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We attempt to overcome one of the shortcomings in the Thomas-Fermi and related theories
for atoms by connecting a quantum-mechanical electron density for the region near the nucle-
us to a density given by a statistical model. The joining may be done in a nonarbitrary man-
ner: All parameters are determined. It suffices to use a very crude and easily calculated
approximation to the density to start vrith, so the calculation is quite easy. The resulting
electron density is inmuchbetter agreement with reality than that from the unmodified theories.

I. INTRODUCTION

The statistical [Thomas-Fermi (TF), Thomas-
Fermi-Dirac (TFD), Thomas-Fermi-Dirac-
Gombas (TFDG)] theories' for atoms and molecules
lead to a differential equation in three spatial co-
ordinates from the solution of which the electron
density may be determined. This constitutes a
great simplification over the full quantum-mechan-
ical. treatment, wherein one first must deal with a
3N-dimensional d1fferentlRl equRtlon fox' the N-
electron wave function, which gives the one-elec-
tron density by integration over the coordinates of
all but one electron. Furthexmore, the statistical
methods are expected to be more accurate for sys-
tems with more electrons, while the difficulty of
the quantum-mechanical methods increases rapidly
with ¹ The problem is that the statistical theo-
ries give only a very rough approximation to the
electron density, even for atoms of large atomic
number. This is due to the breakdown of the as-
sumptions of the theory at very small and very
lRx'ge distances from the nucleus. In the fol mex"

case, the potential becomes Coulombic and hence
too rapidly varying with r (the theory assumes that
the potential is constant in a small region about
each point in space, so that the density and poten-
tial may be related as for a gas of free electrons);
in the latter case, the density is too low ( the theo-
ry assumes all free-particle states below the Fer-
mi surface filled for each point in space). As a
result, the -TF theory for atoms gives a radial den-
sity D (D = &mr p, p is the density in electrons per
unit volume) which goes to zero as 1"~ rather than

for small r and as x rather than exponentially
for la,rge r.

The Von Weizsaeker kinetic-energy correction
leads to the correct behavior at both small and
large r, but numerical results are poor and its
reliability has been questioned. ' Related treat-
ments ' are of questionable theoretical validity.
It must be noted that Gomtd, s's modification of the

kinetic-energy correction gives impressive results
and maintains the correct behavior of the Weiz-
sacker theory. However, the theoretical basis is
problematic and a complicated differential equation
is obtained. Yonei and Tomishimas found that by
multiplying the Weizsacker correction by 0. 2 they
obtained a density which was correct near the nu-
cleus and which led to good energies, while using
the full Weizsacker correction led to good densities
for large x.

It is possible to correct the large-r behavior by
working with the variational principles which lead
to the TF, TFD, TFDG equations. For instance,
the energy in the TF theory is given in terms of p
by'

Z=m„ f p"2' ef V„p-d~

+ 2 ffP(~1) P (~2) +12 d~l d~2

the terms representing kinetic energy, electron-
nuclear attraction energy (V„ is the Coulomb poten-
tial of the nucleus), and interelectronic repulsion
energy. x~ is a known constant. If p is varied to
minimize Ewith I pdv fixed (normalization), an
equation for p, which leads to the TF equation for
the potential, is obtained. The distance at which

p must become zero may also be obtained by vary-
ing E with respect to this distance. I enz and Jen-
sen Rnd recently, Csavinszky consider trial
functions for p which guarantee exponential behav-
ior at large r as well as normalization and vary
parameters in them to make E stationary. The
electron densities are improved -in particular,
calculated diamagnetic susceptibilities (expectation
values of r2) are in closer agreement with experi-
ment. e'9

For many purposes, the incorrect behavior at
small r is the more serious deficiency. The elec-
tron-nuclear attraction energy is given by -Ze
(Z is the nuclear charge) times the expectation
value of x ', which is sensitive to the behavior of
the electron density near the nucleus. In fact, one
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can show that for neutral atoms

( = —8 pt' d1 = -8
J

D'r dt'
dZ neo

(2)

of higher atomic number to demonstrate the accu-
racy obtainable.

II. THOMAS-FERMI

so that the expectation value of r ' determines the
energy by

dE 2 (
E (Z) — —dZ —-e dZ I df D(&, Z) &

dZ J,

Equation (2) holds exactly in the TF, and approxi-
mately in the TFD and TFDG cases. The TF theo-
ry (see below) overestimates the expectation value

and leads to energies which are much too large.
Going to TFD or TFDG makes things wolse 81nce
the energy is decreased by exchange and correla-
tion terms. '

One could hope to improve the small-r behavior

by going back to the variational principle as was
done for the problem at large r. One would take a
trial function for D which guaranteed r behavior
for small r, exponential behavior for large r, and

normalization. With reference to such methods,
we believe that one can get arbitrarily close to the
TF density over any finite region of r with a func-

tion going as r for r-0 and dying off exponentially
for r- ~. Most expectation values then would be
no better than those from the exact solution to the
TF equation, i. e. , bad. Good results from such
a method mean the trial function had only limited
flexibility, and are in a sense due to a fortuitous
cancellation of errors.

In this paper, we consider joining a quantum-
mechanical density for small r onto a statistical
density at some r= r, in order to produce a density
which is better at small and intermediate r than
what one gets from the statistical models alone.
Only neutral atoms are considered. The work in-
volved is hardly more than that required by the
statistical model, and a real improvement is ob-
tained. In all cases, r, can be determined a priori
and is not a parameter to be adjusted for good re-
sults.

The TF case is considered in Sec. II, the TFD
and the TFDG cases in Sec. III. It is clear that the
procedure is of little interest if one has to do a
quantum-mechanical calculation to get the density
for small r in the first place. W'e show in Sec. IV
how one can easily get a sufficiently accurate
small-r density from very simple considerations.
Results using this density, as well as the accurate
density, are given for neon, not a particularly fa-
vorable case for statistical methods. In Sec. V,
the methods of the preceding sections are tested,
using the approximate small-r density„ for atoms

In the TF theory, one considers the interelec-
tronic repulsion, the electron-nuclear attraction,
and a contribution from a kinetic-energy which is
proportional to the 3 power of the electron density
p. The density is obtainable in terms of a function

Q, defined as r/Ze times the potential, which sat-
isfies the well-known TF equation

~s/a/ 1/2
(4)

Here, x is related to the distance from the nu-
cleus by

X= ~//1,

p=k(»)"'(2Z) "'~ (5b)

where ao is the Bohr radius. For neon, p,
'

= 2. 433 450 8a,'. Equation (4), of course, assumes
spherical symmetry. For a neutral atom, p must
obey the boundary conditions (i) P(0) = l and (ii)
P-0 as x- ~. The electron density is related to

P by

p = (Z/«u') (p/~)" ' = (Z/«p') (g "/~) .

Normallzatlon of p 1.e.

J 4vx'pd1 =f/=Z,

is assured by the boundary conditions on Q. lt is
important to note that g is a universal i'unction
which is tabulated' so that p(x), for any neutral
atom, is immediately available. All expectation
values are obtained from P. For instance

(v ') = J, D~ 'A= —Zp, 'P'(0) (7)

where B=4mr p, the radial density. Note that we
define (f(r)) as N times (f(x;)).

The initial slope of p required to satisfy the
boundary conditions is —l. 588. Then (7) gives
(r 1) =1.794 Z'/'go', and (3) gives the TF energy
formula

E= —0. 7689Z'/ e /ao

= -20. 92Z ~seg,

While the Z'~' behavior is roughly correct, the en-

ergies are much too large. " For neon, the TF
'tlleol y pl edlc'ts (t)= 38, 780 'willie a COI'1'ect

quantum-mechanical treatment' gives (r ')
= 31. lao'. Improvements on the theory give even

worse values for (x '), except for the Weizsacker
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and related corrections.
'We not consider the electron density to be

given from z= 0 to some distance z, . We use
p(r) and 3(r) to denote the given density and radial

ensity. The density for z~ tc is to be obtained
from a solution to the TF equation with appropriate
boundary conditions. It seems reasonable to de-
mand that, as for a neutral atom in the TF theory,

p go to zero for g- ~ and also that p be continuous
for r=x, . In fact, if one considers the enexgy
formula (1) and varies p(r) (for t & t, only) to
make F. stationary, one finds that p should be de-
rived from P of Eq. (4) with P-0 as x- ~. In

this calculation, the nuclear charge for V„must
be the true charge diminished by the electronic

arge within &c. This is given by

A final necessary boundary condition is normaliza-
tion:

ward [note that (4) makes P concave upward every-
where]. This makes it possible to determine x„
the Joining point.

We have employed a Runge-Kutta procedure'
for integration of (4) for different x„changing x,
until a value was found such that the resultant P
went to zero for large x. In fact, all solutions of
(4) which go to zero at infinity approach 144/xs
[an exact solution to (4) which has unacceptable be-
havior for small x. '4] Some of these have vertical
asymptotes for x&0, and some cut the x=0 axis.
It can be shown that by a scaling transformation
any such solution can be tlansformed into one of
two master solutions. Tables of these were
given, but couM not be used for the small-x values
with which we were concerned.

In our calculations, we, in fact, find one value
of x, which gives a solution p1 cutting the x axis
and one slightly higher which gives a solution $3
going unbounded. The correct x, is between the
two. Table I gives the initial conditions for p1.
Unfortunately, we cannot get upper and lower
bounds on the expectation values, since in

Now the continuity of p gives the initial value
for P:

The boundary condition (9) gives the initial slope:

= Z[—x,y'(x, )+ y(x,)],
where we have used the fact that Q and P' go to
zero as x- ~. Thus, we obtain

y(x, ) - 1+8/Z
xq

XC

where x,= x,/p, . Starting at x, with (10) and (11),
one can integrate the differential equation (4) out-
ward. In general, P will not approach zero for
large x, but will either cut the x axis or turn up-

(y(r))= j 'Df(r)d~+ f"&f(~)d~

the second integral does not converge when y
used If we calculate (12) with p, , expectation
values will be undei estimated because of the miss-
ing tail of the electron density. This is of course
more important for properties emphasizing the
density at large x.

The electxon density D for r&z, is calculated
from the approximate self-consistent-field (SCF)
function given by Clementi. ' In Table I, several
moments of the calculated distribution are given.
The difference of the normalization (I) from 10 is
a measure of the size of the tail. Its contribution
to (r) will be considerably larger than its contri-
bution to {I) and its contribution to ( r 2} large
enough to make the nuxnber in TaMe I correct only
to an order of magnitude, while (r ) and (x ')
are essentially not affected. Numerical integra-
tion was used to obtain all the results of Table I.
Fol' ( f)~ we call al'so 118e Eq. (I) (which a8811nles

TABLE I. Corrected TF results for neon.

C

0.04680a,
Unmodified TF
Quantum mechanical

Pb, ) — P'4, )

0.8759 —0.9720 0.13465

)(ap )

391.2

414.8

( -1) (a 1)

28. 30
38.64
31.09

+) (ap)

11.5
14.8
7.634'

Q2) (a 2)

28.0
84.6"

9.35'

~calculated from 4m fo pr ch= pz"fo @"& dx= zp"z fo 0'«
Reference 1, p. 233.

'Computed from LCAO-SCF function of Clementi, Ref. 16.
S. Fraga and G. Malli, ~any-&lectmn Systems: I'xopeRies and Interactions (Saunders, I'hiladelphia, ].968),
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p -0 for x- ~). This has the advantage that (r ')
for the true solution to our problem can be
bounded by using the initial slopes for g& and Po.
This enables us to write 28. 33ao' &(r ') &28. 35, '.

We expect (r) and ( r ) to be too high because
the TF theory leads to a density dying off too slowly
at large x. Our method has apparently compen-
sated for this somewhat, although we were at-
tempting mainly to correct the small-x behavior.
In this connection, we note the improvement in

( r ') and ( r ) ( it must be admitted that most of
(r ') comes from r&r,). Electron exchange
should give a contraction of the electron density
and improve the agreement. For Ne, going from
TF to TFD (with no small-r correction) cuts (r )
by a factor of 3. The effect of exchange on (r
in our case may be estimated from the following
not quite legitimate argument.

The exchange energy in the statistical theories
is given by —x, fp4/'dv, with x, = 0. 7386e'. We
calculate this with our present density and obtain
about 26 e /ao. The lowering in the energy by this
amount must be accompanied by a lowering in the
potential energy by twice this amount (virial theo-
rem). If the electron repulsion energy is lowered
by 26eo/ao, the electron-nuclear potential energy
—Ze ( r ') must also be lowered by 26e /ao, which
means (r ') is increased by about 2. 6ao'. Our
corrected value for (r ') of 30. 9ao differs by a
fraction of a percent from that calculated quantum
mechanically. If the TF density, which becomes
larger than the quantum-mechanical density close
to the nucleus, were used for this calculation,
(r ) would be increased beyond the quantum-
mechanical value, as, in fact, turns out to be the
case in Sec. III.

III. THOMAS-FERMI-DIRAC AND THOMAS-FERMI-

DIRAC-GOMBAS

The TFD theory includes the exchange interac-
tion by adding a term —fv, p

/ dv to (1). Making
E stationary with respect to variations in p gives
an equation for p in terms of the potential which,
together with Poisson's equation, leads to the TFD
equation

(13)

Here g is related to the potential, and the density
is given in terms of g by

(4o p. 'p/Z)'/' = (y/x) '/'+
Po

Equations (13) and (14) go over to Eqs. (4) and (6)
for Po=0 (no exchange). The constant Po depends
on Z:

p = ~ (3/4 o)1/o Z o/o (15)

po=Z(4o p, ) '(—', Po)'

Given an electron density out to some distance v,
from the nucleus, one can fix p(x, ) by the continuity of
p and demand that E (including the exchange term)
be stationary to variations in p. This leads to the
TFD equations. Demanding that E be stationary
to variations in the boundary radius again yields
(16).

Thus our procedure would be to integrate (13)
from some x, to xo determined by (16). g(x,) is
fixed using (14). As the initial slope is increased,
the intersection of P with the line g=io Pox is
pushed out further, the area under P and hence
f„p dr increasing. The initial slope may thus be
determined by the normalization condition

1-Z S =xo4o-4o-x. 4.'+P.

Re use subscripts 0 and c to indicate evaluation at
xo and x,. But it appears that this may be done for a
range of x„soan additional condign. .ion is necessary.
(Actually, for certain x„such as near the TF x,
in the neon ease, increasing P,

' leads to a rapidly
increasing P, which never touches (=i'o Pox, before
the normalization condition can be fulfilled. ) We
choose to demand continuity of the derivative of D
with x at the joining point x, . The derivative D„
is obtained from the quantum-mechanical density,
and, from (14), the initial slope of g is given by

g'(x, ) = t/i, /x, + —'(p!ZD x',)'/o (x,g,)'/ (r,D„—2D) .
(18)

For a, given x„g(x,) and P'(x, ) are then known.
We integrate (13) to xo determined according to (16)
and check the normalization. The joining point x,
is determined as the one for which (1V) is fulfilled.

In the first line of Table II, the results of such
a calculation for neon are given. Clementi's ap-
proximate SCF density was again used for D. The
closeness of (1) to 10 reflects how well we have
determined x, . The value given for x, is correct
to 0. 00001, but (1) is very sensitive to x, . By

so Eq. (13) is different for each atom, unlike the
TF equation. A more important difference, for
our purposes, between the TF and TFD equations
is the change in boundary condition. Since p can
never vanish, the electron density must be cut off
at a finite radius xo If this is determined to mini-
mize the energy, the boundary condition on g is

p(xo)!xo= ro po

which means that
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TABLE II. Corrected TFD and TFDG results.

Calculation

Corrected TFD
Corrected TFDG
Unmodified TFD
Quantum

mechanical

0.09542
0. 9529

0

y(x,) q'(~, )

0. 905 864 —0.997 045 0.589 12 425. 9
0. 900 87 —0.9914 0.588 04 442. 8

414.8

Q-') (a,-')

34. 93
35.81
40.76
31.09

9.9265
9.9253

10.0

6.643
6.459

7.634

6.740
6.465

25. 6
9.35

~Estimated initial slope for Ne of 1.675 was used (cf. Ref. 1, p. 86).
Reference 1, p. 233.
Computed from the linear combination of atomic orbital function of Clementi, Ref. 16.
S. Fraga and G. Malli, May-Electron Systems: Properties and Interactions (Saunders, Philadelphia, 1968).

numerical integration, the moments of the distri-
bution given in the table mere calculated. Ordinary
TFD and quantum-mechanical results are given
for comparison. Because of the great change in

x, from the TF case, comparison with the results
of Sec. III does not seem meaningful.

Ne note that all the moments are now in quali-
tative agreement with the quantum-mechanical. re-
sults. The improvement over the unmodified TFD
results is quite evident. It must again be noted
that the good agreement in ( x ) is not really that
impressive, since —,

' of (y ) comes from v&r,
Gombfs" has added the correlation energy into

the TFD theory. In this theory (which we refer to
as TFDG), an additional term of the form
—fg(p'~ ) p d7' is added to the energy, g being a
known function of p' . The equations to which this
leads can be put in the form of the TFD equations
when certain approximations are made, except
that Po in Eqs. (18), (14), and (16) is replaced by

I3&
——1.1303PO

The solutions to the TFDG problem are similar to
those for the TFD problem. In our case, the dis-
cussion given above for TFD is applicable.

The change in results due to the change in Eq.
(19) is slight although in the wrong direction.
These results are included in Table II. Because
of the approximations in the method, and because
of the closeness of the results to those from TFD,
we do not consider TFDG further.

ligible here, so they contribute only a constant
term to the potential (outer shielding) which does
not affect the wave function of the 1g electrons.
We approximate the 1s atomic orbitals as hydro-
genic orbitals, so the s3. mll-r electron density be-
comes

D = 8Zade-. (20)

TABLE III. Approximate radial densities IEq. (20))
compared to SCF density for neon.

Z may be taken as the true nuclear charge, al-
though it is well known' that the interaction be-
tween the 1g electrons may be taken into account
approximately by putting Z = Z,„,—~. This should
give a better density for r near the Bohr radius
(0. lao for neon), but since the ~ becomes increas-
ingly unimportant as Z increases, we simply put
Z= Z,„,in (20) from here on. The radial density
given by (20), with and without the correction to Z,
is compared with the approximate SCF density in
Table III. It seems reasonable that 8 can be taken
from Eq. (20) for use with the procedures of Secs.
II and III. In fact, the TF procedure here makes
x,= 0. 4552a, p (x,) = 0. 8V86, P '(x,) = —0. 9795,
close to the results with the exact D (Table I).

For the TFD procedure, which we shall employ
for calculations on heavier atoms, the results are
given in Table IV. Vfe here report two calcula-
tions, for one of which r, is lower, for the other

IV. APPROXIMATE SMALL-r DENSITY

Obviously, a method which requires the SCF den-
sity and then proceeds to approximate it is of little
interest. However, we here require only the elec-
tron density for small r, i. e. , r &0. 1ao for neon.
In this region, only the 18 electrons contribute.
For r very small, these electrons see the Coulom-
bic potential of the nucleus and each other's Coul-
ombic potential, the former being much more im-
portant. The density of the outer electrons is neg-

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

DscF (+0

0.638
2. 090
3.856
5.624
7. 214
8.533
9.459

10.261
10.697
10.889

&z= ~0(&0 ')

0.655
2. 145
3.951
5.751
7.358
8.674
9.667

10.337
10.711
10.827

Dz -"8,6875(~0
—1

0. 599
l. 975
3.660
5.361
6. 901
8. 188
9.181
9.880

10.302
10.478
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TABLE IV. Final results.

r (ao) Calc
a (10-'a,-')'

SCFc Der jvedd TF Calc
X (10 cm /mole)"

SCF Expt TF

10
10
20
20
30
30
36
36
54
54
80
80

0.091462
0.091460
0.042 769
0.042 768
0.027 717 9
0.027 717 8
0.022 852 72
0.022 852 70
0.014 932 865
0.014 932 853
0.009 926 037
0.009 926 034

9.962
10.030
19.707
20. 631
29. 228
30.219
35.837
36.050
53.905
54. 963
79.214
80. 280

59.9
63.4

154.2
155.2
265. 0
265. 6
338.3
338.4
582. 1
582. 8

985.0
985. 9

55. 2

142. 3

252. 2

563. 9

55. 2

142.3

251.0

324. 0

564. 0

972. 0

68.6

172.9

296. 8

378.6

650. 0

1098.0

5.35
6.09

12.87
13.46
13.8
16.1
15.7
17.6
25. 0
27. 0

31.9
36.6

25. 3
27 7c

27. 9
31.3
38. 9
44 9c

50. 8

28. 8

43. 9

5. 9' 6.74
7.4'

24. 8

67.0

102.0

117.0

Diamagnetic shielding.
"Diamagnetic susceptibility.
cReference 9.
Derived from atomic energies according to Eqs. (21)—(23).
J. T. Dehn and L. N. Mulay, J. Chem. Phys. 48, 4910 (1968).
Reference e, calculated from Clementi's functions.

higher, than the correct value. This is seen from
the expectation values (1), the correct va. lue for
neon being 10. The various expectation values ob-
tained from the two calculations then bracket that
from the calculation for which (I) = 10. In this
table, we report the nuclear magnetic shielding
and diamagnetic susceptibilities (obtained from
(r ) and (r ), respectively) and compare with ex-
periment and with SCF calculations. The results
for neon differ little from those in the first line of
Table II, where an accurate D was used.

V. RESULTS AND CONCLUSIONS

Table IV includes also the results calculated by
our method for the atoms with Z= 20, 30, 36, 54,
and 80. We here summarize this method. (a)
For the atom of nuclear charge Z we calculate a
small-r density from (20). (b) Assuming a. value
of r„we obtain g(x,) and P'(x, ) from D using (14)
and (18). (c) The TFD equation (18) is integrated
out to xo determined by (16) and the normalization
is checked according to (17). It g' becomes posi-
tive before (16) is fulfilled, we need a larger x, .
(d) The correct r, is that for which the normaliza-
tion is satisfied. The density and its slope are
continuous at x, .

In this table, we have given (r ) and (r ') as
well as (1) for two values of r„such that (l)
brackets the correct number of electrons. The
values of (r ') and (r ) then bracket the values
predicted by the method. For (r ) we have con-
verted to diamagnetic shielding and for (r ) to dia-
magnetic susceptibility. In fact, (r ) is not di-
rectly measurable from nuclear magnetic reso-

nance spectra, but can be calculated from atomic
energies.

By the Hellmann-Feynman theorem, we find

(21)

where X is the number of electrons. The left-hand
side of (21) may be approximated as

E(Z+6Z, N) -E(Z, N)
8Z g '5Z

(22)

where 6Z is small. We have to be satisfied in
reality with 6Z =+ 1. Taking the average [corres-
ponding to fitting E(Z+1, N), E(Z, N), and

E(Z —1, N) to a parabola] gives

(r ') - —,
' tE(Z —1, N) —E(Z+ 1, N)]. (22)

Unfortunately, tables of atomic energies derived
from experimental data are not available for large
Z. Since correlation energies do not change with
Z to a first approximation, we use SCF energies'
for the atoms and ions with %=10 and 20. For
higher N we use calculated nonrelativistic ener-
gies' for the neutral atoms in conjunction with
measured ionization potentials and electron affini-
ties."

The expectation values of r ' as computed by
our method are in much closer agreement with the
correct values than those from the TF theory.
Those of the TFD theory would be worse than those
of the TF theory because of the contraction of the
charge density permitted by exchange. The expec-
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tation values of x ' could hardly be worse than
those from TF where they diverge. In fact, they
agree quite well with quantum-mechanical calcula-
tions, partly because of the large contribution of
the density for x & ~, . We have thus succeeded in
correcting the small-x behavior of the quantum-
statistical densities by the simple expedient of
joining a solution to the TFD equation to an ap-
proximate quantum-mechanical density at r, . We
emphasize that x, is not arbitrary, but determined
by the requirements that the density be continuous
and of continuous slope at r„and that the normali-
zation be correct. It appears that the large-r be-
havior (as evidenced in (ra)) is also improved
somewhat. In fact, TFD gives much better re-
sults here than TF. In any case, (x ) in our
method as in other quantum-statistical methods
increases too slowly with Z. It would be interest-
ing to compare in greater detail our density with
the correct and statistical densities for several
atoms.

Finally, we derive an expression for the ener-
gies of neutral atoms from our results. The TF
formula E(Z) = -0. 7689Z a.u. has already been
cited. According to various arguments, "a form-
ula in descending powers of Z' ' starting from a
Z~ term seems indicated. March and Plaskett"
have given

TABLE V. Energies [negative values in 10~ (a.u. )].

10
20
30
40
50
60
70
80

Eq. (24)

1.281
6.74

17.80
35.39
60.3
92.7

134.0
184.0

Eq. (25)

1.51
7.5

19.2
37.6
63.4
97.0

139.0
190.0

&(Z) = —0. 7687 Z' '+ —,
' Z —0. 266 Z' (24)

which seems to work well. To get such an expres-
sion, we put

E(Z) = —0. 72Z ~3+0. 24Z -0.43Z ~

Energies from (24) and (26) are compared in
Table V.

& ~ ') = aZ'"+ bZ+ cZ' ~'

and obtain a, b, and c by least-squares fitting our
calculated ( x ') for the six cases of Table IV.
We find that a = 1.683, 5 = —0. 473, and c= 0. 709.
Then Etl. (3) gives, in a. u. ,
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