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Tbe transverse and longitudinal current correlations in a simple classical fluid were origi-
nally calculated from a modeled kinetic equation using an approximate solution valid for only
small values of wave number k. These correlation functions have been recalculated using
the exact solution of this kinetic equation for arbitrary values of k.

Projection operator techniques can be used to
derive an exact kinetic equation~ describing the
time correlations of fluctuations in the micro-
scopic phape density for a classical many-body
system In.a recent paper' (hereafter referred to
as O this kinetic equation was approximated using
a modeling procedure and then applied to the cal-
culation of current-current time correlation func-
tions in simple classical fluids. In the notation
of I, the Laplace-Fourier-transformed form of
tg.s modeled kinetic equation is
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equations for the moments of 8~(p, p", s) and then
truncating this set to obtain the approximate solu-
tion. However, it was recently pointed out by
Lebowitz, Percus, and Sykes' that equations such
as (l) can be solved exactly by utilizing Fourier
transforms in momentum p. In the interest of
completeness, we have recalculated' ~(k, &o) and

g„(A, co) using these exact solutions.
Following Lebowitz gt al. , ' one can solve equa-

tion (l) to find the cosine transform of the trans-
verse current-correlation function as
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&where, in the notation of Refs. 2 and 3,
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Hence provjding one can solve this equation for
g, (p, p, s), it is a simple matter to compute the
transverse and longitudinal current-correlation
functions 8,(k, ~) and 8„(k,~) by merely taking
suitable moments iQ momentum of this solution.

In I this solution was obtained in an approximate
fashion by reducing (l) to an infinite heirarchy of
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Similarly, solving for the longitudinal current-
correlation function 4„(k, &u) yields

a„(k, ~)= (mP~'/k')S(k, ~), (6)

where the scattering law S(k, v) is given by
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It CRB be verified by straightforward CRlculRtions
that these solutions reduce to our earlier approxi-
mate solutions [Eqs. (30), (47), and (48) of I] for
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lim(k /mn)QJ, (k, 0) = g, '.
0 ~0

Using the form (2), this implies n(0) must satisfy

(s)

small values of k.
The solutions can now be used to suggest suitable

choices for the "relaxation parameter" n(k). In
particular, note that y, (k, &u) must satisfy
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Further, recall that for large k, g, (k, &u) must
pass to the ideal-gas form
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If we note that
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+(~~z ~)' '(2z'+6z+ I)/~+O(~ '), (12)
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then it is straightforward to verify that any choice
of o. (k) which behaves as O(k~) for large k will

force (2} to satisfy the limit (11).
The corresponding analysis of P„(k, ur) suggests

a similar behavior for o, (k} Henc.e any o. (k) we

FIG. 2. The longitudinal current-current correlation
function J Il(k, &). Notation is similar to that of Fig.
1.

choose must satisfy the constraints

a(k)-n(0) as k-O,

o(k)=O(k ) as k
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o. (k) = ~(0)[I+ (k/k, )'], (14)

to insure the correct large- and small-k behavior
of A, (k, ~) andg„(k, (o}.

We have repeated the calculations of g~(k, ~) and

8„(k, &u), using the forms (2) and (V) for argonlike
systems at T= V6'K, p, = mn= 1.40V g/cm', and

compared these results with Rahman in Fig. 1 and
2. An interpolative model was chosen for n(k}:
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FIG. 1. The transverse current-current correlation
function J&(0, +) versus ~ and k for argon. The solid
curves represent the computer data of Bahman (Ref. 4),
while the dashed curves represent the results obtained

by solving the modeled kinetic equation.

which satisfies both of the constraints (13). Here
the interpolation constant was chosen as k0= 1.5A '

(although the calculations appear to be rather in-
sensitive to the value chosen for ko). The agree-
ment with the computer experiments of brahman'

is considerably improved over our earlier approxi-
mate solutions of the modeled kinetic equations.
These results reinforce our earlier conclusions
concerning the usefulness of modeled kinetic equa-
tions such as (1) in the study of the dynamics of

many-body systems in which large-frequency and

short-wavelength information is desired (such as
in inelastic neutron scattering from liquids).
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A modification of a previously discussed model for condensation in Fermi systems is applied
phenomenologically to He. The modified model contains an infinite sum of simple many-body
interactions. Upon comparison of the model vrith experiment, good agreement is obtained for
the exponents p', P, and 6. The exponent o,' describes a slightly stronger singularity than is
observed, and the exponents p and n retain their classical values.

In this note, we present a model offering a
phenomenological description of the liquid-vapor
phase transition in He. The model is based on a
certain modification of a model for phase transi-
tions in Fermi systems developed by Gartenhaus
and Stranahan' and further analyzed by Garten-
haus and the present author. 3' This earlier model

is defined by the Hamiltonian

H=Z t(k)Nr+ (I/2A) Z w(k, q)¹Nr, (1)
f, q,

where Ng is the number operator for a fermion of
spin and wave vector Tr., t(k) is the single-particle
klnetlc energy, W(k, q) Is t118 two-pal'ilcle UlteI'-

action, and 0 is the quantization volume. In the
thermodynamic limit (A-~ particle density n

fixed), the partition function for this model can be
explicitly evaluated and the thexmodynamic prop-
erties of the model are summarized by the equation

n(P, )I) =Kg pg(p, II),

where n is the particle density, p =1/k~T, y, is the
chemical potential, and the single-particle density
matrix pr(P, p, ) satisfies the nonlinear integral

equation

pr(P, t ) =0+expp[t(k)+(I/II)Z, w(k, q) p; —t ]]-'.
(3)

By analyzing the solutions of Eq. (3), Gartenhaus
and Stranahan ' found that for a large cia,ss of
interactions W(k, q) a first-order phase transition
occurs in the model. In a subsequent study, it
was found, regardless of the detailed form of the
interaction W(k, q), provided that certain smooth-
ness criteria are satisfied, the critical exponents
associated with the model always assume the

classical values.
The modification we wish to consider here con-

sists of including an infinite series of simple
many-body interactions in the Hamiltonian with
coefficients chosen so that it can be written in the
fol m

H=Zr t(k)Nt+P@r Nr/0)

+ [X/(~+1)]Z„- ~Nr/rt —n, I", ", (4)

where P is a polynomial in the operator gt Nr/0
and X, x, and n, are unspecified constants. If we
now assume that in the thermodynamic limit the
partition function associated with this new Hamil-
tonian can again be evaluated by the method of
Girardeau, the single-particle density matrix for'
the new model becomes

p (P tI) =9+expP[t(k)+P'(n)

+ X(n-n, ) ~

-nn~*' p, ]} ',-(5)
where P'(n) is the derivative of the polynomial P
in Eq. (4). It has then been shown~'4 that P(n) can
be chosen so that a phase transition does occur in
the model ' and the resulting critical exponents
are given as functions of x in Table I. In order to
obtain these values, we have set n, equal to the
critical density and assumed k —1 & x&4, k being
the order of the lowest nonvanishing derivative of
the chemical potential p. with respect to n at the
critical point. For the case X=0, the critical
exponents again assume the classical values.

%e turn now to the appllcatlon of tI1ls nonclas-
sical model to the liquid-vapor critical region of
He. The properties of He near the critical point

have been the subjects of several recent experi-
ments and a summary of the experimental


