoride. The most massive particle inthis
system is the fluoride nucleus of mass mz. It also
has a proton of mass m~, and ten electrons of mass
m (m = 1 in our choice of units). The Harniltonian
1s

10 1 1 1
- 10 10

e = - r — v,'. — v,' - — z' v, v, ~ E v, ) ~ v.
g1 2Pg 2VP ~g

(&)

%(AVE FUNCTION AND MATRIX ELEMENTS

A system of particles which interact has a wave
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e=E(m!m, !"m!m!) "'

"+o@gg(1) . Zg(mg)g2(m, +1)~ ~ ~

~ g. (m, ).. .,.(m m, +». "&.(m.)], (9)

where I' represents the antisymmetrized product
of electx'on functions, Rnd sl y, Ala, . . . , Pl„Rre the
number of bosons in each function (gqm; =m). In
general„me mant our functions which describe the
electrons and the protons to be sums of antisym-
metrized products, each of mhi. eh me will call a
configuration~ l. e.

&

e=g, c,E,L,'c.G. =Q, P, c„E,G, , (1O)

where I' represents an antisymmetrized product
of electron functions and G, represents an antisym-
metrized or symmetrized product of fermion ox'

boson functions, respectively.
When we use the variational theorem to obtain

an approximate solution to the time-independent
Schrodinger equation, me obtain the usual secular
equation

III g-ESoaI =Q;

function mhich must be a. function of the interpar-
ticle distances; but, of course, me do not knom

hom to solve that problem for more than two par-
ticles. However, a mave function constructed from
products of single-particle functions has been very
successful. Although approximate, it can be made
as accurate as one likes. Vfe mill only deal with
this type of mave function. Furthermore, me will
restrict our discussion to a system containing only
two different types of particles, since the extension
to more than tmo different types is obvious.

The wave function ean be written as

+=Zf.(1)f(,(2) ~ f,(~),
where f s are the single-particle functions and x
is the total number of particles. If we are de-
scxlblDg 8 electroDs Rnd s2 protons, we should
antisymmetrize the electrons and protons. Con-
sequently, me mrite

e=(n!)-"'Q,(-1)'E[f,(1)" f„(n)](m!) '"
xZ (-1)'e[g (1)~ ~ ~ (m)] (g)

where me have distinguished the electron functions
from the proton functions by using the symbol f for
the former and g for the latter, and & and Q are
the usual permutation operators. If, instead of
protons, we mex'6 describing I bosons, oux' wRV6

function mould be written Rs

where the index o. is related to i and a through the
l'61Rtlon

3 1 1 1Hp=E — vg+ + Z ——Vg ~ Vs, (14)~~a

1H„=-ZZ —V, V„+
I A +IA.

where ri and r& are the distances of the electron
and proton from the heavy atom of mass m, re-
spectively. A typical matrix element is

(ia!H, +Hp+ H,q Ijb) = (i I H~ Ij)5,(, + (a I Hq I b) 5;;

+ (ia I H,p Ij b)

(i IH, lj) = f F)H, F~dV, (1V)

(a IH~lb) = f G,*H~G(, dV~

(ia IH„!jb)= f E(G, H„F,G, dV, dV, .
Save for the 7 7, the development of Eqs. (1V)

and (18) into integrals over the one-particle func-
tions can be found elsewhere; therefore, we will
tl 6Rt oDly tho86 operRtox'8. %6 will begin with the
electronic operator;

( IZZ v, v, lj)=(..)-'f Z(-1)
I J'&I P

"&[fn(1)"f~. (n)]*Z &: &I ~ &~

Q(- 1) Q [fq, (1) ~ fq„(n) ]dV, ~ d. V„

= f [f (1) f (n)]'Z + v & [f (1)~ ~

(lg)

(»)

c.=a+a (i —1)

and similarly for the p index. In what follows we
mill restrict ourselves to orthogonal configura-
tions. The overlap integrals are very simple:

f EgG.*E,G, dV = f EvE, dV, f G.*G,dv, =b„b...
(11)

where dV, is the product of the electronic volume
elements, and dV~ is the product of the protonic
volume elements. This result for the overlay in-
tegrals holds for G being an antisymmetrized or
symmetrized product. Vfe can partition the Ham-
iltonian in the following may:

H ~ = fEf' G,*HE;G, d V = (ia I H Ijb )

S q= f E(G,*F~G(,dV=(ia Ijb)

x f„(f)f,g (&) -f;i (1) fgs(~)f;z (f) ~ ]

&d Vj ~ d VId V~ ~ .d V
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This integral will have a different development for
four different cases:

(a) If i =j, then the integral equals

tegral equals

jf,*(L)~.,f, (I)dV., L jr.*(L)~, g (1)dV . (28)

+ + [ jfI (I) &ifl(1)dVi' jfz(2) ~2fg (2)dVa
I J&I

—jf,*(1) v,f~ (1)d V, jf~~ (2) va f, (2) d V, ]
(20)

(b) If i &j and E; and E& differ by only one func-
tion, with f, in E;, where f„is in E;, then the in-
tg 1 qal
& [ jfI (1) &ifr(1)dVi jfa (2) ~pf, (2)dVp
IPk

—jf,*(L)v,f„(I)dV, jf,*(2) V, f, (2)dV, ] . (2l)

(c) If i oj and E; and E, differ by two functions
with f~ and f, in E;, where f„and f, are in El, the
integral equals simply

jf,*(I)~,f„(L)dV, jf*,( )2&,f.(2)dV2

—jfa*(L) &if. (I)dVi jfi(1) u2f, (2)dV2 . (22)

For case (b) electronic-ease (b) protonic, the in-
tegral equals

jfa (I) ~.ifl(L)dVei jA,*(I)~pig. (I)de, . (26)

We have left to consider the I/l'zz operator. This
integral is

ia QE jb = jE,*G,*QZ EJGi, dV, de,I 4 +IX I A. +IA.
(27)

Ne will have for this integral four results anal-
ogous to the four which we found for the integral
involving the Vz Vz operators. Again cases (c)
and (d) need not be considered since the integral
vanishes for these cases.

For case (a) electronic-case (a) protonic, the
integral equals

2& jf*(e)f (s)(L/~.,)~*(P)Z (P)dV. dV, . (28)

(d) If E; and E& differ by more than two functions
the integral vanishes. The treatment of the pro-
tonic operator is exactly the same. All that needs
to be done is to change i to a, j to b, f tog, I toA,
and 4 to B.

It will be easier to consider the two parts of H~,
separately, beginning with

(lutZZ'vl &&Uh)= jE,*G,*+Kv, v„E,G, dv
I A, I A

= jE,*Z ~,E,dV, jG„*g.V„G,dv,

= jf*;, (1) ~ f;*„(n)Q Vif„(1)~ ~ f~„(n) dV,
I

jg+, (I) "g,* (m)g V„g„(1)"g, (m)dV, .

For this integral we need to consider only cases
(a) and (ll) slllce botll tile electronic pal't and 'tile

protonic part will vanish for cases (c) and (d); but

we will have four different developments because
we can have case (a) electronic-case (a) protonic,
case (a) electronic-case (b) protonic, case (b)
electronic-case (a) protonic, and case (b) elec-
tronic-case (b) protonic. The four results are as
follows:

For case (a) electronic-case (a) protonic, the
integral equals

+ jf* (I) &. f (I)«., Zjg*(I)&„g,(I)«„.(»)

For case (a) eLectronic-case (b) protonic, the in-
tegral equals

jg,*(L)&„g.(L)dV„Z jf,*(1)~„f,(L)dV„. (24)
I

For case (b) electronic-case (a) protonic, the in-

For case (a) electronic-case (b) protonic, the
integral equals

Z jfi (e)fi(e)(I/~„)g,*(P)a.(0)dV, dC . (29)

For case (b) electronic-case (a) protonic, the
integral equals

+ jf~ (e)fi (e) (I/&,p)g~(P)a~ (P)dV, de, . (8O)

For case (b) electronic-case (b) protonic, the
integral equals

jf*( )f (e)(1/~.,)g,*(f)Z.(f)«.«, . (»)
The development of Eq. (18) into integrals over

the one-particle functions when G, and G, are sym-
metric products is given in a separate paper. '

%(AVE FUNCDONS FOR CH„, NH, and H 0

All the basis functions were of the form

f or@=(2z)"'"[I'(2n+1)]"'r" 'e '"Y, (e, y), '

where m and z are the orbital parameters. Since
noninteger n's were used, the basis functions are
not labeled 1s, 2s, etc. , but rather s, s where the
letter denotes the angular momentum, i. e. , s = 0,
P= 1, etc.

The electronic part of the wave functions of meth-
ra

ane, ammonia, and water was a '8, s s p con-
figuration. The orbital parameters are given in
Table I. The orbital parameters for the protonic
part of the wave function are given in Table II
along with (n —1)/z, the maximum of the function,
and the experimental "internuclear distance". One
can see that our agreement with the experimentally
determined maximums (i. e. , internuclear dis-
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TABLE I. Electronic orbital parameters for methane, ammonia, and water

Function

0.9857
2.0623
1.5835

5.5875
1.4772
0.9943

0.9885
l. SS72
1.5162

6.5835
l.7728
1.1823

0.9903
2.0004
1.5005

7.5748
2. 1371
1.4401

tances) is not bad.
Fox' methane~ we used the +p eonf1gur'Rt1oQ with

the 8, D, P, 8, D, 'P multiylets, the 8 P con-
figuration with the P, 'D, '8 multiplets, and the

p configuration with the P, 'D, '8 multiplets. For
ammonia we used the sP configux'ation with the
P, D, P, 38 multiplets, the s P configuration with

the P Dlult1plet, and the p conf1gur'Rtlon with the
8, D, P multiplets. For water we used the SP

configuration with the P, P multiplets, the s
configuration with the '8 multiplet, and the Pa con-
figuration with the P, 'D, '8 multiplets.

The masses of the electron and proton which we

used are 9. 1091~10 and 1.6'7252~10 g, re-
spectively. In our Hamiltonian, all masses are
in. electron mass units. From the two numbers

given above, we get 1836.1 for the mass of the
yxoton in our' units. The value of an amu in elec-
tron mass units is 1822. 8, which was found by
dividing 1836. 1 by 1.00727663 —the mass of the
proton in amu. The masses of the other nuclei
were found by multiplying 1822. 8 by their weighted
average atomic weight as given on a periodic chart
based on carbon 12 and subtx acting for the elec-
trons. Table GI gives these da,ta.

Two calculations were done with each molecule.
%ater will be used as the prototype in the discus-
sion which follows. In the first calculation„ the
mass of the oxygen nucleus was infinite. Hence,
the reduced electronic mass was 1, the reduced
protonic mass was equal to the protonic mass, and
the third term of Eq. (4) was zero. The second
calculation differed from the first because we used
the correct mass for the oxygen nucleus and the
c.m. -transformed Hamiltonian. The results of
these calculations are given in Tables IV and V.

In Table IV we have given the values of the sum
of the kinetic and one-particle potential enex gies.
Note that the increase in energy due to the reduced
electronic mass is 0. 00254 hartrees (i. e. , the sum
of the differences between calculations one and two
multiplied by two since the orbitals are doubly oc-
cupied) while the increase in energy due to the re-
duced yrotonic mass is 0.000602 hartrees.

TRble p gives. the 1ntegr'R18 wh1ch lDvolve the
(I/I, ) V, V& operator. Note that here also the

TABLE II: Protonic orbital parameters for methane,
ammonia, and water,

CH4

56.889

2.184

2.067

62. 913

1.964

l. 916

H20

115.30

62. 792

1~ 820

l. 810

G. Hertzberg, Infixed and Banal Spectra
(Van Nostrand, New York, 1950).

largest contributions to the energy come from the
electronic coordinates. Finally, from Table VI
we see thRt the dlffel eDce 1n total energies be-
tween calculations one and two is 0. 005 hartrees.
This ls R Qegllglble quantity wheD eompRX'ed with

the total energy; but it is not negligible when com-
pared to the bond energies since it amounts to about

3% of an OH bond. It is about as large as a hydro-

gen bond Rnd as large as or larger than barriers
to lnvex'sion ox' bRx'x'lex'8 to 1nter'QRl rotation.

In Table VI we give the ground-state energies
of H&O, NHS, and CH4 for the infinitely massive
central atom'Hamlltonlan and for the c.m. -trans-
formed Hamiltonian. Note that even though H3O

has the largest difference between the two calcu-
lations, that difference is the smallest percentage
of the ground-state energy, as would be expected,
since oxygen has the most massive nucleus. Table
VII summarizes the c.m. -transformation effects
for all three molecules. It is interesting that the
total kinetic energy given in the third row is nearly
constant for the three moleeules even though the
kinetic energy per particle decreases from HBO to
CH4. For whatever they are worth, we give some
interesting ratios in Table VIII, where we see that
the ratio of the masses or charges of the central
nucleus to that of the oxygen nucleus is nearly the
same as the change in electronic kinetic energy
between the two calculations. %e find the same
ratios again in the column where we took the ratios

. of the V' V' integrals of the molecules to the V-V
integrals for H30. The last column shows that the
ratio of the change in. kinetic energy to the V V
integrals is nearly constant for these molecules.

It is tempting to make use of the ratios of Table
VIII t'o estimate the (V V ) term for other mole-
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TABLE III. Nuclear, reduced protonic, and reduced
electronic masses (mass of electron=1. 0).

Mass N 0
nuc leus 21 888.0

p~ 1694.0
p~ 0.999 95

25 524. 0 29 156.0
1 712.9 1 727. 3

0. 999 96 0.999 97

We will pursue the validity of these relations as
we complete calculations for more molecules and

for atoms.

CALCULATED PROTONIC SPECTRA

The protonic energy levels of CH4, NH3, and

H~O are given in Table IX. These levels differ
from those given in Refs. 1 and 5 because there
we used a nonspherical electronic charge distri-
bution for NH& and H20, a set of hybrid protonic
orbitals for H20 and NH3 which resulted essen-
tially in a P configuration for H~O, and a fixed
central nucleus. Here we used a spherical elec-
tronic charge distribution for all calculations; we
did not use hybrid orbitals, and we used the c.m. -
transformed Hamiltonian.

A nonspherical electronic charge distribution
does give a lower ground-state energy for NH3.
The improvement, however, may be accidental
because our electronic functions are by no means
the best. We will pursue this question when we

have better electronic functions. The difference
in the ground-state energy is small: 0. 0002 hartrees.
In water, however, the spherical electronic charge
distribution gives a better energy by 0. 0009 har-
trees for the 'P multiplet of the sP protonic con-

cules, since from the table we find that

(V V ), -(m, /mp) (V V )a p

where i refers to a molecule and j to the mass of
the nucleus at the origin of the relative coordinate
system; we can get a similar relation for the ki-
netic energy:

figuration.
We note from Table IX that for methane the P

multiplet of the s P configuration is much higher
in energy than the 'S multiplet of the sP configura-
tion. The opposite is found for electrons in carbon.
The reason for this is that electrons have sufficient
kinetic energy to pair while protons do not. We
can state as a general rule that the lowest multi-
plet of a configuration which has paired protons
will be higher than the lowest multiplet of a con-
figuration which has no paired protons. We also
find from Table IX that the rules governing the
order of the multiplets of a given configuration
are the same for protons as for electrons. These
rules are as follows: The state of highest multi-
plicity lies lowest, and for states with the same
multiplicity, the state with highest angular mo-
mentum lies lowest.

Since the protonic transitions are governed by
the same selection rules as the electrons, the
transitions which can occur are exactly those which
one would expect if the spectra of Table IX were
electronic.

CONCLUSION

If the results of the calculations described in
this paper and in Refs. 1 and 5 are correct, it
will be necessary for quantum chemistry to modi-

fy its views on molecular structure. We hope in

this section to examine some of the errors in these
calculations.

The most obvious source of error is the lack of
correlation in the wave function of the motion among
the electrons and protons. We can, however, get
estimates'of this error which we will call electro-
nic error, protonic error, and protonic-electronic
error, by comparing the ground-state energies
which we got using the fixed-central-nucleus (FCN)
approximation with the ground-state energies got
from the fixed-nuclear-framework (FNF) approxi-
mation using the same electronic function for both

calculations. The assumption on which our esti-
mates depend is that the error in the electronic
part of our wave function is the same as the error
in the electronic function of the FNF calculation.

TABLE IV. Effects of center-of-mass transformation on one-particle integrals in H20.

Calc. "
Electronic functions in integral

S, S S, S p, p'
Protonic functions in integral
S, S p, p Total energy

—31,935 59 —6.779 598
—31.934 60 —6. 779 509

—5.778 373
—5.778 309

4. 361 449 4. 361 614
4. 361 726 4. 361 896

—75.494 986
—75. 500 045

Values are for the sum of the kinetic plus one-particle potential energy. The orbital param-

eters are given in Table I.
"Calculation 1 used an infinitely massive oxygen nucleus. Calculation 2 used the c.m. -trans-

formed Hamiltonian.
's' function is the Schmidt orthorgonalized second electronic function of Table I.

In this calculation p~=p~ =p, .
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The ground-state energies of the FCN and FNF
calculations are given in Ref. 5. We will use the
FNF energies for HF, H2Q, NH, , and CH4 and the
FCN energies for NH3 and CH4 given there. The
correct FCN ground- state energy of H~Q is —75. 4941
hartrees and the FCN ground-state energy of HF
without the approximate c. m. -transformation used
in Ref. 5 is —99.6484 hartrees.

Let E be the true ground-state energy of the FCN
Hamiltonian for HF. The calculated energy E, is
related to E as

where E, is the electronic error and E~, is the pro-
tonic-electronic error. If E is the true ground-

Calcu-
lation

1
2

H20

-75.494 94
—75. 500 05
—0.005 09

0. 006 6

NH3

—55. 441 10
-55.445 22

0. 004 12
0.0074

CH4

-39.134 37
-39.137 64

0.003 27
0.008 2

Calculation 1 used an infinitely massive central atom.
Calculation 2 used for the c.m. -transformed Hamiltonian.
The symbol &2& stands for the difference between calcu-
lation 2 and calculation 1. The last row, labeled %, is
the percent of the energy of calculation 2 which &&& rep-
resents.

TABLE VI. Ground-state energies of H&O, NH3, and CH4.

TABLE V. (1/m, ) V; V'& integrals in H20.

Integral Pro tonic-pro tonic

0. 000 010 172 2

Pro tonic-electronicElec tronic-elec tronic

0.000 142 871 9
—0.000 036 033 7
—0.000 000 175 6

0.000 021 967 4
0.000 019474 5

0.000 021 780 9
0.000 017 926 9
0.000 021 1196

—0.000 021 1196

(ss/ss)
{ss/ss')
(ss/s's)
(ss/s's')
(ss/sp, )
(ss/s'p, )
(ss/pp)
(ss/p„p, )

{ss/p~p„)
(s's/ss')
(s's/s's)
(s' s/s's)
(s's'/sp, )
(s's/s'p, )

(s's/pp)
(s's'/p„p, )
(s's'/p, p„)
(sp./spy
(sp,/s'p, )

(sp,/pp)
(sp,/p„p, )

(sp,/p, p„)
(s'p, /s'p, )
{s'p /pp)
(s'p, /p„p )

(s'p, /p, p„)
(pp/pp)'

"

~PP&P.Pg
{PP/P, P,)
(p„p, /p„p, )

(p„p,/p, p„)
(p„p~/ss)
(p„p,/ss')
(pep'/s s)
(p„p,/s's)
{pxpy~sp. )

(P Py/s'P ){."p',/pp)'

'The symbol (f~f2/f3
pro tonic-electronic int

0.002006 682 6
—.0.000 506 105 8
—0.000 002466 1

0.000 308 539 7
0.000 273 525 1
0.000 305 9196
0.000 251 789 4
0.000 292008 9

—0.000 292008 9
—0.000 077 816 9
—0.000 000 379 2

0.000 047 439 9
0.000 042 056 2

0.000 047 037 0
0.000 038 714 2

0.000 045 609 0
—0.000 045 609 0

0.000 037 283 4
0.000041 6990
0.000 034 320 7
0.000 040 433 1

—0.000 040 433 1
0.000 046 637 6
0.000 038 385 4
0.000 045 221 7

—0.000 045 221 7
0.000 031 593 4
0.000 037 220 1

—0.000 037 220 1
0.000 032484 9

—0.000 032 484 9

0.000 013 837 7

0.000 010 172 2

0.000 011 983 8
—0.000 011983 8

0.000 018 824 2 0.000 026 492 1
0.000 029 6296
0.000 024 386 9
0.000 028 730 1

—0.000 028 730 1

0.000 013 837 7
0.000 011 983 8

—0.000 011 983 8

0.000010 172 2
0.000 011 983 8

—0.000 011983 8
0.000 014 1181

—0.000 014 1181

0.000 017 926 9
0.000 021 1196

—0.000 021 1196
0.000 024 881 0

—0.000 024 881 0
0.000 168 316 9

—0.000 042451 2
—0.000 000 206 9

0.000 025 879 8
0.000 022 942 8
0.000 025 660 0
0.000 021 1196

f4) represents the integral f ff,*(1)f3*(2)(1/m, ) V, Vzf, (1)f4(2)t(V,de. ln the
egrals, particle 1 is the proton and particle 2 is the electron.
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TABLE VII. Effects of center-of-mass
transformation in H20, NH3, and CH4.

NHgQuantity

(& &')

0.002 52
0.00067
0. 003 19

-0.00828

0.002 14
0.000 94
0.003 08

-0.007 20

0.00176
0.00121
0.002 97

-0.00624

state energy of the FNF Hamiltonian for HF and

E, is the calculated energy, then

E =Ec+E~
where E, is the electronic error. By assumption

&, represents the difference in total electronic kinetic
energy between calculations 2 and 1. && is the same as
~, for the protons. & is the sum of &, and &&. P' 7')
represents (1/m~) Z;ZJ&& &, &; obtained by subtracting
& from &&& of Table VI.

Mole-
cule

Configu-

rationn
Multi-
plet

CH4 SP -39.13764
-38.863 41
-38.863 38
-38.592 23
-38.590 70
-38.590 67

—38.848 21
-38.756 26
-38.710 31

-38.728 45
—38, 636 51
—38.590 59

TABLE IX. Calculated protonic energy
levels of CH4, NH3, and H20 in hartrees.

where

SE =SE,-E„,
—E

NH3 —55.445 22
—55. 19149
—55. 140 43
-54. 990 58

ol
E„=SE,-SE .

—55.312 22
—55. 159 00
-55.158 97

The hE is equal to the kinetic energy of the pro-
tons. For this kinetic energy we will use the value
of the protonic kinetic energy from our calculation,
0. 0053 hartrees. One could perhaps use the ex-
perimental vibrational plus rotational ground- state
energies, but then one would have to remove the
center-of-mass effects which are included in the
experimental results. The end result of the pro-
cedure would probably result in as great an error
as the error in our kinetic energy. Also, the true
kinetic energy of the protons for the FCN Hamil-
tonian must be greater than or equal to that which
we have already got because we certainly do not
expect an increase in the protonic wavelength as
the protonic function is improved. Therefore, the
use of our calculated protonic kinetic energy at
least gives us the direction of the error. AE, is
—0. 016'7 hartrees, so

E~, = —0. 0114 hartrees,

or, since there are ten possible proton-electron
pair 8,

-55.208 68

H20 —75. 500 05
-75.174 50

—75.428 33
-75.318 84
—75. 264 13

-75.318 84

Fach configuration was diagona]. ized separately.

ep —)-OEp, ———0. 001 14

is the proton-electron error per pair. W'e realize,
of course, that the proton interaction with the s
electrons is less than with the P electrons and that

e~, is only an average.
The relation between E and E, for water in the

FCN calculation is

y=0
m, /m, =z, /z,

TABLE VIII. Some interesting ratios.

y= H&O

(v' v') /v"v')

0 1.00
0. 88
0. 75

Hg,'3

NH3

CH4

l. 00
0.85
0.70

1, 00
0. 87
0.75

0.26
0.23
0.21
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E =E,+E, +Ep~+Ep
where Ep is the protonic error, and for the FNF
calculation, the relation is

TABLE X. Estimated errors in CH4, NH3, H20, and HF,

CH4

Again) by assumption)

—0.3713

-0.0145
-0.0456

-0.0778

-0.2365

—0, 0133
-0.0342

-0.0630

-0.0477 —0.0167

—0.0095 —0. 0053
—0, 0228 —0, 0114
—0. 0077

8lnce there Rr'6 20 p0881ble pl oton-6lectx'on palr8
in mater. %hen we substitute the values for 4E„
b.E, and from Eq. (l), e~, , we get

Thus, our estimated exx'or per proton in H2Q is

ep = & Ep
= —0.0%V hartr ees.

The estimated error per proton for NH3 Rnd CH&

Rx'6 found ln the Same %Ry. These' dRta Rx'6 sum-
marized ln TRble X.

The vRlues of Ep should not be coQfu86d %1th cox'-
1-elRtlon 6D61-gy, since that quantity 18 defined RS

Ecorr=E EHF

%hei 6 E 18 tI16 true ground-state 6Dex'gy RQd EHF
is the Hartree-Pock ground-state energy. Qur Ep
is necessarily a laxger negative number than E„„
since me centainly do not have the Hartree-Pock
solution. An atomic minimal-basis calculation for
fluorine gives an energy of —98. 94211 hartrees
%hlle the Hartree- Pock solution gives RQ enex'gy of
—99.40928 hartrees. The difference is —0. 46717
hartrees, mhich mhen added to the correlation en-
ergy, —0. 324 hartx"ees„gives a total of —0. 791
hartrees for mhat me mould call the electronic er-
ror. This electronic error is what mould corres-
poQd to oux' px'otoQlc 61 x'ox', 81Dce %6 Rlso use R

minimal basis. When we divide —0. V91 by 9, me
get —0. 0879 for the electronic error per electxon
in fluorine from a minimal-basis calculation mhile
the corx elation error per electron is —0. 036 hax-
trees. In oxygen, me find —0. 065 hartrees for the
error per electxon and 0.032 hartrees for the cor-
relation energy per electron. In helium me get
—0. 0281 hartrees for' the error per electron and
—0. 0210 hartrees for the correlation per electron,
Rnd in lithium me get —0, 0199 hartrees for the er-
ror per electron and —0.0131 hartrees for the cor-
relation per electron. Therefore, me might expect
that the correlation per proton is something of the
order of 50-80/g of the values given in Table X.
One might infer from the results given above for
fluorine Rnd oxygen that the col relRtlOQ 6Q6x'gy fol
protons could be less than for electrons, but since
the electrons Rre paired RQd the protons are Dot,

such an inference would be incorrect. Nor is it
true that our many-conf lgur ation %ave functions
correct for much of the cox relation because the
20-coDflgurRtlon 80lutlon fox' CH4 wRs GDly —0. 0007
hRx'tl"668 bettex' thRD the single-conf lgurRtloD %Rve
function.

Another obvious question which CRD be raised is
the following: %hat about the "vibrational and xo-
tational" spectra'P %6 are not prepared to go into
detail to answer this question at this time„but we
hope that the next paper in this series will be de-
voted to this question. What we said in the first
part of this ser'168 concerning the vlbl RtlonRl Rnd

rotational structure me nom believe to be incorrect.
The "vibrational and rotational" structure probably
arises from a much more obvious source. The
orbital parameter n is related to the principalquan-
tum number. For n'8 as large Rs are necessary
for the protons, the energy separation betmeen tmo
n'8, say 100 and 101, must be small. It is along
these lines that me expect to interpret the vibra-
tional and rotational structure. [One of us (I. L. T. )
received this suggestion from Snyder of Bell Tele-
phone Laboratories. ]

%6 come finally to the experimental verification
of the protonic spectra. As me have shown in Ref.
6, the selection rules and intensities of the pro-
tonlc transitions fol excitations with light ar'6 the
same as those found for electrons. Therefore, it
mould be difficult to assign unambigiously a tran-
sition to a protonic excitation. %hat one needs is
a source of energy which would excite protons but
not electrons. As Hulett of Qak Ridge National
Laboratory pointed out, neutrons do just that. Ne
hope that through the efforts of Mook, also of Qak
Ridge National Laboratory, the necessary experi-
ments mill be done in the near future. %6 also hope
to use the photopx'otoDlc effect to verify the plo-
fonic spectx'R. This effect should ex18t RDd shouM
be completely analogous to the photoelectric effect.

Vfe acknowledge the benefit me received from dis-
cu8810Ds %1th E. Guth Rnd H, C. Sch%lndler' of QRk
Ridge NRtloDRl Laboratory.
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A variational generalization of Brueckner's theory has been applied to the calculation of hy-

perfine parameters for the 2P ground state of atomi. c boron. The computationa] method makes

use of a hierarchy of nth-order {or n-particle) variational Bethe-Goldstone equations defined

in terms of configurational excitations of a Hartree-Fock reference state. Hyperfine param-
eters are computed as the sum of net increments defined at each level of the hierarchy. Or-
bital basis sets are extrapolated to practical completeness for each one- and two-particle net

increment. Three-particle net increments are found to be small but not negligible. Com-

puted magnetic hyperfine constants are within roughly 1/& of experiment. The electric field

gradient is computed. and its relative accuracy is estimated from that of the magnetic hyper-
fine constants. Combined with experimental quadrupole coupling constants, this implies val-

ues of the nuclear quadrupole moments Q(B ) = 0.08472 (56) b and Q(B")=-0. 040 65 (26) b, with

the indicated precision.

I. INTRODUCTION

The hyperfine structure of atomic energy levels
arises from the interaction between nuclear mo-
ments and the static electric and magnetic fields
produced at the nucleus by the atomic electrons.
A nuclear magnetic moment p interacts with the
electrons through an effective Hamiltonian

such that

~ J' +J', c++J', «p+ J,orb

Here we have

g, = 2. 00232

&sr = Gen Pr/JI

(2)

(4)

1~J, c= &F17;g.Xc,
1~J,dig J'I 2gtx«y

J,orb ~JIXprb

(2)

ha~ I J (&)

where I is the nuclear spin and J is the electronic
total angular momentum. If both I and J are ex-
pressed in atomic units (angular momentum di-
vided by I) then a~ is in frequency units (energy
divided by h). There are three contributions to
aJ of different tensorial character. For light
atoms, when the electronic wave function has def-
inite quantum numbers L and 8, the Fermi con-
tact, spin-dipolar„and orbital contributions toa~,
in the state J=L+S, can be expressed in the form,
respectively, '

where p. l is the nuclear magnetic moment in nu-

clear magnetons, I is the nuclear spin quantum

number, and

G,„=95. 4129 MHz

using recently tabulated values of fundamental con-

stants.
The dimensionless constants X„X«„andX„„

in Eqs. (2) are operator mean values computed

for the electronic wave function of the state with

ML ——L, Ms ——S, and MJ —-L+8=J:

Ka 'X, = [s5j =(Smg;s„5(r;)) I,,

Kaa Ãd„=[s C ' 'j=(2+;s„rCO '(8;))~~, (6)

m X.,„=[i j =(Z, r,-'i„)„.


