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break in d' versus E in going 400-500 eV (see
Table II) is suggestive that the data from the two
different laboratories are not totally consistent.
If so, the problem of obtaining accurate absolute
normalizations for differential cross sections
may still be present.

W'ith the above test case rather satisfactorily
accounted for by the simple model described in
Sec. II, we expect now to consider the more gen-

eral problem of looking for an "optical model" for
electron scattering by atoms. The problem is
more complex for larger-Z atoms both because
the static potential is generally less well known
and because existent data are perhaps less satis-
factory than for He. Preliminary results indicate
that the considerations given in Sec. II should be
adequate to carry us quite far into the general
problem.
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We discuss the elastic scattering of electrons from helium atoms in terms of an energy-
dependent central-potential model having the form

e gr p2 e~r
V(x) =2Z lim &2 2

+ p2 2 ~ 2 d2)2&A —p —p x (& +d

where p, n are fixed constants (for He, p = 3.375 and e =1.39), and d is an energy-dependent
phenomenological parameter. The method of partial waves is adapted for a generalized Yukawa
potential and a polarization potential. Phase shifts and scattering cross sections are calcu-
lated from our potential model using the first Born approximation and a modified form of it.
We develop an effective-range theory for a generalized Yukawa and a, polarization potential,
and apply it to generate a set of energy-dependent electron-helium phase shifts in the region
0-500 eV. Recent experimental angular distribution data in the region 100-500 eV are rather
satisfactorily accounted for by our potential model. Our results compare favorably with those
of LaBahn and Callaway.

I. INTRODUCTION

The general aspects of the elastic scattering of

electrons from helium atoms have been discussed
in Paper I. ' Here we examine the same problem
within the framework of the first Born approxima-
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tion and a modified form of it.
This particular approach to the study of elastic

scattering of electrons from helium is motivated
by a number of objectives. In the first place, the
approach is intended to facilitate the transfer to
atomic physics of techniques developed for high-
energy nuclear physics, and vice versa. The
possibility of doing this rests in part upon certain
physical similarities between electron-helium
scattering in the 0-500-eV region and nucleon-
nucleon scattering in the 0-400-MeV region. For
example, in both cases the s waves have large
(and positive) phase shifts, while all other phase
shifts are small. In addition, the electron cloud
in the helium atom and the proton charge cloud
are both, to a good approximation, distributed ac-
cording to an exponential function. Thus the
Coulomb interactions between an external electron
and these clouds have the same functional form.
This similarity will serve as the starting basis
of this work.

Q

(r'+d')' '

Thus it consists of a generalized Yukawa poten-
tial, which provides the major attraction at short
ranges, and a polarization potential, which pro-
vides the major attraction at long ranges. The
parameters p, , n are fixed: p. =3.375 ao, a
= 1.39 ao for He; the parameter d is treated phe-
nomenologically.

III. BORN AMPLITUDES FOR YUKAWA AND
POLARIZATION POTENTIALS

The scattering amplitude in Born approximation
is given by the well-known formula

fe(K) = -K ' J r sinKr V(r) dr (4)

where K = 2k sin28

Here V(r) is the scattering potential (in rydbergs}
and K is the momentum transfer. The wave num-
ber k is defined by

II. ELECTRON-HELIUM SCATTERING POTENTIAL
E1/2 (5b}

We work in atomic units, i.e. , all radial dis-
tances are in units of the Bohr radius ao, and all
energies are in rydbergs.

By solving Poisson's equation one can show that
the interaction of an electron with an exponential
cloud of Z electrons is given by

V,(r) = 2Z/r —(2Z/r)(1+ ~ pr)e,
To establish contact with recent work on meson

clouds we note that Eq. (1) may be expressed as
the limit of a "well-regulated superposition of
three Yukawa functions, "

V,(r) = lim lim J(r)
A p U 0

-Ur A2 U2 Pr
where J(r) = 2Z'

y A' —p, y

(2)

The relationships between the electron-helium
and nucleon problems will be discussed further
in Sec. X.

Our analysis will be based upon the Born ap-
proximation for electron scattering by the elec-
tron cloud potential given by Eq. (2), the elec-
tron nuclear potential —2Z/r, and the polarization
potential —n(r +d ) Explicitly t.he scattering
potential is

where E is the energy in rydbergs, and the units
of k are ao-'. From Eq. (3) we see that the scat-
tering potential consists of (i) a static term
S(r), which is a sum of Yukawa functions,

V,(r)=Z, (-C,.)e ""/r, (6)

where C; and p, ; characterize the strength and
range of the Yukawa components, and (ii) a, sum
of polarization potentials of the form

Vp(r) = Z( —n, /(r'+ d', )',
where n; and d; characterize the strength and

range of the polarization components. For the
Yukawa components, Eq. (4) gives

fe(K) =Z, C,/(K'+ p',.),
whereas for the polarization components

f, (K)=Z, ,'vn, e '~/d, —.

The Born amplitude for the generalized Yukawa
of Eq. (2) is

f,'(K) = 2Z(K'+2q')/(K'+ i '}' .
IV. PARTIAL-WAVE PROJECTIONS OF YUKAWA

AND POLARIZATION POTENTIALS

Both the Yukawa and polarization potentials
have convenient partial-wave projections. These
may be evaluated using

fs, ,(k) = —',J fs(K)P, (cos8)d(cos8)

where P, (cos8) is the Legendre polynomial. For
the Yukawa components, Eq. (11) gives

A
V(r) = 2Z lim

A —p,

2

fa, y(1)= ~'
11a Qr(1+ (12)
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where Q, is the Legendre function of the second
kind. 3

For the polarization components, Eq. (11) gives
1/2

fs, (k)= g '
~ exp(-2'~'kd, t)

i + p

Now it may be shown that for any /&0,

Q D„,(an+2)-'=O, (21)

Q D„,(2n+ 3) = —[(2/+ 3)(2/+1)(2/ —1)] '. (22)
t/= p

xP, (1 —t )tdt

The I egendre polynomials may be expressed in
terms of the hypergeometric series according
to4

J', (1 —t ) =E(-/, /+1; 1; 2to)

The formulas (21) and (22) can be readily verified
for small. values of / &0. Inserting (21) and (22)
into (20) we obtain

mb)'p2

(2/+ 3)(2/+ 1)(2/ —1)

n=p
(ton/an)

mo, ~ ~(an+2, 2kd;)
ad "' (2kd )'""'' n=O

where the coefficients D„,are given by

D„,= [(-1)"/(n 1) ] [(/+ n) I/(/ —n) l]

Substituting (14) into (13) we obtain

(14)
The result (23) agrees with the modified effective
range theory of O' Malley, Spruch, andRosenberg';
however, they arrived at this result from rather
different considerations, by solving Schrodinger's
equation with a potential proportional to ~- . It
may be noted that our result is independent of d.

Considering the case l = 0 we have D„,= Dpp = 1,
and (20) gives

tan5 = 1-—k+4'k +O(k'))
ma. k 4d
4d 3

where y(a, y) is the incomplete y function. ' Both
the incomplete y function y(a, y) and the Legendre
function Q, (x) may be computed very rapidly from
r ecurrence relations.

The phase shift 5, is related to the partial-wave
projections according to

no.k/4d
1+,—d k + ~~d'k'+ O(k')

for sufficiently small k. Setting a = —(vn/4d),
Eq. (24) becomes

(24)

tanoi=kfs, , +kfs, (17)
tan 5o = k/[&o +a,k +a ok + O(k')] (25)

V. LOW-ENERGY SCATTERING BY A POLARIZATION
POTENTIAL

For a single polarization potential, Eqs. (16)
and (17) give

where ao = —1/a

a, = mo. /3a 2

a2= —
16 aa1

(28)

(27)

(28)

no, k ~ y(2n+2, 2kd)
i ad Z ni (akd)2n+ 2 (18)

Using the expansion (19) one may expand tan6, as
a power series in k; Eq. (18) gives

web 1 2kd
2n+ 2 an+ 3

where the coefficients D„,are given by (15). Now

the incomplete y function y(a, y) may be expanded
as a power series in y:

a+@

(18)

The expansion (25) and the coefficients (26) and

(27) are formally the same as those obtained by
O' Malley, Spruch, and Rosenberg. It may be noted
that their analysis also yielded a term proportional
to k' logk. The appearance of a term linear in k
is a characteristic of the long-ranged nature of
the potential, as has been discussed by Spruch,
O' Malley, and Rosenberg.

If one wishes to consider a superposition of
polarization potentials, then in the low-energy
limit tan6, will consist of a sum of terms of the
form (25) in the case of the s wave, or a sum of
terms of the form (23) in the case of p, d, f, . . . ,
waves.

VI. LOW-ENERGY SCATTERING BY A YUKAWA
POTENTIAL

4u2e2 .o(s)) .
2n+ 4

(ao) For a single Yukawa potential, Eqs. (12) and
(17) give
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tan5, = (C/2k)Q, (z), (29)

where a = 1+ p. '/2k (so)

In the low-energy limit we have z» 1; then using
the following property of the I egendre function:

l~ 1
Qg(z)= (,i i „i1+0 o, a»1, (31)z'

effective-range theory to the low-energy phase
shifts, the results of the Born approximation to
the high-energy phase shifts, and using a suitable
function to interpolate between the low- and high-
energy regions.

For the s wave we take

2 -Ar
V(r)=4lim —- o, — +

A —p.

we obtain the effective range expansion

tan5, = k"' '/[ao+a, k'+ 0(k')]

where ao ——[(2l + 1) t t/(2l) ' '] [V
'' /C]

(32) (r'+ d')'

For the higher partial waves we take

V(r) = —o./(r'+ d')'

(s6)

(37)

tan5o =Ck/p, '

to lowest order in k.

(35)

VII. PARAMETRIZATION OF LOWER-PARTIAL-WA VE
PHASE SHIFTS

%e may, of course, accept the numerical val-
ues of the lower-partial-wave phase shifts such
as have been obtained in the detailed analyses of
LaBahn and Callaway and Callaway et al. ' Al-
ternatively it would be interesting to see if such
phases can be chara. cterized analytically. Our
approach consists in applying the results of our

a, = [(2l + 2)/ p, '] a o

The form (32) is characteristic of nuclear forces,
which are short ranged; we note in particular that
it does not contain a term linear in k. %e see that
at sufficiently low energies tan6, is proportional
to k '' for all partial waves. This may be con-
trasted with the corresponding result for a polar-
ization potential, where tan5, is proportional to
k for all partial waves except the s wave.

If one wishes to consider a superposition of
Yukawa potentials, then in the low-energy limit
tan6, will consist of a sum of terms of the form
(32). More generally, if one considers a super-
position of Yukawa and polarization potentials,
then at sufficiently low energy, tan6, will consist
of a sum of terms of the form (32) together with

a sum of terms of the form (23) or (25). In this
case it may be noted that at sufficiently low en-

ergy the contributions to the s wave from both
polarization and Yukawa potentials are proportion-
al to k, whereas for p, d, .. . , waves the polariza-
tion potential contributes a term proportional to
k while the Yukawa contributes a term propor-
tionaltok'for the p wave, k for the d wave, and

so on; thus the polarization potential gives the
dominant contribution to p, d, ~, waves at suf-
ficiently low energy.

For future use we note that Eqs. (32) and (33)
give for the s wave

tan 5o = kf a, o+ kfa, o

whereas for the potential (37),

tan5g = kfa,

(38)

(s9)

The quantities on the right-hand sides of (38) and

(39) are given by Eqs. (12) and (16).
The low-energy analysis performed in Secs. V

and VI suggests that we consider the following
form for the s wave:

k 8k
tanbo —— —-- -- — —

2 +—2 I k

(40)

For higher partial waves we use

~o.k'I(k') P 2
tan5g

( )( )( )
+kfa ~ [1 I(k )] (41)

For a convenient interpolation function we use

f(k') = (X+ I)/[X+ exp(Pk')], (42)

where X, P are adjustable constants. The effective
range term in (40) is composed of a contribution
from the polarization potential as given by (25)-
(27) and a, contribution from the Yukawa potentials
as obtained by applying Eq. (35) to the double

Yukawa in (36). The effective range term in (41)
is taken from Eq. (23). The interpolation function

has the special property that for small values of
k it approaches unity; then the expressions (40)
and (41) reduce to effective range expansions.
For large values of k it approaches zero; then the
expressions (40) and (41) reduce to the Born ex-

Here n = 1.39 and p, = 3.375. This is equivalent to
the assumption that the short-ranged part of the
potential only affects the s wave. In the numerical
computations we set A= 1.001', and use double
precision arithmetic.

The Born phase shift from the potential (36) may
be expressed as
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~II. MODIFIED QORN APPROX'

115

983 P = 0.235, d = 1.4825;s wave: a= l.
P wave: P=0.789, d=0. 6101;

d wave: P=0.462, d = 0.6886
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(43),(k, 8) =E (2f + l)A, (k)Pg(cose)

in'5 k . (44)re A (k) = (cos6, sin5, +i sin 5,

coefficients A. , one may use pIn calculating the coe
e theoreticale eriment or from someshifts from experi
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the calcula-with e eriment e.g. , exp
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where fc(k, 8) represents a low-energy correction
term having the form

f (k, 8)=Z (2l+ I)[A,(k) -8,(k)]P,(cos8), (49)

where N denotes the order of the highest partial
wave to be corrected. In the calculations which
follow we correct for s, p, and d waves. The func-
tion fc is expected to be important at low energy
and to approach zero at high energy.

The differential cross section may be calculated
using

d
—„=Its(» 8)

I
=fa+2fs@fc+ Ifcl

where @fc denotes the real part of fc.
The total cross section is given by

do'
a = 2m l~

—sin& d8
gp dQ

(50)
OJ o

D

The modified Born approximation technique is
useful as an alternative to solving Schrodinger's
equation. It has the advantage that it provides an
analytic formulation of the problem. However,
it clearly becomes unpractical in situations where
many partial waves undergo large phase shifts.

IX. NUMERICAL RESULTS

Using the modified Born approximation tech-
nique to calculate differential cross sections from
our potential model, we have made a direct com-
parison with the experimental angular distribu-
tions at energies 100, 150, 200, 300, 400, and
500 eV. Treating the polarization potential phe-
nomenologically, we find that in order to repro-
duce the detailed features of the experimental
angular distribution data, it is necessary to re-
adjust the value of the range d at each energy; in
other words we require the polarization potential
to be energy dependent. We find furthermore that
the variation of d with energy follows a square-
root law:

d =E/200 (52)

where E is the energy in eV. Our results are dis-
played in Fig. 2. The corresponding total cross
sections are given in Table I. It is seen that they
are very close to the values obtained by LaBahn
and Callaway in their "extended polarization po-
tential approximation, " the differences being less
than 3% in every case. Included in Table I are the
values obtained from our potential model using
just the ordinary Born approximation. At 100 eV
the modified Born approximation introduces a sub-
stantial modification to the total cross section; the
modification diminishes with increasing energy,

IO

I I

20 50 40

8 ( degrees)

50 60

becoming almost zero at 500 eV.
The experimental angular distributions in the

region 100-400 eV have been taken from Vriens,
Kuyatt, and Mielczarek' subject to correction.
The data in Table II are the renormalized values
for the differential cross sections at 5'." The
remaining angular data are obtained by renorma-
lizing the data of Vriens et al . to match the 5'
values listed above. The experimental angular
data at 500 eV are taken from Bromberg. '

TABLE I. Total cross sections in units of ao for the
elastic scattering of electrons from helium.

Energy
(eV)

100
150
200
300
400
500

Born

4.205
1.975
1.213
0.655
0.442
0.333

Modified
Born

2.264
1.408
0.995
0.608
0.430
0.331

LaBahn and
Callaway

2.230
1.377
0.977
0.609
0.441

FIG. 2. Differential cross sections for the elastic
scattering of electrons from helium. The circled points
are the experimental data. The solid curves are the
theoretical values from the potential model of this paper.
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TABLE II. Renormalized values for differential
cross sections at 5'.

E{eV)
der/dQ {a0/sr)

100
2.34

150
1.98

200
1.64

300
1.27

400
1.04

In Table III we list the phase shifts from our
energy-dependent potential model. They have
been calculated in ordinary Born approximation
on the one hand, and by solving Schrodinger's
equation on the other. They are quite consistent
with the values of LaBahn and Callaway.

X. DISCUSSION AND CONCLUSION

As we indicated in the Introduction there are
several purposes to this study. In part we wish
to advance our understanding of electron-atom
elastic scattering and electron-helium in particu-
lar, and in part we wish to facilitate the transfer
of mathematical techniques between atomic physics
and high-energy nuclear physics. In the former
context we must note that the potential [Eq. (1)]
corresponding to an exponential charge density is
very restrictive and only works well for very light
atoms. The potential used by Green et a/. " is
more versatile and can be used to treat heavy
atoms. We have established, however, that a sum
of two potential terms of the type given by Eq. (1)
can approximate rather well the analytic potential
of Ref. 13.' Thus it is possible to deal with more
complex atoms by simply doubling the number of
Yukawa components.

One must then face the fact that for heavy atoms
the first Born approximation breaks down as the
electron-atom potential becomes stronger, and
hence the modification procedure used here would
become more cumbersome. Here the Schrodinger
equation approach, with polarization corrections
for the higher partial-wave phase shifts based
upon the Born approximation, still should preserve
its usefulness.

In recent years several people have discussed
the analogs between the structure of elementary
particles and the structure of atoms. We have
already noted here the similarity of the interaction
involved in elastic electron scattering from helium
and elastic scattering of GeV electrons by protons.
Recent phenomenological analyses of inelastic
scattering of electrons by protons involving both
discrete and continuous energy loss' &

' also bear
a resemblance to analyses of inelastic scattering
of electrons by helium with discrete and contin-
uous energy loss. ' Undoubtedly it would be fruit-
ful to both fields to pursue further the analogies in
detail.

While similar in magnitude, the array of e-He
phase shifts in the 0-500-eV range is much sim-

pier than N-N phase shifts in the 0-400-MeV
range, which have a marked dependence on the
quantum numbers of the N-N system. In all like-
lihood when polarization experiments are carried
out, the e-He system will also show a spin-orbit
dependence, so that the differences in degree of
complication will be reduced. Here we might
note that Eqs. (40)-(42) in effect are a semiem-
pirical energy-dependent set of phase shifts for
the e-He system which join the effective range
theory to the Born region. They are analogous to
the corresponding energy-dependent phase-shift
formulations for the N-N problem which have pro-
vided a useful way of analyzing and parametrizing
experimental data.

Finally we should comment here on the polar-
ization potentials which are recognized and are
becoming moderately well understood in atomic
scattering. The rather soft structure of protons
suggests that corresponding polarization phenom-
ena —perhaps more analogous to what arises in
He-He scattering —should occur in the N-N prob-
lem. However, little effort has been given to the
introduction of an explicit polarization potential
into the N-N interaction problem.

E 100 eV 150 eV 200 eV 300 eV 400 eV 500 eV

0 0.8946 0.7670
1.3739 1.0611
1.1118 0.9628

1 0.4367 0.3886
0.5742 0.4625
0.3469 0.339V

2 0.1869 0.1921
0.2119 0.2107
0.1410 0.1527

3 0.0834 0.0976
0.0880 0.1024
0.0686 0.0811

4 0.0412 0.0526
0.0422 0.0539
0.0371 0.0473

5 0.0227 0.0304
0.0229 0.0308
0.0216 0.0202

6 0.0137 0.0189
0.0138 0.0190
0.0135 0.0189

7 0.0090 0.0125
0.0090 0.0125
0.0089 0.0128

8 0.006 20 0.008 70
0.006 21 0.008 71
0.006 1V 0.008 98

9 0.004 47 0.006 31
0.004 47 0.006 32
0.004 45 0.006 52

10 0.003 33 0.004 74
0.003 33 0.004 74
0.003 31 0.004 88

0.6954
0.9142
0.8678

0.3544
0.4060
0.3342

0.1868
0.2012
0.1592

0.1022
0.1065
0.0888

0.0585
0.0600
0.0543

0.0353
0.0358
0.0350

0.0225
0.0227
0.0234

0.0152
0.0152
0.0162

0.0107
0.0107
0.0115

0.007 82
0.007 84
0.008 46

0.005 91
0.005 92
0.006 37

0.6198
0.7696
0.7540

0.3194
0.3551
0.3258

0.1771
0.1879
0.1672

0.1033
0.1070
0.0982

0.0630
0.0644
0.0631

0.0401
0.0406
0.0429

0.0266
0.0268
0.0301

0.0184
0.0185
0.0217

0.0133
0.0133
0.0159

0.0099
0.0099
0.0119

0.00V 5V

0.007 59
0.009 11

0.5772
0.6931
0.6872

0.3035
0.3326
0.3187

0.1733
0.1828
0.1720

0.1041
0.1076
0.1042

0.0651
0.0665
0.0688

0.0424
0.0430
0.0481

0.0287
0.0289
0.0348

0.0201
0.0203
0.0257

0.0146
0.0147
0.0194

0.0110
0.0111
0.0148

0.0085
0.0085
0.0115

0.5478
0.6429
0.6417

0.2943
0.3194
0.3121

0.1724
0.1811
0.1751

0.1058
0.1094
0.1086

0.0674
0.0689
0.0729

0.0444
0.0450
0.0518

0.0302
0.0305
0.0382

0.0213
0.0214
0.0289

0.0155
0.0156
0.0222

0.0117
0.0117
0.0172

0.0091
0.0091
0.0136

TABLE III. Partial-wave phase shifts in radians for
electron-helium scattering. In each block the first row

gives the Born phase shifts and the second row the Schrb-
dinger phase shifts from the energy-dependent potential
model of this paper. The third row gives the values from
the calculations of LaBahn and Callaway {Ref. 7).
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We see that there is much that atomic scattering
can borrow from and contribute to high-energy
nuclear physics. Clearly, because of costs, atoms
and their excited states are more accessible to
many experimental physicists than are nucleons
and their excited states. It is hoped that this
work, which explores only a few of the connec-
tions, will serve a useful function towards fur-

thering the theoretical interchange between the
two fields.
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Effects of final-state correlation on the photoionization cross sections for the 3p shell in ar-
gon and the 4d shell in xenon are calculated by the reaction-matrix method, starting from the

Herman-Skillman model Hamiltonian, for photoelectron energies 0 «e «1.2 a.u. and 0 «e «2.52

a.u, , respectively. The results for argon complement Hartree-Fock and other final-state cor-
relation calculations; the results for xenon are the first ab initio calculations of this kind. Al-

though length and velocity forms of the transition matrix element agree in the initial local-field

approximation, they are shown to diverge necessarily when only the final state is improved.

I. INTRODUCTION

Independent electron theory, whether based on

a local central-field potential or a nonlocal (Har-
tree-Fock) potential, fails conspicuously to ac-
count for the photoionization cross section of the

3P shell in argon and the 4d shell in xenon near
threshold, where electron correlation is impor-

tant. ' For argon, Hartree- Fock calculations '3

fail to reproduce the experimentally observed
knee in the cross section profile, while for both

argon and xenon, calculations of the cross sec-
tion using the Herman-Skillman' (HS) local poten-
tial give shifted narrow peaks two or more times
larger than experiment. Fano and Cooper have

classified correlation effects in the continuum as


