
PHENOMENOLOGICAL MODEL FOR He

TABLE III. Numerical properties of the model.
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Critical-point parameters
&os ~Cs &C

Polynomial coefficients
5

&(n) = Q a,p'
S "- 'I

Singular term parameters

Critical exponents

T~=3.3090'K p~=0.041341 gm/cm~ p~=3.3764x10 ~~ erg

a& =- 3.912 &&10 erg(cm /gm) a2= 5.995 X10 erg(cm3/gm)

a3 —4.7885 && 10 erg(cm /gm) 3
a4 = 5.5925 & 10 erg(cm /gm)

a& =1.0 &&10 erg(cm /gm)

A, = 1.0 X10 erg(cm /gm)" x = 4.01
p, = 0.041341 gm/cm3

n=0 (no log) e'=0.333 &=1 p'=1
P = 0.332 5 = 4.01

range many-body interactions must be considered
if the model is to be solved. However, the only
analogous short-range model of a many-body
system which can be solved exactly at the present
time is the two-dimensional Ising model. "
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Eigenphases near a resonance are shown to follow an equation which is a simple general-
izationof the usual equation for the behavior of the phase shift near a resonance in single-
channel scattering. The parameters in the equation are shown to have a simple graphical
interpretation.

Burke, Cooper, and Ormonde' have presented
extensive calculations of excitation cross sections
for e -He collisions. The cross sections exhib-
ited several resonances, whose effect on eigen-

phase shifts was studied using a formula [Eg. (9)]
derived by the author. The influence of resonances
on eigenphase shifts was studied earlier by Goebel
and McVoy for a specific model. However, they
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concluded that the resulting eigenphase curves
were so complicated that a study of resonances
using eigenphases was not fruitful. The compli-
cations arise because all eigenphases increase
rapidly near a resonance. As one eigenphase in-
creases it will cross another eigenphase curve.
The crossing is actually avoided, however, and
both eigenphases exhibit sharp bends near a Ies-
onance, as in Fig. 1. In this paper, we will show

that eigenphase curves near a resonance, includ-
ing the effects of crossing, are described by a
simple generalization of the expression

E —E„=i I' cot[50 —5(E)],

valid for single-channel scattering. To a certain
extent, the simplicity of the single-channel theory
is preserved in the generalization of Eq. (1).
Since the analysis of Burke et a/. ' indicates that
a study of resonant eigenphases is useful, it seems
desirable to present the derivation of Eq. (18) of
their paper. In this regard, Lu and Pano' have
shown that the quantum defects of three Hydberg
series of Xe converging to the 5p P,&3 state of
Xe' are perturbed by states from Hydberg series
converging to the 5p' P,&, state, and that the per-

turbation is described by exactly the same equa-
tion as the perturbation of eigenphases near a res-
onRnce.

The derivation starts with the expression4 for
the 8 matrix neRl R 1esonRnce

S = Sio~ [1—i I"y'xy/(E —E„+pi 1')]SP,
where 80 is the nonresonant Smatrix and is as-
sumed to vary slowly with energy near the reso-
nance pole. The elements of the vector 8~~~3 y'
give the amplitude for the resonance to decay into
the physical channels and 1" is the total decay
width. The eigenphases are determined by dlag-
onalizing S. The matrix 8 is diagonalized in two
steps. First 8 is transformed by a unitary trans-
formation Uo, which diagonalizes So. Equation (2)
becomes

S'= U', SU, = e"o [1-i 1"y yx/(E-E„+'i I')]e"o,
(3)

where t."oy =e"0 V' y' is a vector whose elements
give the amplitude for the resonance to decay into
the eigenchannels of So, and e"0 is a diagonal ma-
trix whose elements are the eigenvalues of S~
Substituting Eq. (3) into the eigenvalue equation

S'b, =e"'e, (4)

gives

e"'~s, =e"'ob, ale"oyer, [(E-Z„+-.'ir]', (5)

where a& = y 8"0.bJ . (6)

Equation (5) gives b& in terms of a&, and upon sub-
stituting the expression for b~ from Eq. (5) into
Eq. (6), we find

a, =Xi y', [exp 2i(S, —50,)] 'a, [(E-&„+-,'il')] '.
(7)

In order for Eq. (7) to hold, the coefficients of a&

on the left- Rnd right-hand sides must be equal.
Using the relation

[e-"'-1] '=-,' [1+i cote]

and the condition g, y, = 1 to simplify the right-
hand side of Eq. (7), we get the desired relation

E —E„=2 1 Q yi cot[Go) —5~(E)].

085 0.86 0.87

ELECTRON ENERGY(Ry)

FIG. 1. The 8 eigenphases near a resonance below
the n = 3 threshold for e —H scattering [taken from
Burke egal. (Hef. 1)j. This figure illustrates Eqs. (9)
and (12) of the text. Here ~ y& is the amplitude for the
decay of the resonance into the first eigenchannel and g
is the ratio of the radian scale to the energy scale.

Equation (9) gives 6& as a function of E. For
any given energy, it has n solutions j = 1,n, one
corresponding to each zerot;h eigenphase. The
qualitative behavior of the eigenphases has been
discussed in Ref. 1 and is illustrated in Fig. 1.
%'e may gain further insight into the behavior of
the eigenphases by considering their variation with
energy. Taking the derivative of Eq. (9) with re-
spect to E, and supposing that 50& = const, we get
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1 = —r Q yl sec [50) —5g(E)]j,8E g

(10)

which shows that 5z always increases with energy.
Near E =E„the eigenphases change rapidly with

energy. The sharpness of the bend in the curve
for 0& near E E„ is a measure of the magnitude
of y&, i. e. , a measure of the coupling of the reso-
nance to the ith eigenchannel. This can be stated
quantitatively by considering the point at which a
tangent to the 5& curve meets the energy axis at
45'. Then B5,/BE just equals the scale factor s,
which gives the ratio of the radian scale to the
energy scale. At such an energy near E-E„, 5&
—5@ is sma1, 1, and we can neglect all terms on
tile 1'iglli-llRnd side of E|1. (10) with f 0j. Apllrox-
imating the sin by its argument, we find

for an ~~~~gy such that B5,/BE =s and EqE„.
From Eq. (11), it follows that the width for the
decay of the resonance into the jth eigenchannel of
So is approximately one-half of the perpendicular
distance d between the jth and (j +1)th curves
divided by vs:

This relation is illustrated in Fig. 1. We empha-
size that this construction gives only a rough de-
termination of y&. It is presented here to give
precise meaning to the statement that the degree
of curve repulsion measures the partial decay
width for the resonance to decay into the jth eigen-
channel.
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This note presents data on liquid metal-ammonia solutions that were omitted from an earlier
tabulation and discussion of the transport characteristics of electronically conducting liquids.
Similarities and differences between the metal-ammonia solutions and the liquids included in
the earlier publication are noted and briefly discussed.

The transport properties of over 100 electroni-
cally conducting liquids were tabulated and dis-
cussed in two earlier publications' hereafter iden-
tified as ECL. The data were arranged according
to the magnitude of the electrical conductivity 0;
Three ranges of o, labeled', 8, and C, were
identified, covering the values 10'-5 x 10', 5
&10' —10, and 10 —10 '3 0 ' cm ', respectively.

As discussed in ECL, liquids in range A exhibit
more or less conventional metallic characteristics.
These can be understood in terms of Ziman' s
nea, rly free-electron theory of liquids. It seems
clear that liquids in range 8 should also be clas-
sified as metallic, despite the semiconductorlike

behavior of their conductivity and thermoelectric
power,

Solutions of various metals in liquid ammonia
show electronic conduction when the metallic con-
centration is high enough, and they should have
been included in ECL, The soluble metals are Li,
Na, K, Bb, Cs, Ca, Sr, Ba., Yb, and Eu. 3'4

In traversing the composition range from pure
Cs to pure NH„ for example, electronic conduc-
tivity is observed ill 0 1 Rllges 4 Rnd E, ' wllile R

transition to ionic conductivity occurs in range C
when the conductivity drops below 10 ' 0 ' cm ' or
so,

Some transport properties of solutions of Cs


