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It is pointed out that the phenomenon of satellites of spectral lines is attributable to the
breakdown of the Born-Oppenheimer approximation in the upper state of the collision-pair
molecule owing to the proximity or crossing of molecular potential curves of the same sym-
metry. The Fano treatment of the configuration interaction between a single bound level and
a continuum in conjunction with certain simple models for the potential curves yields an an-
alytical expression for the intensity in the near wing of the spectral lines. The distant blue
satellites may be shown to arise trom the interaction with a second bound vibrational level.
Combinations and variations of these two possibilities lead to cases typical of those which
have been observed.

I. INTRODUCTION

A great many if not all of the subsidiary maxima
associated with various spectral lines' 3 and
generally referred to as "satellites" are directly
attributable to the breakdown of the Born-Qppen-
heimer approximation in at least one of the states,
most often an upper state, of the collision-pair
diatomic molecule which emits the perturbed
spectral line. We have pointed this out briefly
in an earlier communication; it is our intention
to discuss this process further in the present
paper.

The Jablonski theory, which provides admira-
ble insight into the phenomena associated with
certain spectral-line-broadening situations, con-
siders the emitter-perturber pair as making up
a diatomic molecule, the broadened spectral line
emitted by this complex then constituting an anal-
ogy to an electronic-vlbratlonal band systeQ1.
Thus, the intensities in the spectral line will be
proportional to the square of the matrix element
of the electric dipole moment between the con-
tinuous electronic-vibrational states associated
with the radiant transition. Such a model will
lead to an intensity distribution containing satel-
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lites when tmo or more neighboring or intersecting
potentials of the same symmetry are associated
with the upper state. Such close ayproaches are,
of course, tantamount to the breakdown of the
Born-Oppenheimer approximation. (Combinations
of attractive and reyulsive potentials of the same
symmetry can lead to the same result. ) The
intersecting curves incidentally lead to composite
potentials with double minima of the type postu-
lated by Jefimenko' in his quantitative study of
satellites using a classical statistical theory.
In any event, the configuration interaction method
developed by Fanov for the treatment of auto-ioni-
zation is admirably suited to the description of
the effects of this Born-Oppenheimer breakdomn
on the spectral line. The plan of this paper is as
follows.

In Sec. II me discuss an example of our postu-
lated pair of neighboring potentials, then briefly
review the terms which are reintroduced into the
Hamiltonian by the resulting interaction and the
Fano treatment of the configuration mixing thus
induced. In Sec. III we delineate the potential
Rnd %Rve-function models which me Utilize ln oxder
to obtain our analytic expression for the intensity
distribution in the perturbed spectral line at fre-
quencies close to the unyerturbed line position
when we suppose this Unperturbed posltlon to cor-
esyond roughly to a perturbed bound level. Sec™
tion V is concerned with the configuration mixing
of the vibrational continuum mith two bound levels,
the more distant of these two corresponding to
the violet satellites. In Sec. V we point out cer-
tain variations on these tmo basic themes which
have been observed, while in See. VI we indicate
the sort of density dependence for the violet satel-
lite which has recently been observed. Section
VII indicates theory agreement with tmo miscel-
laneous observations.

II. CURVE PROXIMITY AND CONFIGURATION
INTERACTION

The spectral lines emitted by the alkali, cesium,
provide familiar examples of the satellite phenom-
enon when perturbed by the presence of noble-
ga, s atoms such as argon. The second doublet of
the principal series of cesium arises from tran-
sition having the pair of upper levels VP P,~a Sga.
Since the collision partner is a noble-gas atom,
me shall assume it to be in its lS state. Therefore,
the Wigner-Witmer product rules tell us that the
diatomic molecule formed by this collision pair
mill have the states 'Z' and II mhen Hund's cou-
pling case a is assumed, Cesium has a 6d D
level some 600 wave number above its '7p P which,
mould, in the isolated case, have nothing to do
with the resonance doublet. When a collision
occurs with another atom in a '8 state, homever,

the Q, II, Rnd 6 diatomic sta, tes R16 formed,
and this situation is radically altered. Let us
suppose thRt the D: Z stRte ls Rt'tx'Rc'tive. TheIl
me shall anticipate its proximity to the P: Z' as
indicated schematically in Fig. 1. (We remark
that the tmo Z' curves are not required to inter-
sect in order that the phenomenon mhich we shall
discuss may occur, although such intersection
may take place in some physical situation. ) Inso-
far as the wells are concerned, Bernstein and
Muckerman' tell us that the experimentally deter-
mined depth of the Cs-Ar well associated with the
ground electronic state is about 50 cm '. There-
fore, the roughly 300-em ' depth of the upper well
indicated here mould not appear unreasonable.
Obviously, the lower of the two yictux'ed wells
could have any depth, even to include zero depth,
mithout aff ecting our treatment. For reasons
which mill later be obvious, we have supposed the
upper potential mell to conta, in two vibrational
levels as is indicated on the figure. Finally, in
order to complete our explanation of the figure,
we remark that the observations of Gilbert and
Ch'en" for the Cs-Ar collision pair, for example,
were carried out at a temperature of about 440'K.
The mean continous vibrational energy of the CsAr
molecule for such a temperature is indicated.

Let us consider the complete wave equation for
t'he CsAr molecule and suppose that the solution
may be assumed to be of the product form

@ «=e B «/x,

where 8 is a function of the electronic and nuclear
rotational coordinates, and R is the discrete or
continuous function of the nuclear vibxational co-
ordinates. If we suppose the electronic wave func-
tion to be only pararnetrically dependent on the
internuclear separation, the Born-Oppenheimer
approximation, as Rice" has shown, allows us to
neglect the following terms in the Hamiltonian:

5' A «(r) s'e„h'1 dA„«(r) se„
2m r 9~' m ~ d~ ey

where m is the reduced mass of the collision pair.
Nom we suppose that, if me carry out the cal-

culation requisite to obtaining an extended configu-
ration-interaction linear-combination-of -atomic-
orbltals-molecular-orbital (LCAO-MO) wave tunc-
tion, Fig. 1 mill result from taking matrix ele-
ments of these electxonic wave functions over the
Hamiltonlan %'hlch includes the electl onlcally de-
pendent portions plus the nuclear repulsion. (We
assume ground rotational states. ) The determina-
tion of bound Rnd contlnous vibrational %'Rve func-
tions for the tmo potentials completes the calculation
under the Born-Opyenheimer ayyroximation. In
energy regions such as those corresponding to the
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FIG. 1. Schematic representation
of the postulated CsAr potentials
associated with the Vp D and Gd D
states of Cs in the presence of Ar.
The mean thermal energy indicated
corresponds to a temperature of
440 'K.

Cs(7d'D~) + At ('S)

F 21946 cm'

where
x sinl"-(Ps~T)i) cosl', (4a)

I" = —arctanlv(Vs ~ / [E —E~ —V~~
—E(E)]), (4b)

V„=(&IVI&), V, =(VIVII, ),

F(E) = PjdE' [ jVs I /(E —E')],

(4c)

(4d)

"mean thermal energy, " this approximation breaks
down, however, since electronic-vibrational wave
functions must now be combinations of continous
functions associated with the lower and bound func-
tions associated with the upper of the two potential
curves. The Born-Oppenheimer neglected terms
of Eq. (2) provide the perturbing portion of our
Hamiltonian while the Fano configuration-inter-
action approach provides the method for the treat-
ment of the perturbation.

In Sec. II of his paper Fano deals with the situa-
tion which we shall first postulate here —one dis-
crete state and one continuum. He begins by as-
suming that the wave function corresponding to an

energy E may be expressed as a linear combina-
tion of the wave functions Q for the bound state and

gs. for the continous states:

+s=aP+IdE'bs, r/)s, .

Upon determination of the expansion coefficients,
Fano obtains the following expression for the ma-
trix element of an operator T between some initial
state i and the configuration mixed state +~:

(4', ITlf) =

(PITIED)»»+

1 . . 1,Vg. (/san [T)i )

where I' refers to the principal part.
The Jablonski theory established the proportion-

ality between the intensity distribution in a spec-
tral line and the square of the matrix element of
the electric dipole moment for the transition
which yields the line. Therefore, the square of
the matrix element of the electric dipole moment
(g&l~li ) a,s given by Eq. (4a) will tell us the
line profile.

Precise evaluations of the matrix elements of
the two terms in Eq. (2) would require precise
molecular wave functions, a requirement which
seems unlikely to be met in the near future.
Therefore, we postulate a constant value for
se /sr, an assumption which will surely be true
for sufficiently great nuclear separation. Such
an assumption will eliminate the first term on the
right-hand side of Eq. (2).

III. ANALYTIC LINE WING EXPRESSION (CLOSE IN)

Although it is to be hoped that future studies of
this nature will yield a great deal of information
about excited-state potentials, such information
is presently very meager. It therefore seems
most appropriate to use for these potentials the
simplest models which are commensurate with
an explanation of the phenomenon under consider-
ation. Further, more "realistic" potentials pre-
clude the possibility of obtaining potentially en-
lightening analytic expressions for the intensity
distribution. Therefore, we postulate that (f)
the continuum functions are associated with a
purely repulsive potential in the form of an in-
finite barrier, and (ii) the bound functions are as-



sociated with an harmonic-oscillator potential.
Mason and Munn" have pointed out that, for

small kinetic energy, the continuous wave func-
tion has the same number of nodes as the "last."
bound function in the well. Therefore, we suppose
that (iii) the continuum function in the lower state
is to be approximated by the last bound function.

We restrict ourselves to the simplest case of a
purely repulsive potential, since it yields the
salient features of the close-in theory while. sim-
plifying as much as possible the algebraic ma-
nipulations.

We approximate the continuum function in the
lower state by the following function:

-(&/2)g Q-r ]2
t)I& =Nssin[A(r +ra)]e " (5a)

where A =vvP/9, and r, is simply a parameter for
the adjustment of the radial separation between
the lower and upper wells. Qur continuum func-
tion associated with the repulsive upper state may
be represented as

q~ = X(l/gr) sin[k~{r —r,)], (5b)

= constfe '"" " cos[k,r k~(r, r,)]rd-r-
= constfcos[0~(r, —r, )] fe '"" cos(k~r)r dr

+ sin[a(r, —r, )]fe """"sin{a~r)rdr'J. (6)

If, for reasons which wi11, become apparent in
Sec. IV, we choose the normal frequency of our
bound molecule as 240 cm"', the bell portion of
the bound function will effectively extend less than
1 A. Therefore, since x&10 8 while k&-300, Eq.
{6)will become

where k& is the wave number corresponding to the
continuous vibrational energy while r, is the loca-
tion of the repulsive core.

There mill, of course, be certain situations in
which (ge ~ f), and hence the last two terms in Eq.
(4a), will contribute something to our overlap
integral. This will not be the case, however,
when either (i) there are sufficient levels in the
lower well so that the oscillation of Eq. (5a) will

effectively zero out the integral or (ii) the relative
location of the lower well and the upper core have
the same result. The possibilities of such can-
cellation are sufficiently great that we should be
able to follow the main features of the phenomenon

by assuming that it takes place. Therefore, we
require only V~, that is, the matrix element of
the Born-Oppenheimer neglected terms over the
upper bound and excited states. From Eqs. (5)
this becomes

V~ =constfe "'"'" ""'cos[k~(r —r, )]rdr

Vs=const( coal[a, (r, r—,)]fe '""'"'rdr)
= const xcos[kz(r, —r,)].

Consider Eq. (4b). The unit of this contribution
from the integral over the electronic coordinates
is reciprocal centimeters, that from the normal-
izing factor for the continuous functions, the
square root of this. We then take the product of
these two as of order 10', If we suppose the de-
nominator of Eq. (4b) to correspond to (E- Eo) in

the resulting spectral line, we may then evaluate
the remainder of the constants within the arctan-
gent argument. The order of magnitude for (ar- &oo)

- 1 was about 10 ' —a rough estimate, but one which
should be meaningful for (&u —~0) not too small,
We therefore say that sinl merely corresponds to
the argument I'.

Next we note the following relationship between
the frequency separation from line center, (&u —&o,),
and the various grave numbers:

k~a = (4wmk) (t —tt, ) +0', ,

where k& is the kinetic wave number of the collision
in the lower state, k& the wave number in the upper
and I is the reduced mass. We now obtain the
following expression for the distribution of inten-
sity in the wings of the spectral line:

(4mnc 2mkTI= const x cos Dj (ro —(do) + 2 (&g —~),8

D=zq —X, ,

where we have identified the lower-state wave
number with the temperature T.

It is apparent from the appearance of (ro —a&0) in
the denominator of Eq. (9) that we have assumed
the center of the observed spectral line to corres-
pond to the position of the perturbed bound vibra-
tional state, that is, E~+ V~~+F(E) in Eq. (4b).

It is also apparent from Eq. (9) that the separa-
tion between satellites will tend to decrease with
increasing perturber' mass, This "bunching" with
increasing mass has apparently not been reported
in the literature; however, it has been observed
by Jefimenko' for the resonance doublet of cesium
where it is present for the neon, argon, krypton,
xenon series of perturbers. This m dependence
should not be confused with the Ch'en and Takeo
observation of a I '/ dependence for the separa-
tion of the violet satellite from line center. The
violet satellite to which they refer is essentially
an independent phenomenon which we discuss in
Sec. IV.

IV. DISTANT VIOLET SATELLITE

The satellites which are to be anticipated from
Eq. (9) will be located within a few units or a few
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(4~]f) = cosh P, —— " (P.ji)+ ~ ~
tan~„
71 pg

—L tan~„=L ~, ~,„['/(Z —Z„).
(lOa}

(lab)

It is obvious that the factor (E —E„) will lead
to an intensity maximum in the neighborhood of
the higher bound vibrational state so we may illus-
trate by means of Fig. 2.

We presume an absorbing transition. Before
the photon is absorbed the energy of the diatomic
molecule will correspond to what me have labeled
"mean thermal energy. " Now 1et us suppose that
the absorption of a photon corresponding to the
unperturbed Cs frequency ~o results in an excita-
tion to the indicated upper level. We suppose this
level to lie close to the lower of the two bound

states as shown on the figure. The spectral line
which would be observed would correspond to that
indicated on the left-hand side of the figure except,
of course, there would be a certain amount of
structure superposed on the intense component as
indicated by Eq. (9) —structure which, however,

tens of inverse centimeters from the center of the
spectral line, and we can associate them with the
configuration mixing of a single bound state and
various neighboring continuum states. A satellite
located several hundred inverse centimeters from
the spectral-line center cannot be accounted for
by Eq. (9), and such satellites are quite commonly
encountered. Gilbert and Ch'en, "for example,
have recently observed such a satellite at about
240 cm ' separation from the P,&2 component of
the Cs(l)/Ar line.

Such a satellite is readily accounted for by in-
cluding a second bound vibrational state in our
configuration-mixed mave function. In such a
situation the intensity behavior near unperturbed
line center is controlled by, say, the configuration
mixing of the ground vibrational state with the
continuum. As me move into the line ming, we

are proceeding to energies such that the mixing
effect is of little consequence. As our energy
continues to increase and as we approach the energy
of the first (v = I) bound level, however, the mixing
effects again begin to make themselves felt, the
violet satellite which subsequently appears being
roughly a measure of the bound vibrational level
separation. Thus, the violet satellite observed
by Gilbert and Ch'en would correspond to a level
separation of about 250 cm '. Simply in order to
illustrate the increase in intensity which is to be
anticipated in the neighborhood of the higher vi-
brational level, me partiaHy write down Fano's
expression for the overlap integral, one of whose
states is a configuration mixture of one continuum
and several discrete states [ Eq. (65)j:

might not be observed because of a rapid decrease
in intensity.

V. SATELLITES AND CONTINUUM FLUCTUATIONS

In Sec. III we have considered a physical situa-
tion which mould probably result in several sub-
sidiary maxima to the red side of and close to the
line center. We have tacitly assumed in that sec-
tion that the resonance of, say, Eq. (4b) corres-
ponds to line center and that the phenomena under
consideration are attributable to the configuration
interaction of the continuum with a close-lying
bound state. In Sec. IV me have considered the
physical situation which would arise as a result
of configuration interaction with a more distant
bound state. Experiments, both reported and un-

reported, have provided the variations on these
basic themes.

Case A. The first case is that of two or more
close-in satellites or "fluctuations of the contin-
uum" as they have been termed by Jefimenko and
Curtis. ' This is precisely the situation discussed
in Sec. III.

Case B. The second is a single close-in red
satellite and a distant blue satellite. The reson-
ance denominator of Eq. (4b) now corresponds to
the red satellite, the intensity decrease at greater
(red) separations from line center effectively
masking any additional structure. The blue satel-
lite arises precisely as discussed in Sec. IV.

Case C. The third is a comparatively distant
red satellite on which is superposed a number of
continuum fluctuations. This is a combination of
Secs. IIIand IV, the red satellite arising from the
interaction with a relatively distant but lower-
energy bound level for which a treatment of the
type of Sec. III will provide structure.

These are the basic cases which have been ob-
served, but the reader mill readily note the pos-
sibilities for the existence of various other but
analogous cases.

VI. DENSITY DEPENDENCE OF SATELLITE
DISPLACEMENT

The dependence of, say, the bLue-satellite
separation on the perturber density and the fashion
in which this dependence varies with variations in

perturber density may quite readily be indicated
from the theory. Gilbert and Ch'en, "for example,
detail the separation of the violet satellite from
line center for perturbation of the P»~ component
of Cs (I) by Ar. The separation dependence on

perturber density appears to be independent of
density to relative densities of fifty or so; it could
be linear in the region of slightly higher relative
density, and appears to be roughly quadratic for
still higher densities, the authors following the
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CsAr X,(6d)

CsArPX(7 p }
FIG. 2. Schematic representa-

tion of the potentials involved in
producing the satellites associated
with the second member of the cesium
principal series. &o is the unper-
turbed spectral-line frequency.

MEAN THERMAl

ENERGY

We apply ordinary perturbation theory to Eq.
(11) in order to obtain the level, and hence satel-
lite separation, in zero, first, and second order:

Eo Eo E (12a)

hE =F~q —Fj~ (12b)

hE = 2Eq~E~2/(Eq —E,). (12c)

It is reasonable to suppose that the continuous
wave function utilized in the evaluation of V„~. is
normalized to the average volume occupied by a
single perturber. Therefore, V„~. is proportional
to N': Therefore, ~E is independent of N, ~E'
is linearly dependent on N, and ~E is quadratically
dependent on this parameter.

displacement of the satellite to relative densities
of about 160. In order to account for such be-
havior qualitatively, let us consider two bound
vibrational states interacting with our vibrational
continuum. If we suppose one of these states to
correspond roughly to line center, an increase
in separation between them will correspond to the
shift of the violet satellite. Our interest is in the
change in separation of the two bound levels as a
result of the interaction with the continuum. Here
again we are dealing with a situation analogous to
that treated by Fano7 in his Sec. V so that much
detail is not called for.

The two bound vibrational levels are perturbed
by

F„(E)= Pf dE ' V„s.Vs. /(E —E ').

VII. MISCELLANEOUS

Jefimenko" has observed the perturbation of
Cs (1) by Ne, Ar, Kr, andXe. It is interesting to
note the bunching of continuum fluctuations with
increasing mass which is, of course, predicted
by Eg. (9).

For the alkali metals, Jefimenko has pointed
out that the satellite location apparently bears
some relation to the perturber cross section for
the scattering of slow electrons, an observation
which tends to connect this phenomenon with the
Fermi' theory for the shifts of the high-series
members. That there will be a possible connection
may be inferred from Egs. (5b) and (9). The
scattering cross section will be proportional to the
sine of the phase shift squared From . Eq. (5b) the
phase shift will be kp, and it is apparent that Eq.
(9) may be written so that is contains sin2kzr, . A
relation between satellite position and scattering
cross section could thus result. This scattering
cross section will be that for the scattering of the
noble gas by the alkali; however, for increasing
principa, l quantum number the potential, and hence
the scattering situation will more closely corres-
pond to that of an electron and the scattered noble-
gas atom. Thus, some relationship, not only be-
tween the satellite description and the Fermi model
but also between the satellite position and the elec-
tron-noble-gas cross section, is to be anticipated.
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An analogy between the laser threshold region and a second-order phase transition is pre-
sented. The electric field acts as the order parameter for the laser while the atomic-popula-
tion inversion plays the role of a temperature. The quantum-statistical theory of a laser in-
cluding a symmetry-breaking external signal is discussed in order to establish a correspon-
dence with the problem of a ferromagnet (treated in the molecular-field approximation) situated
in an externally applied magnetic field. It is demonstrated that the results of the laser analy-
sis may be discussed in terms of an energy function which is similar to the free energy of a
thermodynamic system.

I. IWTRODUCTIOX

The quantum theory of a laser oscillator has
been the subject of recent theoretical' and experi-
mental activity. The pxoblem is basically to
understand the nonequilibrium statistical dynamics
of the {single-mode) laser field as it interacts with
the lasing medium. The physical situation is of a
sufficiently complex nature to contain many aspects
of a many-body problem, but it is simple enough
to permit, to a good approximation, a complete
solution, It seems, therefore, attractive to con-
sider the possibility of useful analogies between
the la,ser theory and other problems in nonequilib-
rium stRtistlcal mechanics. In fact, Rn interesting
comparison may be made between second-order
phase transitions, such as the order-disorder
transitions of ferromagnetic and ferroelectric ma-

terials or the vapor-liquid transition of a pure
fluid, and the laser near threshold. ' It is well
known, for instance, that the state of a laser
changes abruptly upon passing through the thresh-
old point. Furthermore, the laser-field fluctua-
tions and the decay times associated with these
fluctuations are much larger in the vicinity of
threshold. The purpose of the present paper is
to demonstrate that the laser-threshold behavior
is very analogous to a second-order phase tran-
sition.

The basis for this similarity becomes evident
when it is recalled that the usual treatments of
laser behavior are self-consistent field theories.
In the laser analysis each atom develops a radi-
ating dipole in an electromagnetic field due to
{i.e. , emitted by) all of the other atoms. The
radiation field produced by Rn ensemble of rRdiating


