Hartree-Fock Diamagnetic Susceptibilities*

Lawrence B. Mendelsohn^{\dagger} and Frank Biggs Sandia Laboratories, Albuquerque, New Mexico 87115

and

Joseph B. Mann

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544 (Received 30 March 1970)

The diamagnetic susceptibilities of all free atoms up to Z = 103 are calculated within the nonrelativistic and relativistic numerical Hartree-Fock approximations. Relativistic calculations are also performed for certain ions. The use of Dirac self-consistent wave functions leads to lower calculated susceptibilities. This effect becomes appreciable at very large atomic numbers; e.g., in uranium a decrease of 12.3% below the nonrelativistic value is found. For the case of the rare gases, the Hartree-Fock diamagnetic susceptibilities are found to lie above the experimental values. This is attributed to the omitted effects of electron correlation. For the noble and divalent metals, the calculated atomic-core diamagnetic susceptibilities lie above the experimental metallic values, since we have not included the paramagnetism of the conduction electrons.

I. INTRODUCTION

Accurate values of the diamagnetic susceptibilities of free atoms and ions can be utilized to obtain the elastic-scattering cross section of fast electrons from atoms at zero scattering angle¹ and x-ray coherent atomic scattering factors for small momentum transfers.^{2,3} In addition, freeionic (core) diamagnetic susceptibilities are of importance in analyzing susceptibility measurements in metals and semiconductors.⁴ From these measurements, properties of the conduction electrons, e.g., effective mass, can be obtained.

Atomic diamagnetic susceptibilities using various nonrelativistic approximate screened wave functions have previously been calculated and compared.⁵ It was concluded that the minimal-basis Slater-type-orbital analytic self-consistent-field wave functions of Clementi et al.^{6,7} give the best agreement with experiment over the range considered (up to Z = 86). However, such a minimal basis set may lead to diamagnetic susceptibilities which are greatly in error when compared to those obtained by using either nonrelativistic large-basis-set analytic calculations or numerical Hartree-Fock calculations. This is observed in Table I where we compare the calculated susceptibilities of the rare gases using more accurate wave functions with those obtained using the minimal-basis-set wave functions. Large differences are observed.

We summarize the state of the art for the calculation of diamagnetic susceptibilities of atoms by listing in Table I the results of various calculations for the rare gases. Two sets of approximations to the nonrelativistic Hartree-Fock theory by Clementi et al.^{6,7} are given in columns 3 and 4. Hartree-Fock results of Malli and Froese⁸ are given in column 5, and our present Hartree-Fock results in column 6. Relativistic Hartree-Fock-Slater results of Feiock and Johnson⁹ are in column 7, and our present relativistic Hartree-Fock results are in column 8.

In addition to these numbers, we mention that Goddard, ¹⁰ using a 12-term-basis analytical Hartree-Fock calculation, obtains a value of 1,877 for helium, and Pekeris, 11 in an "exact" nonrelativistic calculation, obtains a value of 1.890.

Malli and Froese⁸ report results for atomic numbers up to Z = 86. They did not, however, consider configurations with more than one open shell. Therefore, for some elements they used an atomic configuration different from the true ground-state configuration. The agreement between our numbers and theirs is about the same as that for the rare gases shown in Table I whenever the configurations agree. For about 20% of the elements with $Z \leq 86$ we use different atomic configurations; consequently, these results differ markedly.

Feiock and Johnson⁹ consider only closed-shell atoms and ions. In obtaining the results given in column 7 of Table I, they calculated relativistic Hartree-Fock-Slater wave functions and utilized a relativistic form for the diamagnetic-susceptibility operator. They also performed the relativistic calculations using the Van Vleck form of the diamagnetic susceptibility and found very close agreement between the two calculations. All other

2

Element

Не

Ne

Kr Xe

Rn

А

lts for rare-gas diar	nagnetic susce	ptibilities (- χ i	in units of 10^{-6}	cm ³ /mole).
	Malli-	Present	Feiock-	Present
	Froese	work	Johnson	work
Clementi's ξ'	HF	\mathbf{HF}	RHFS	RHF

1.8767

7.4224

20,6189

31.3073

49.6191

64.3409

1.882

7.101

19.16

28.81

45.00

56.44

1.878

7.426

20.628

31.321

49.641

64.368

TABLE I. Comparison of theoretical resu

1.664

5.863

18.257

27.887

38.942

59.332

entries in the table, including our relativistic calculations, utilized the Van Vleck form of the diamagnetic-susceptibility operator. The differences between our relativistic results and theirs for closed-shell ions are typical of the differences cited for the rare-gas atoms. Except for helium, their results lie below ours. This is consistent with the work of Cowan et al., ¹² where it was shown that the use of the Slater approximation for exchange in nonrelativistic Hartree-Fock calculations leads to an electron density which is smaller at larger radii than the corresponding density obtained without making this approximation.

Clementi's §

1.665

5.770

17.421

26.751

42.623

55.719

 \boldsymbol{Z}

2

10

18

36

54

86

In the present work we have calculated the numerical Hartree-Fock diamagnetic susceptibilities, both nonrelativistically and relativistically, of all neutral free atoms up to Z = 103 and of some of the important ions, using the individual orbital data obtained from the calculations of one of us.^{13,14} In this way we have treated exchange exactly and have not restricted our calculations to closedshell or one-open-shell configurations. For free atoms with Z = 95, 96, and 97, two alternate ground-state configurations were considered. For the relativistic calculations, the Dirac wave functions utilized were obtained in a self-consistent manner, with complete exchange as originally derived by Grant.¹⁵ The nucleus was taken to be finite. The Breit magnetic-interaction term was not used in obtaining the relativistic wave functions. For the nonrelativistic and relativistic calculations, the open shells were handled in the manner described by Slater.¹⁶

II. DISCUSSION OF RESULTS

The ground-state atomic configurations used in the calculations are given in abbreviated form in Table II. Only the configuration of the outer electrons is specified. For purposes of comparison, we include the experimental results quoted by Dehn and Mulay,⁵ except for Ge¹⁷ and In,¹⁸ where we have substituted what we believe to be more

accurate experimental values. For the case of the rare gases, we quote the latest experimental results of Barter et al.¹⁹ in addition to the Dehn and Mulay values. The Barter measurements are quoted after those of Dehn and Mulay and are separated from them by a semicolon. In converting our calculated results, we have used

$$-\chi = 0.791987 \times 10^{-6} \langle \sum_{i} r_{i}^{2} \rangle_{av} \text{ cm}^{3}/\text{mole}, \quad (1)$$

where r_i^2 is expressed in atomic units. The values of Avogadro's number, the fine structure constant, and the Bohr radius used to obtain the constant in Eq. (1) are taken from the 50th edition of the Handbook of Chemistry and Physics. In order to make a comparison between theory and experiment for the noble metals Cu, Ag, and Au and the divalent metals Zn, Cd, and Hg, we have calculated the free ions making up the atomic cores for these metals. The calculated diamagnetic susceptibilities for these ions all lie above the experimental values for the metals and are compared on the same line of the table. The difference can be largely attributed to the paramagnetism of the conduction electrons. We have also calculated free-ion diamagnetic susceptibilities for Si(+4), Ga(+3), Ge(+4), In(+3), Sn(+4), Tl(+3), and Pb(+4). For Ge and Pb, the ion calculations agree well with the experimental values. However, in general, for these solids it is difficult to correlate theory and experiment because of the more complicated electron behavior, the effects of paramagnetic impurities, anisotropy, etc. The same is true of the experimental results for liquids, and these are included only for purposes of completeness. The number of significant places appearing in our results indicates the computational accuracy achieved with the theoretical models we have used to calculate the diamagnetic susceptibilities.

In comparing the relativistic and nonrelativistic diamagnetic susceptibilities, we note that the effect of including relativity is to pull in the electron charge distribution, the spatial contraction becoming much larger for very large Z. Thus, for

1.8766

7.4167

20.5706

30.9705

48.4686

60.5823

Atomic		Configuration	Hartree-	-Fock		
number	Element	identification	Nonrelativistic	Relativistic	Experimental ^b	
1	Н	1s	2.3760	2.3759		
2	Не	$1s^2$	1.8767	1.8766	$1.88(g); 2.02\pm0.08$	
3	Li	2s	14.7563	14.7539		
4	Be	$2s^2$	13.7162	13,7117	9.0	
5	в	2p	12.5538	12.5487	6.70	
6	С	$2p^2$	11.1271	11.2664	6.00	
7	N	$2p^3$	9.9163	9.9541	6.00(g)	
8	0	$2p_{r}^{4}$	8.9234	8.9272		
9	F	$2p^{\circ}$	8.1052	8.0995		
10	Ne	2p°	7.4224	7.4167	$6.74(g); 6.96 \pm 0.14$	
11	Na	$\frac{3s}{2}$	21.5070	21.4595		
12	Mg	35	23.4420	23.3885		
13	Al	3p	26.5130	26.4448		
14	Si	3s ² 3p ²	25.9578	26.1706		
	Si (+4)	$2p^{\circ}$		2.2857	3.90	
15	P	$3p^{\circ}$	24.6674	24.6901	20.8, 26.6	
16	S	3∌*	23.2514	23.2151	$15.5(\alpha), 14.9(\beta), 15.4(l)$	
17	CI	$3p^{\circ}$	21.8848	21.8344	20.25(g)	
18	Ar	3 <i>p</i> °	20.6189	20.5706	19.6(g); 19.32	
19	K	4s	40.5747	40.3473		
20	Ca	$4s^2$	44.7994	44.5121		
21	Sc	$3d4s^{\prime}$	42.1058	41.8101		
22	Ti	$3d^{2}4s^{2}$	39.7263	39.4127		
23	V	$3d^{5}4s^{2}$	37.6261	37.2951		
24	Cr	$3d^{\circ}4s$	31.5656	31,3107		
25	Min	$3a^{4}s^{-1}$	34.0785	33.7121		
26	Fe	$3a^{4}s^{2}$	32.5623	32.1757		
27		$3a^{4}s^{-}$	31,1840	30.7768		
28	IN1 Cur	$3a^{-}4s^{-}$	29.9240 95.4777	29.4907		
29	Cu	3 <i>a</i> -45	20.4777	23,1470	$5 46(\alpha) - 6 - 16(1)$	
20	Cu(+1)	$3a^{10}a^2$	97 7090	14.0000	5.40(s), 0.10(l)	
30	Z_{n}	30 45 2 10	21.1030	11 6686	11 4(s) 7 8(l)	
91	$Z_{II}(\pm 2)$	$\frac{3u}{4c^24b}$	32 4540	31 9178	11.1(5), 1.0(1)	
51	$Ga(\pm 3)$	3d ¹⁰	02.4040	9 7039	21 6	
32	Ge	$4s^24b^2$	33 4018	33, 1294	21.0	
02	Ge(+4)	$3d^{10}$	00.1010	8, 2946	8.0	
33	As	$4b^3$	33.3064	32,9293	5, 5(α), 23, 7(β), 23, 0(γ)	
34	Se	$\frac{4}{4b^4}$	32.7922	32,4067	25.00	
35	Br	$4p^5$	32.0910	31,7261	36.7(g), 56.4(l)	
36	Kr	$4p^6$	31.3073	30,9705	$28.8(g); 29.0 \pm 0.4$	
37	Rb	55	54.0493	52.9025		
38	\mathbf{Sr}	$5s^2$	60.2404	58.8619		
39	Y	$4d5s^2$	58.1241	56.8798		
40	\mathbf{Zr}	$4d^25s^2$	55.8727	54.5983		
41	Nb	$4d^45s$	48.8166	47.9251		
41	Mo	$4d^{5}5s$	46.9921	46.1021		
43	Те	$4d^{5}5s^{2}$	50.0972	48.7138		
44	Ru	$4d^75s$	43.8654	42.8890		
45	Rh	$4d^{8}5s$	42.4997	41.4701		
46	Pd	$4d^{10}$	33.7549	34.0409		
47	Ag	$4d^{10}5s$	40.0681	38.9317		
	Ag(+1)	$4d^{10}$		27.2404	19.5(s), 24.0(l)	
48	Cd	$4d^{10}5s^2$	43.0532	41.4619		
	Cd(+2)	$4d^{10}$	10 -100	23.0768	19.8(s), 18.0(l)	
49	In	$5s^{*}5p$	48.7106	46.8509	10^{-2}	
F 0	ln (+ 3)	$4a^{2}$	EA 4999	20.1089	10.3(8)	
50	sn	55 ⁻ 5p ⁻ 1 1 ¹⁰	ə u. 4322	40.1007	37.0(0ray) 4.5(1)	
	Sn(+4)	40		T1.0901	JI. U (BIAY), 4. J (1)	

TABLE II. Calculated and experimental diamagnetic susceptibilities (- χ in units of 10⁻⁶ cm³/mole).^a

Atomic		Configuration Hartree-Fock			
number	Element	identification	Nonrelativistic	Relativistic	Experimental ^b
51	Sb	$5b^3$	50,8709	49,3531	99(s) = 2.5(1)
52	Те	$5p^4$	50,7190	49.3442	39.5(s) - 6.4(1)
53	I	$5p^{5}$	50, 2561	49,0040	88.7(10, 8)
54	Xe	$5p^6$	49.6191	48,4686	43 9(g): 45 5+0 7
55	Cs	65	77 5201	74 1341	10.0 (g), 10.0 10.1
56	Ba	$6s^2$	86.0378	82 0276	
57	La	5d	82 6910	79 9452	
58		5u 145 d	03.0310 91 0014	70.0400	
59	Dr	415u 415 ³	81.9014 80.5657	76.0290	
60	Nd	41	00.0007	70.2710	
61	Dm	41	78.9922	74.5600	
61	Pm	41	77.4217	72.9319	
62	Sm	$4f^{\circ}$	75.9655	71.3776	
63	Eu	4 <i>J</i> ,	74.5766	69.8805	
64	Ga	$4f^{+}5d$	73.0128	68.5458	
65	Tb	4f''5d	71.7646	67.2322	
66	Dy	4f 10	70.7586	65.7364	
67	Ho	$4f^{11}$	69,5875	64.4562	
68	Er	$4f^{12}$	68.4617	63.2204	
69	Tm	$4f^{13}$	67.3774	62.0260	
70	Yb	$4f^{11}$	66.3324	60.8704	
71	Lu	$4f^{14}5d$	65.2812	60.5511	
72	Hf	$5d^2$	63.8922	59.1646	
73	Ta	$5d^3$	62.5007	57.7222	
74	W	$5d^4$	61,1599	56.3161	
75	Re	$5d^5$	59,8812	55.0627	
76	Os	$5d^6$	58.6648	53,8209	
77	Ir	$5d^7$	57.5075	52,6134	
78	Pt	$5d^{9}6s$	51.8899	48.5488	
79	Au	$5d^{10}6s$	50,9365	47.4836	
	Au (+1)	$5d^{10}$		37 6089	28.0(g) $34.0(1)$
80	Hg	$5d^{10}6s^2$	54.3522	49 2436	78 3(a)
	Hg(+2)	$5d^{10}$	01.0011	32 8769	24.1(c) + 22.4(1)
81	T1	$6s^26b$	60 8168	54 3681	24.1(3), 33.4(1)
	T1(+3)	$5d^{10}$	00.0100	29. 4250	50.00
82	Ph	$6s^26b^2$	63 2501	56 5749	30.90
02	$Ph(\pm 4)$	$5d^{10}$	03.2301	06 7100	22.00
83	Bi	66 ³	61 0000	20.7428	23.00
84	Po	66 ¹	64.2002	58,9101	280.1(s), 10.5(l)
85	Δ f	0p 6b ⁵	64.0399	60,0243	
86	Dn	0p 6+6	64.0083	60.4926	
87	TUI En	0 <i>p</i>	04.3409	60.5823	
89	F F Do	75 77-2	95.0350	84.0324	
80	ha A c	15	105.2005	92.3171	
09	AC	$\frac{6a}{a^2}$	103.2580	91.9727	
90	1n Da	$6d^2$	101.1773	90.3145	
91	Pa	$5f^{-6}d$	99.6607	87.8586	
92	U	5f "6d	98.0075	85.9921	
93	Np	5f''6d	96.4357	84.2273	
94	Pu	$5f^{0}$	95.0166	81.6786	
95	Am	$5f^{0}6d$		80.9466	
0.6	Am	5f'	93.5852	80.1014	
96	Cm	5f'6d	92.1321	79.5182	
0.5	Cm	$5f^{\circ}$		78.5620	
97	BK	$5f^{\circ}6d$	90.8151	78.1524	
	Bk	$5f_{10}^{v}$	90.8941	77.0665	
98	Cf	$5f^{10}$	89.6260	75.6145	
99	Es	$5f^{11}$	88.4042	74.2037	
100	Fm	$5f^{12}$	87.2261	72.8308	
101	Md	$5f^{13}$	86.0887	71.4947	
102	No	$5f^{14}$	84,9893	70.1920	
103	Lw	$5f^{14}6d$	83.8783	71.3771	

TABLE II. (continued).

^aThe letters g, l, and s signify gas, liquid, and solid, respectively; α , β , and γ signify solid phases. ^bThe experimental results are from Ref. 5, with the exception of the second set of rare-gas results which are from Ref. 19 and the Ge and In results which are from Refs. 17 and 18, respectively.

uranium (Z = 92), use of Dirac wave functions leads to a decrease of 12.3% in the calculated diamagnetic susceptibility. At Z = 54 (xenon), relativistic effects account only for a 2.3% reduction in the calculated diamagnetic susceptibility.

In the case of the rare gases where experiments have been carried out many times with free atoms, ²⁰⁻²³ it appears that nonrelativistic Hartree-Fock results for the diamagnetic susceptibilities are consistently larger than the experimental values and do not fall within the error bars quoted by Barter. Including relativistic effects does not alter this conclusion, although it does bring theory and experiment for xenon into slightly better agreement. We note that the above observation is diametrically opposed to that obtained by examining the results of the nonrelativistic minimalbasis Hartree-Fock calculations,⁵ where the susceptibilities for the rare gases consistently fall below the experimental values. Dawson²⁴ has found that the use of configuration-interaction wave functions which include electron correlation leads to charge distributions which are less extensive radially than those of the Hartree-Fock model. Therefore, we expect that calculations of diamagnetic susceptibilities in which wave functions more accurate than those of the Hartree-Fock model are used will be smaller than the Hartree-Fock results and in better agreement

*Work supported by the U. S. Atomic Energy Commission.

[†]Permanent address: Polytechnic Institute of Brooklyn, 333 Jay Street, Brooklyn, N. Y. 11201.

¹J. A. Ibers, Acta Cryst. 11, 178 (1968).

- ²D. R. Chipman and L.D. Jennings, Phys. Rev. <u>132</u>, 728 (1963).
 - ³L. B. Mendelsohn (unpublished).
 - ⁴D. K. Stevens *et al.*, Phys. Rev. <u>100</u>, 1084 (1955).
- ⁵J. T. Dehn and L. N. Mulay, J. Chem. Phys. <u>48</u>, 4910 (1968).
- ⁶E. Clementi and D. L. Raimondi, J. Chem. Phys.
- 38, 2686 (1963).
 ⁷E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. <u>47</u>, 1300 (1967).
- ⁸G. Malli and C. Froese, Intern. J. Quantum Chem. IS, 99 (1967). ⁹F. D. Feiock and W. R. Johnson, Phys. Rev. <u>187</u>,
- ⁹F. D. Feiock and W. R. Johnson, Phys. Rev. <u>187</u>, 39 (1969).
 - ¹⁰W. A. Goddard, J. Chem. Phys. <u>48</u>, 1008 (1968).
 - ¹¹C. L. Pekeris, Phys. Rev. <u>115</u>, 1216 (1959).

with the rare-gas experimental results. The relativistic Hartree-Fock-Slater results of Feiock and Johnson⁹ do fall within the error bars quoted by Barter for the rare gases except for helium. As noted before, the effect of using the Slater exchange approximation is to lower the electron density far from the nucleus. It appears that for the calculation of r^2 in the rare-gas atoms up to xenon, this added approximation compensates greatly for the omitted effects of electron-electron correlation.

In Table II, the experimental atomic results quoted for Hg, Br, and Cl are obtained by taking one-half the value measured for the diatomic gases. Outside of Cl, it would appear that taking two times the theoretical atomic value to estimate the diamagnetic susceptibility for the diatomic molecule greatly underestimates the experimental results. We would expect that an extension of the susceptibility calculation method of De La Vega and Hameka²⁵ using LCAO-MO-SCF wave functions should lead to improved agreement between theory and experiment for diatomic gases.

ACKNOWLEDGMENTS

We wish to thank E. J. McGuire and T. A. Green of Sandia Laboratories for helpful discussions.

- ¹²R. D. Cowan, A. C. Larson, D. Liberman, J. B. Mann, and J. Waber, Phys. Rev. 144, 5 (1967).
 - ¹³J. B. Mann, LASL Report No. 3691, 1968 (unpublished).
 ¹⁴J. B. Mann (unpublished).
- ¹⁵I. P. Grant, Proc. Roy. Soc. (London) <u>A262</u>, 555 (1961).
- ¹⁶J. C. Slater, Quantum Theory of Atomic Structure

(McGraw-Hill, New York, 1960), Chaps. 13 and 17.

- ¹⁷R. Bowers, Phys. Rev. <u>108</u>, 683 (1957).
- $^{18}\text{G.}$ Busch and S. Yuan, Physik Kondensierten Materie <u>1</u>, 37 (1963).
 - ¹⁹C. Barter *et al.*, J. Phys. Chem. <u>64</u>, 1312 (1960).
- ²⁰A. P. Wills and L. G. Hector, Phys. Rev. <u>23</u>, 209 (1924).
 - ²¹G. G. Havens, Phys. Rev. <u>43</u>, 992 (1933).
 - ²²K. E. Mann, Z. Physik <u>98</u>, 548 (1936).
 - ²³L. Abonnenc, Compt. Rend. <u>208</u>, 986 (1939).
 - ²⁴B. Dawson, Acta Cryst. <u>14</u>, 1117 (1961).
- ²⁵J. R. De La Vega and H. F. Hameka, Physica <u>35</u>, 313 (1967).