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for l = 1, 2 and m = 1, 2. Here E(x, t)is a func-
tion which varies slowly as compared to
u', "(z —X,) in the neighborhood of X,. Also Q
is again either the identity operator or the grad
operator r7. If the vector q&~"is replaced by

its average value q = &u p, in Eqs. (A25), then
Eqs. (2. 3a) —(2. 3c) follow directly from Eqs.
(A25) and the definitions (2. 2) when the electro-
magnetic field propagates in the z direction.
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The Liouville equation for the XY model is solved exactly, and the magnetization is computed
explicitly. Nonergodic behavior of the magnetization is found for a general class of time-depen-
dent magnetic fields.

I. INTRODUCTION

There is extensive literature on the general as-
pects of nonequilibrium statistical mechanics.
There are many different approaches and proce-
dures, and it is not at all trivial to decide what
procedures and approximations, if any, are ap-
propriate in given circumstances. The lack of
nontrivial examples, in which the Liouville equa-

tion can be solved exactly and the time dependence
explicitly obtained, has been keenly felt. With
such an exactly soluble example, one can compare
the effectiveness and legitimacy of the many ap-
proximate procedures. This makes the construc-
tion and analysis of such systems especially
important.

A considerable amount of success has been
achieved in the exact discussion of various one-
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dimensional spin systems. The general type of
system studied is a one-dimensional chain with
nearest-neighbor interactions. Most of the studies
start from a Hamiltonian of the form

H = p (o.S",S"„,+ pS',S'„,+ yS*,S';, g)
&=1

H = H8~+ h(t) H~p

where H»=Z ~S~

where H„is given by (1.1), and h(t) is the time-
dependent magnetic field. In the case

[H„,H,„]=0 (1.4)

the density matrix of the system has a trivial time
dependence. Physically this means that the spin-
spin interaction energy and the spin-field interac-
tion energy are separately conserved. Thus, no

where the 5, are —,
' of the Pauli spin matrices, and

o. Py are the coupling constants.
In spite of the idealization involved in repre-

senting an actual magnetic substance by the Ha-
miltonian (1.1), the analysis of such systems is
of considerable difficulty.

From a physical viewpoint, these models are
all highly contrived. Whatever interest they might
possess depends on the information and insight
they yield about the general character and structure
of many-body theory and statistical mechanics.
There is always the hope that methods which yield
exact information about idealized systems will be
helpful in discussing more realistic ones. There
is also the suspicion that the inability to solve
simple systems means that one is poorly prepared
to discuss more realistic ones.

Various special cases of (1.1) have been a.na-
lyzed in detail. Some of these cases are: (i) &

=P=O, the Ising model, studied byIsing, ' Onsager, '
and many others; (ii) & = P = y, the Heisenberg
model, studied by Bethe' and Hulthen'; (iii) o. = P
~p, the Heisenberg-Ising model studied by Yang
and Yang', (iv)» P; y = 0, the X1' model, studied

by Lich, Schultz, and Mattis (LSM), and others.
LSM diagonalized the Hamiltonian of the XY mod-

el, found its spectrum and eigenstates, andstudied
its thermodynamic properties. It is the purpose
of this paper to study the nonequilibrium proper-
ties of this model.

In the time-dependent case, the eigenvalues of
(1.1) are not of primary interest. The discussion
here is concerned with the manner in which a sys-
tem responds to external disturbances and the way
that appropriate observables behave for infinite
times.

To study such questions, it is useful to introduce
an explicitly time-dependent term in the Hamil-
tonian. In general, H has the form

This is the XI' model [y & 0, since y = 0 results in
(1.4)].

This system was chosen for our detailed study.
In order to obtain an understanding of the time
evolution of this system, the time-dependent density
matrix has to be computed. Once this is accom-
plished, it is possible to calculate the time evolu-
tion of physical observables such as the magneti-
zation, which is discussed in this paper. The in-
stantaneous correlation functions are of physical
interest, but their calculation is quite involvedand
will be dealt within a separate payer. From the
explicit expression for the magnetization the limit
t- ~ is obtained. The somewhat surprising result
of the detailed analysis is that, although this limit
exists, it does not approach its equilibrium value.
This may well be connected with the observation of
Mazur" that the magnetization is not an ergodic
observable in this model. ,

The paper is divided into eight sections. Section
II contains a recapitulation of the diagonalization
procedure of LSM. The main point is that, by
means of an appropriate unitary transformation,
the Hamiltonian is transformed into Z~H~, where
each H~ acts in an independent subspace. In Sec.
III, it is shown that the density matrix has a direct
product structure:

p(t) = p~(t) p, (t) ~ p&ta (t),
where each p~ is a 4&&4 matrix satisfying

i
dt p~(t)=[H, (t), p, (t)]
d (1.7)

The initial condition chosen at t= 0 is thermal
equilibrium of the system at that time, namely,

p (0) e 88P ( 0 ) . P (h T)-1 (1.8)

The matrix elements of p~ are obtained by ele-
mentary means from a function V, which satisfies

d—
2 V+[A'+g(t)] V=O (1.9)

Here g is an explicitly given functional of h(t),
while A depends on the parameters of the system
and the value of the magnetic field.

In Sec, IV, the solutions of (1.9) are used to
compute the magnetization.

Sections V-VII contain the detailed evaluation

energy transfer can take place between the two
systems. Hence, it is not surprising that the
change of an external field, in this case, does not
result in an interesting time evolution of the spin
system. The simplest system for which (1.4) is
not satisfied is

H= p [(I+y)S&"S&„+(1—y)S', S',.&
—h(t)Sg] (I 5)
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and analysis for three examples of external fields.
The general results of these sections is that the
asymptotic behavior of pII(t) is identical for large
times, the specific coefficients depend on the de-
'tR118 Of /(It)~ Rnd 'tllel'e 18 llo Rppl'ORC11 to ellulli-
brium, no matter how slow the fieM varies.

The conclusions are collected in Sec. VIII, and
Appendixes A-C give details of t:he various as-
ymptotic expansions and some solutions of (i. 9).

for a general h(t). Define
N/2

cli =
g Z exp(tjpp)ap

p=- X/2

N/2

c, =~ g exp( —tjyp)a,
p= -N/2

where &f&p
= 2m'/N

Substituting (2. 5) ill (2.4), oils obtR1118

(2. 5)

II. FORMULATION

The equilibrium properties of the XF model in
one dimension, have been derived many times.
We choose to outline the basic steps used by LSM
for sake of completeness.

The XF Hamiltonian is

H=4 Z [(1+r)SJ SI.I

+(i —y) s;„-[u.I (t)/~]s', } . (2. i)

These operators are expressed in terms of Fermi
operators c&, c& by

j-1
5y = exp —7$ ~ cycle c~

b; =c& exp~@i z c&c&
g=j

(2. 3)

Following LSM, we substitute (2. 3) in (2. 1) and
obtain

N

H= g Z [(cIjcI~I+ pcI c~pl+ H. C. )

This Hamiltonian represents a chain of interacting
spins, with nearest-neighbor interaction only.
The boundary condition is cyclic, namely, S„,&

= S&. 8&, 8';, 8';, are the spin-& operators at the
jth lattice site (they are —, the Pauli spinmatrices),
y is the anistropy measure, p, is the magnetic
moment, II(t) is the time-dependent magnetic field,
and J is the coupling constant. We set J'= 1 and

p, = 1 for convenience, and write them explicitly
only when necessary.

Define new operators b&, b&, which are neither
Fermi nor Bose operators, by

s", =-', (1',.+t, ), s,"= (5'. -1,)/2t
(2. 2)

S/2
H= ', Q [a-p(t)[aptap+ ata p]

p=l

+ ~ t5p[apa-p+ apa-p ] + 21'I (1)}
with &p(t) = 2[cosgp -tl(t)]

(2.7)

(2.8)

{2.0)5p = —2$ slngp

and a and a~ are again Fermi operators.
The Bogoliubov transformation that would diag-

onalize (2.7) in terms of new Fermi operators
would have no meaning, since the coefficients of
this transformation mould be explicitly time depen-
dent. However, we can write (2. V) as

N/2

H=QHp
p=1

wllel'e Hp = ~2 [&p(t)(gpap +g pa~)

+ ,'t&p[ap'aI~+a-pa~]+211(t)} .
Clearly, we obtain [Hp, Hp]=0

(2. io)

(2. 11)

(2. i2)

Hp(t)= —2t&p 2cosgp-k(t) 0

which means the space upon which JI acts decom-
poses into noninteracting subspaces, each of four
dimensions. No matter what II(t) is, there will be
no transitions among those subspaces.

It is convenient to use the following basis for the
pth subspace:

(iO);a,'a,'iO);a,'iO);a', iO) ) . (2. iS)

This is the Heisenberg picture. The Hamiltonian
(2. 10) with the basis (2. 13) becomes the matrix

8/2

H(t)g fife" eH (t)g ef] (2 14)
p=1

where we have explicitly

I {t) —.'t5, o o

(2. 4)—2hcIICI]+-,
' IVII,

with the boundary condition' c& —-c~,&.

The diagonalization of (2. 1) for II(t) independent
of t is completed by using two more transforma-
tions: (i) Fourier transformation, and (ii) Bogo-
liubov transformation.

%e can still carry out the Fourier transform

and I is the 4&4 unit matrix.

III. LIOUVILLE EQUATION

Cosfp

(2. 15)

In this section, we reduce the Liouville equation
for the density matrix of the system {2.V) to a sec-
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ond-order ordinary differential equation.
Let U&(t) be the time-evolution matrix in the pth

subspace, namely, (tf = 1):

then (3.9) is the unique solution of (S.5) under the
condition (3.6). Furthermore, because of (3.1)
and (S.4), the solution of (3.11) is

i„—Uh(t) = Uh(t)Hh(t) (s. 1) p, (t) = U, (t) p, (o) U, (t)',
and ph(0) is given explicitly

with the boundary condition

Uh(0) =I (3.2)

Then, the Hamiltonian of the system H'(t) in the
Schrodinger picture is

g/2
H'(t) = 2 [I(3)I(s) ~ ~ ~ SHq(t) 3 ~ ~ ~ (3) I], (3.3)

p=1

where H&(t) = U&(t)H&(t) U&(t) (s.4)

and Hh(t) is given by (2. 15).
Let p(t) be the density matrix of the system. The

Liouville equation of the system is

t —p(t)=[H'(t) p(t)] . (s. 5)

To complete the specification of p(t), we need to
provide the differential equation (S.5) with an initial
condition. For the purposes of this paper, we will
consider only systems which at time t = 0 are in
thermal equilibrium at temperature T. Since we
obtain

k11 k1P

P()(0) ~21 ~22

0 0 e

0 0 0 -8 COS Qp

(s. is)

k, )h(0) q+P

022 =P+q[2 cos(t) —h(0)]

(S.19)

(s.2o)

where (we omit here the index p for convenience)

&[h(0)]=- (y sin (t)+[())(0) —cos(II)] P', (3.14)

q= -A[h(0)] 'e 0-"sinh[PA(h(0))], (3.15)

x= -p 5q' (s. ia)

[cos b + ii(@(0))]e-8(cos0 + h(h(0) ))

2i~[h(o)]

[cosy ii(h (0))]
B(coso —-h(0) ))

2A[I)(0) ]

(s. ia)

H'(0) =II(0)

we have p(0)=(. '" "'=e '""'
(3.6)

(3.7)
Because H~ is in block form it is clear that

U)), h(t) U)2, h(t) 0 0

. (s. a)

This particular algebric form, together with (2. 12),
suggests the solution of (S.1):

p(t) = p((t)(3) p2(t) S pW2(t) ~ (s. 9)

By substitution of (3.9) and (3.3) in (3.5), one
obtains

Z p, (t)8 p, (t) ~ (3) idt p, (t)
@=1 ~-

-(H)()), @ah)I)& "so ()) =o (3. »)

From (3. 10), we conclude that if for every integer

P, & P - &N, p~ satisfies

where P = 1/kT and k is the Boltzmann constant.
The boundary condition (3.6), by using (3.3), can

be written explicitly
N/2

p(o)=II (I(sI 3 "se 2"o(0)a I. . .8 I)
p-1

e-VI1(0) -B&P(0). . . ((, -BH g/2&0)

U2, ,(t) U,2,(t) 0

Uq(t) = 0 0 f5 COS(t)p

-ff' COS/p

(s.2i)
where the upper-left block is determined from

U» U 2 h(t)~12
2
dt

U21 ~22

225

i —2 U„(t)= 2 cosp —U„(t)

+ —i-', 5 +i [2cos(I)) —k(t)]h(t) U», (3. 23)

U22 -2i5 2 cos(t) -t)(t)

(3.22)
This matrix equation contains two independent
systems of coupled differential equations. By
straightforward algebra, we obtain

id ph(t)=[H,'(t), ph(t)]

with the initial condition

p (0) e 0 )ah (0 )

(S.11)

(3. i2a)

with boundary conditions

U»(0) = 1 and —U(((0) = —iI)(0)11

Let h(t) = f) +h)(t)

(3.24)

(s. 25)
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while lim h, (t) = 0

U»(t) = v(t)e-" ""
Then (3.22) becomes

d2
„—,, v(t)+ [A'(b)+q(t)]v(t) = o,

(3.26)

(3.27)

(s.28)

(S.28), and obtain its asymptotic behavior.
The magnetization operator per spin is defined

(4. 1)M = Q—,.S;. .
M can be written in terms of the operators a~, a~,
defined in (2. 5) and (2.6) as

where A(b) is given by (3.14),

[|)(t)=h, (t) —2(cos(j)-b)h, (t)+i —h, (t), (3.29)

and from (3.23), V(t) satisfies the initial conditions

8/2
M= —Q M~

p=i

where M&
——a~a~+ a ~a ~

—1

(4.2)

(4.s)

V(0) = 1, —V(0) = i[cos(t) -h(0)]d (s. so)

From a well-known theorem, '4 we deduce that all
solutions of (3.28} are bounded as t ~ provided
the following conditions are fulfilled:

lim [t (t) = 0, J I [j) (t) l
dt &" (s. sl)

0

Let W, and W2 be two independent solutions of
(S. 26). Because of (3. 31), we know that lim, „V
= p, ie' ""+

p, pe
' "",where p, i and p, 2 are con-

stants to be determined. Accordingly we specify
W), i=1, 2, by

lim W1(t)-e" ' ' lim W2(t) e " ' ' (3 32)
t» t» co

V„(t)=A, W, (t) +A2W2(t)

V21(t) II1W1(t) +II2W2(t)

with initial conditions

(S.33)

(s. 34)

V2, (0) = 0 and —V2, (0) = ——,5
1

dt

The constants Ai, A„Bi,8, are easily deter-
mined from (3.35) to be

(d/dt) W2(0) —i[cos(t) —I1(0)]W, (0)
w(o)

iw, (0)[cos(t) —h(0)] —(d/dt)] W1(0) (3 36)2-
w(o)

—,
'

5W, (0) B
-'. 5W, (0)

w(o) ' ' w(o)

Using (3.22), (3. 28), and (3.32), we have "immedi-
ately'

[M„M,, ]=o . (4.4)

Since (4. 3) and (4.4) are conditions similar to
(2. 10) and (2. 12), we conclude that M has the same
algebric structure as H.

Let M, (t) be the average magnetization per spin,
namely,

1 Tr[Mp] 1 P Tr[M~U~p~(0)U~]
Tr[p] 77, ; Tr[p, (O)]

(4.5)

Using (2. 13), (3.13), (4.3), and (3.21) in (4. 5) we
obtain explicitly

One can replace the U;; in (4.6) by the V,, of
(3.33) and (3.34). Using the constants (3.36),
(4. 6) becomes

1 +'tanh[-,'Pa(h(0))] [„()
W,'0 -i cos, -h 0 W, O

w(o)

())',(0) [t 0» —h (0)] —W [(0) [, ]W(0)

&2'(0) -i [cosy, —I1(0)]W2(0)+ —2ysin ~ Im

iW, (0)[cosp, -h (0)] —W1(0)x W, t
w( )

w2 t)&

M, (t)=- —Z, (t'„+r'„+2e'""~)'

&&[(k,1 —k,2)(2l U„l' —1) —4' Im(U, 2U, *, )] . (4. 6)

where W(t) is the Wronskian of the two independent
solutions W„W~, namely,

X
W(0) ' W(0)

(4.7)

W(t) = W1(t) —W2(t) —W2(t) —W1(t) (3.37)

IV. MAGNETIZATION

We derive a general expression for the z-direc-
tion magnetization in terms of the solutions of

This is the exact expression for all N for the
magnetization in the z directions in terms of the
solutions W, (t) and W2(t) of (3.28) with conditions
(3.32). However, our major interest is in the
thermodynamic limit N- ~. This limit is easily
obtained from (4.7) by using the definition of inte-



gral to replace (t)~ by (t) and

N/2—Z hy-
Np( 2w

V. STEP-FUNCTION MAGNETIC FIELD

A step function in the magnetic field provides us

with the easiest example of the above formalism.
I et

b(t)=a, t» 0
(5. I)

then the solution of (3.22) is readily found to he

Ua~ 0~3
-it costi

—~~a V~~

-it eos@

, {cos(t) —b)i
A(

sin [tA(b)]+ cos [tA(b)]

5 sin[tA(b)
2 A(b)

5 sin[tA(b)]
2 A(b)

(cos(t) -b)—i
A( )

sin[tA(b)] + cos[tA(b)]

The explicit density matrix for the Pth subspa, ce is also obtained by straightforward matrix multiplication

as

z~„(t) 'I„f(t)

z,*,(t) I'„+a'„-z'„(t)

-8 eos@&

g eosgp

(5.3)

bC'c(C)=b[ (ccsbc-b)'

'+coo'[ch(b)]:+co�(cosh

-b) '" —,b! ~ ""[' J~. )('b

(5.4)

bo (!)=(b c
—b )— h ( h

! sic[CA(b)] ~ coo[oh(b)])5~ sin[tA(b)] . cos(t~ —b

Ab

cos [tA(b)]+i ~ sin[2tA(b)] —(cos(t) b}'-. cos(t)p —b , sin[tA(b}] ' 5' sin[tA(b)]

A(b) A(b) 4 A(b)
+

and r~, k~„, k~», A(b) are the same as before (3.14)-(3.20).
By direct substitution of the matrix elements of (5.2) in the general formula for the magnetization (4. V)

one obtains

( p os!eh[ bh( )] osbh(b)C . (coop — )[b( cosh—b)(cosC)c — )+7 c bc])

(5. 6)

We proceed to take the thermodynamic limit Ibt ~. The sum (5. 6) becomes an integral. In other words,

only the first term in the Poisson summation formula survives, and the others are exponentially small. It

is interesting to note that (5. 6) does not approach a limit as t-™~.This is not the case if the thermodyna-

mic limit is taken first. Explicitly, (5. 6) becomes "
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O' A(, )A'(b)

sin (cx Jcos[2A(b)t]y'(~ -b) ""~

b) +y siil Q1~ '
(5 7)

g) cosr

5 q for seveveral llmltlngOne wou check ('
es Since we have

(5. 8)

1
m, (~)=—

. S'. Z',. (S",.S", , +S,'. S,'.„)]=0,
c ndence of fplgct no time depe

is proport1on-n ent term of (5. 't i
antcorrespon

th time-depen en
ds to a constan

ithm (0a ree w', which is the well-f' ld and should agree w', w 1Cfle
known statlst1ca eq

1 II tanh[~ pA(IT)]
( )m, (0) =— d)t) (')

lmlt 18d the 1 1'nf nite-time lim'On the other han,

tanh[-,'PA(s)]
d~

A(a)

.IQ

.3Q

" -"
r( .~-.)(-e8 —b ) + y 8iii )t) ]A'(b)

(5. 10)

.Q
Q

l l l I l

8 lQ l2

versus lnltla' '' Ifieldaa etiza I,on v
for s ep function case: a—

ral value of bn a but for a genera(~) depends on a, u raSl8
s n

field
uilibrium, since

h the magnetic f1eon how mucte could depend fiesta e
had changed. How

From (5. 9), we see
ization wil. l

van1sh. F . we see
f T for which the equio

zero if no e erbe ' erdifferent from ze
we conclude a ~ thethat as t-~ the

' d. Therefore, we
l e uilibriumwhetern does not approa e h

18
function of the initial fie

nlc unction of g an
e smaller than —,, wa value sm — w

f
va ue

we perform a eIn AppendixB, we p
behavior of

is v
' = (N) for taking theis valid for t=0expansion ls v

nd then e il tt1ng t
th". ----d namic lim1t a 1

The result of this exp
"wherethree cases, w

~r)-.')E,(l"' I)l COS

zII)u)( ) l l)tib +~(1 —y')i

1xcos
~
bti +II y 4ii

I

2' - v2 jtib -4( "ua
( p. b -Z(1 —y2)~

I')l)+l l7')I)6p,

l P b+Z(1 -y')

II f.os) —)bud zl ——,'vrII,(k (5. 12)

x E' ~& —1 cos —II)p, —J + —g

j= 1, 2~3 .f,.(t)=m, (t) -m, ( (5. 11) (B25) and (826), respec-E~ an d E' are given by
tively.

)' f2(t) is given up toCase (ii): itib/Zl &(1 —y;, ' '
u to

second order by

2t

Case (i):
( p, b/Jl&(1 —y;, ' 'u to— ')' f (t) is given up to

bcond order y

2tJ -St'2 - ) P.5 —J I(a —I)y'p, 2IJ 'i
I

- u-
n
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+-,'m E,

2

(t'o() -3/2 ie (
3

)E i i

4m' 3 1 ya

(5. iS)

2] b2~ 2 1/2
&& cos —y ~' —

~ -4m1-y'
+ [first-order terms oif (t) ]I.

&, E„E,"are given by (B34), (B41), and (B43),
respectively.

Case (iii): Ib I = 1 —y2; f, is given up to second
order by

2

f,(t)- 2 Z
-', I'(-', )( t)-"'E,(0)

g(Q
b(t) =

b+(a —b)e ', t& 0
(6.i)

where a & b.
The two solutions W, (t), W, (t) [Eq. (3.32)] of

Eq. (3.28) are obtained in Appendix A to be

gf e~ 'Q b f +
'

8 Kt

2iA(b) 2i(a -b) „,(6 2)K ' E

um result.
To demonstrate this hope to be wrong we define

a new field, which we can control to change as slow
as we please:

& cos
@ I ]f b -Jl +

8
+-,'r(-,')(v3t)-"2t 3'

x E,'cos —
I

&b -~l +
2t

(5 i4)-

R'q=exp -iA b t i ',E, —A b

]
2A(b) 2( —b) (6 3)z ' z

where m is given by (B48) and E,(0) by (B46).
In Fig. 2, we exhibit the numerical analysis of

(5. 7) together with its appropriate asymptotic for-
mula (5. 12). We obtain the interference of two

collective frequencies, which are understood from
(5. 12) to be "Larmor type" and "spin-exchange
type. " %e cannot give an intuitive interpretation
of the other collective frequency in (5. 13).

VI. EXPONENTIALLY DECAYING MAGNETIC FIELD

where, E,(a, c, x) is the confluent hypergeometric
function" (Kummer series), and A(b) is again
given by (3. 14).

One obtains the values of the constants (3. 36)
by direct substitution of (6. 2) and (6. 3) in (3. 36)
at t=o:

W, (0) =,E, —[ — (Ab) +—b cos(t)];

Section V raises the suspicion that nonergodic
behavior found in the system is due to the special
case (5.1). In other words, when initial field a

jumps to a final field b at avery fast rate, the

system does not approach equilibrium. However,
one might hope that a continuous ve~ slow change
of the magnetic field would result in an equilibri-

2iA(b) 2i(a —b)1—

W (0) =,E, —[A(b)+b —cos(t)];

2iA(b) 2i(a —b)
z ' z

try(0} = [iit(b ) —i (a —b)],b, ( [ —d(b)—

(e. 4a)

(e. 4b)

487 - mz(t)

486-

bid(b) bi(a —b)

)K

485-
I

I

I
I

I

484-
I

I

I

I

I

I

483-
I

482
I

I

I
I

48 I -II
s

8 I 2 I6 20 24 28 32
TIME

mz(t) from asymptotic expansion values

rnz(t) exact numerical values

)
—A(b) + b —cos(t)

Z —2iA(b)

x,E, $+ ——A b +b —cosp

2'd(b) bi(a —b)

)
2-

K ~
—

K

—W2(0) = [ —iA(b) —i(a —b)],E, —[A(b)

(6.4c)

FIG. 2. m~(t) exact (numerical) and asymptotic for
large t. a=10, b=2, p=-2, P==1.

b' d(b) b'( —i ))+b —cos(t); 1+
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A(b)+b- cosy
If+ 2iA(b)

s

x gpg 1+—A. 5 +5-cos

Sttt(b) . Si(a-b))2+

w(o) = w, (o)—,w, (o}

—Wa(0) —W~(0) = —2iA(b)

(6. 4d}

(6.4e)

a —cos 2l A I
~+

I & I

2 —1

+"
Z(b)

R (Inta+tata ))t. (S. tO)

This expression is ah explicit function of K, which

means that the final magnetization explicitly depends
onhowfast thefielddecays. For example, as E- ~

1 ~ tanh[-,'PA(~)] (b —cosQ)
lim m(a, b, K)=

2
dQ A(') A'(b)

To obtain the magnetization for this case, sub-
stitute (6.4a}-(6.4e), (6. 2), and (6. 3) in (4. 7),
and take the thermodynamic limit.

%e obtain

m(a, b, I'c, t) =— tto n
*

n((a —cosA)
tanh[-.'PA(a }]

&& [2(aw, (f ) -xw, (f)['-1]

+ i (b)
fm [i[8W((t)

~w(t))(w, (o)w(t) w, (o)w(t)))), (s. s)

& = [Wi(0) i(c»y --~) W, (0)]/ —2iA(b), (6.6)

B= [W,
'

(O) —i(cosy -a) W, (O}]/- »A(b),
(6.V)

& [c os/ —0}(cosp —b) +y sin Q ] ~ (6.11)

This is identical with (5. 10) —a result which is
expected, since when K-~, (6.1) reduces to (5.1).

The hope stated at the beginning of this section
is that as K - ~b m(at b, K) will approach the value
it would have in thermal equilibrium at some tem-
perature T,. To study this limit let K =s. As
s -~ the asymptotic expansion of W,[ab b, s, A(b)] is
found in Appendix C to be

( „A()) [2A(b)(A(b) —b+ cosQ)]
2(a —b)+ (A(b) —b+ cosy)

&& exp (i(,' m s-(A —-b + cos()() )

+s(A —b+cos(3I)) 1n[s(A — b+cos(t)}+s2 A

—2s(a —b) —2sAln(2sA) +s(A+b —cos(t))

W,'(0) =i[ —(a —b)+ b —cosP] W, (0)

—i(- A+b —cosy) Wg (0), (6. 6)

& ln[2s(a —b}+s(A —b+cos(t))])},

W, (a, b, s, A(b))-W, (n, b, ~, -A(b)) .

(6. 12)

(6.13)

W,'(O) = i[- (~ —b)+ b —cosy]W, (0)

—i(A ~b —cosP) W, (0) (6. 9)

We are interested only in the f- ~ limit of (6.5)
which is

m(a, b, K) = lim m(ab b, K, f}=— dQ
1 ~ tanh 2 PA(a)]

Aa

By substitution of (6.12) and (6. 13) in (6.10), and

taking the limit s -~, . one obtains the final mag-
netization for this case. Clearly, only terms con-
taining I W&t

~ and I 8'at 2 wiD survive. Otherwise
we again have the conditions of the Riemann-
Lebesque lemma.

Explicitly, the final magnetization is

t ~ tons[lot((a)] s(b —coso)'(a —coso)
'

t'stn'O(a —coso) t'sin'S(b —costs) )
A(~)

"'~
A(b) 2A(b) 2A(b)

2[4(c —b) +y sin'P]
4(a —b)3 —4(a —b)(b —cosP) —y sin P

I

& (b —c

os'�)

[2(a —b) —(b —cosbi) )]'+4A [2(a —b) —(b —cos(t) )]+2A3(b —c

os/�)

4(a —b)' —4(e —b)(b —cosy) —y' sin'y
(6. 14)

This magnetization shares with the t- ~ magnetization of the step function case, the unpleasant feature
of failing to vanish when b =0. Hence, we conclude that the t- ~ system is not in thermal equilibrium.
Therefore, the nonergodic behavior of m, found in Sec. V does not depend on the rate at which A(t)

approaches its t- limit.



1084 BAROUC H, McCOY, AND DRESDEN

VII. GENERAL PROPERTIES OF m, (t) FOR LARGE t

The final question of interest is the generality of the asymptotic approach of (4. 7) to its final value, and
its relation to the asymptotic behavior of (5.7).

To understand this point we consider the general field:

b(f) =a, f o

It(f) =g (t), o & t & t,
It(t) = b, f0 & t& ~ .

The evolution matrix for t & t, is, in general,

U»(t) U,2(t) V,1(t) —V 2,(t}

(7. 1)

f't cOS/
, (7.2)

b

exp i(t —t0)
U1(t) U2(f)

'ftp COSQ (7.3)

U21(t) U»(t ) V„(t)

where V11 and V21 are given by (3. 31) and (3. 32}, with constants A» A2, B» B2 given by (3.34). A1 and A2

are, in general, independent of 5, and I3, and 8& are proportional to 2 5.
The evolution matrix for t ~tp is obtained as

V11(t0} V 21(f0)

U»(t) U22(t)

Using (3.36), (6. 3) becomes

11( 0) 2 5 V 21(t0)

U (f) e tt ccss-

25V21(f0) V 11(f0)

V21(fo) V 11(f0)

i —sin[(t —t0)A(b)] + cos[(t —t0)A(b)]
X

sin[(t —t0)A(b)]
A(b)

sin[(f —f0)A(b)]
A(b)

—i sin[(t —f 0)A(b)]+ cos[(t —t0)A(b)]
. (cosg —b)

Ab

where Vz&—= ~6V2& and Vzz is 5 independent. The
magnetization for this ease is obtained by substi-
tution of the appropriate elements (7.4) in formula
(4.6).

The asymptotic expansion of m, (t) is very simi-
lar to that of Sec. V and Appendix B. There are
three cases.

(i) 1 pb/J I & 1 —y'. , In this case, A(b) has an
extremal point in the range 0 & p & 11 and the as-
ymptotic expansion may be performed as a sta-
tionary phase integral. We find that the leading
term of m, (t) —m, (~) is given by the leading term
of (5. 13), where E2 is replaced by an expression
which depends explicitly on V, s(t0)

(ii) ~ p, b/J[ & 1 —y2. In this case, A(b) is mono-
tonic for 0&

hatt &tt, and the asymptotic expansion
comes from the endpoint contribution near 0 and
v. Because of the presence of the factor 52 (note
that t' is proportional to 5} these contributions are
similar to those seen in Sec. V, and we find that
the leading terms of ms(t) —m, (~) are given by the
leading term of (5. 12), where E, and E2 are re-

placed by expressions which depend explicitly on
V, ,(f,).

(iii) I pb/Z I =1 —y ,. In this case, the extremal
point of A(b} occurs at 0 or tt depending upon the
sign of b. Again, because of the factor 5 this ex-
pansion is the same as that of Sec. V and we find
the leading term of m, (t }-m, (~) is given by the
leading term of (5. 14), where E2 now depends on
Vt„(t0).

In summary, the form of the t dependence of the
asymptotic behavior of m, (t )- m, (~) is the same
for all fields of the form (7. 1). Only the constants
depend on the details of the function g(t}.

VIII. CONCLUSION AND SUMMARY

Since the considerations of this paper of necessity
involve rather detailed and lengthy calculations,
it may be worth while to summarize the various
results and comment on their physical significance.

(i) Once the time-independent solutions are
known, the time-dependent evolution is described
by (1.7). The character of the system is described
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(8. I)

Here (X) is the canonical average of X and X(E) is
the microcanonical average of X. It is possible to
obtain a generally valid inequality for R (i. e. , its
validity is independent of the ergodic character of
the system or the nature of the variable X). This
inequality can be expressed as

The quantity Q can be expressed exclusively of the
canonical average. Thus from the relations (8. I)
and (8. 2) one can see that a system cannot be
ergodic if

q& ( x'(z) ) (8. 3)

Mazur has found a condition guaranteeing the
nonergodic chaxacter of a variable. This is a use-
ful condition since both Q and ( X'(E)} are cononi-
cal averages, and as such can be obtained without
explicit knowledge of the time dependence. Using
this inequality for X, the magnetization, Mazur
showed that it is not ergodic for the XF model.

by the normal modes A~ of the time-independent
system relevant to the field h(f). Thus, the non-
equilibrium description requires an analysis of
Eq. (3.28), over and above the solution of the equi-
librium problem.

(ii} The explicit result for the time dependence
of the magnetization for the step-function case
m, (~, b, f) has the feature, that for a finite system
(N finite) the limit t -~ does not exist. The non-
existence of this time limit for physically meaning-
ful observables is the generally known fact that
the thermodynamic limit must be taken before an
"approach to equilibrium" as t-~ can be expected.

(iii) The main result of this study is the realiza-
tion that the magnetization m(a, h, f) as f- ~ does
not approach an equilibrium value. This is indi-
cated by the fact that m(a, o, f) does not go to zero
at infinite time. The fact that even as a-~, the
limiting value of m is less than & is also surprising
and shows that this model is not in agreement with
the obvious physical intuition. The analysis of the
exponentially decaying case, where the change from
an external field a to b was carried out as slow as
desired, results in the same "nonapproach" to
equilibrium. This behavior is not a pecularity of
the particular external field. It must be expected
that this nonapproach is a general feature of the
system at hand.

(iv) In connection with this nonapproach to equi-
librium, Mazur' formulated a necessary and suf™
ficient condition for a variable X to be ergodic in
a classical system. This condition can be ex-
pressed in terms of the autocorrelation function as

Thus, harmony exists with the results obtained in
this paper. The only point of concern, in a direct
application of Mazur's result, is the fact that his
analysis is classical, while the spin system is as
quantum mechanical as it can be. The results ob-
tained here indicate that there is good reason to
expect Mazur's ingenious analysis to be valid in
the quantum case, but i.t would be highly desirable
to give a formal. proof of Mazur's work for general
quantum systems.

(v) The detailed formula for the asymptotic time
dependence (for the step function and for the gen-
eral case} indicates interesting and suggestive beat
phenomena which are, as noted, dependent on a
and b, but not on g(f). It would be interesting if
these various frequencies could be understood in
an immediate intuitive fashion. It is believed that
this is possible because the results are general,
but so far this has not been done. It would be even
more interesting if these were experimental situa-
tions in which these osciQations could be observed.
Perhaps spin-echo experiments might show some
of these features. In this connection a detailed
examination of the oscillatory approach to the final
state would be interesting. Furthermore, the case
h(t) =a+ &cosset, should be further analyzed.

(vi) It is possibly not too surprising that equili-
brium in the conventional sense is not approached
in this system. The system considered is quite
simple and reminiscent of a system of coupled os-
cillators, and it is well known that these are pecu-
liar phenomena associated with the approach to
the equipartition of energy for such systems. The
system is perhaps not complex enough to produce
the mixing between the various degrees of freedom
necessary for an approach to equilibrium. Even
so, it would be interesting to see whether this
system possesses any ergodic observables. '
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APPENDIX A

We analyze here Eq. (3. 26) for two cases of in-
terest.

A. Exponential Decay

and h, (t) = (a —b)e "' .
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Equation (3. 26) for t&0 becomes
2

„—,z V+ [A'(b) +(s b—}ze '«'

—2(cos(t) —b}e «' —iKe «'] V= 0. (A3)

K= 2(I + [1 —4(a —b) (a —b —i))'/2) = —i(a —b) . (A15)

Equation (A13) becomes

sd z y,(s)+(2iAs+2K) —y, (s)
d . d

ds ds

Let y(z) = z "e""Ky,(z) = V(t),

where z = e"

R =+iA(b)/K .
Equation (A3) becon'es

d2 z(i(a —b)z„zy,(z)+ z ~

2 iA(b)'] d .a —b+ 1k (
—f28+ —iK/ dz'K

2(a —b) (b —cos (t)) i(a —b)
K K

X 1+ — y2Z =0.2iA(b)

(A4)

(A5)

(AS)

(A7)

+ [2iKA+ 2(a —b) (b —cosQ)]y, (s) = 0. (A16)

This equation is similar to (A7) with different con-
stants, and the solutions are again Kummer function
with —2iA(f+ 1) as a variable.

There are other cases of interest for h)(t), for
instance an attenuated periodic field h, (t)
=(a —b)e 'cos~t. To treat such cases, one
should substitute his b, (f) in (3. 26) and use the
general theory of second-order ordinary differen-
tial equations.

APPENDIX B

We perform the asymptotic expansion of (5. 6).
In the integral (5. 6), cosP changes monotonically
between [0, )]], so we can always change the
variable.

Change the variable once more, and let

x = —[2i(a —b}/K]z (AS)

( + 2 i A/Z; —[2((a —2 )/Ã] z),

gr (z) z -(i/«)Aeif([(-a)/«)s y
~

[ A+b c ~].1

1 —2iA/K; —[2f(a —b)/K]z ~,

(A9)

(A10)

with z given hy (A5).

One obtains confuent hypergeometric equation in
Kummer's form, '~ and the two solutions W, (z) and

Wz(z) are

gr ( )
(i/K)/2 ](bm)/K) y iii

[A b y].

dgLet y = cos4) and dP =—
(1-y )

f(f) g R

' (1-y )
'/ tanh [—,

' PA(a, y)]
A(a, y) A'(b, y)

2it A(lh], y)

This is the time-dependent part of the magneti-
zation m„,. Assume ~y

~

& 1, b & 0. Let A -=(a —b)y

/2)]; then

f(f) =A

1 -y' ~ tanh —'P j 2 1-y + a —y
2 '~

-1 y21-y2+ a-y2 v2y21-y2+ b-y2

xexP[2(([y~(1-2')+(2 —2) ]' ]) . (B2)

Let h(t) =a,

a-b=b+ t&0

B. Hyperbolic Decay

t&0
(A11)

Case (I) b &1 —y';

Case (II) b &1 —y;
Ca,se (III) b = 1 —y

b, (t) = (a —b)/(t+1)

Let f+1=s in (3. 26) and V(t) =y(s). We obtain

ds' —,y+ [A'(b)s'+ 2(a —b) (b —cosP)s
ds

+ (s —b) (s —b —i) ]y = 0 .

Clearly, in these regions, there will be contri-
butions from the end points. The important ques-
tion is whether [y (1 —y') +(b -y) ]'/ has an ex-
tremum point for y c[- 1, 1], or not.

Our method of evaluating the integral f(f) for
large t is somewhat similar to the method used to
evaluate asymptotically Bessel functions. We are
going to the complex y plane. Doing so, it appears
as if we introduce a serious difficulty:

Let y(s)=s e' 'y, (s),
vrhere

(A14) tanh( —,'p [y (1-y )+(a —y)z]'/z]
[yz(I yz) +(s y)z])/z (B3)
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2 tanh [—,
' PA(a, y) ]

P —,
' PA(a, y)

1
[-,' PA(a, y)]'- [-,' PA„]'' (B4)

where cosh [—,
' PA„]=0

or A„=in(2n+1)/P .
(B5)

(B6)

Substituting these values in p(y), one obtains

4 po

P(y)= P. p

x [(1—y') y' —2ay +y'+a'+ v2(2n+1)'/p2 ]-'.
(Bv)

An important feature of p(y) is that p(y) does not
have any pole in the interval [- 1, 1]. This is seen
immediately from y2(1 —y )+(a —y)'& 0 in [ —1, 1],
and the square root is always real, therefore (B5)
has no solution for —1 & y & 1.

Poles of P(y) are at the points

a'[a'- (1 —y') (y'+a'+ m' (2n+ 1)'/P')] '/'

The function P(y) has an infinite number of poles
in the complex y plane. By integrating along a
properly chosen contour, one might have to include
an infinite sum of the residues of these poles.
However, we domonstrate that for large t, these
poles decay exponentially; therefore, they do not
contribute to the asymptotic expansion for large t.

To demonstrate this last assertion we use the
partial fraction decomposition of p(y):

This means that possibly a-dependent oscillation
frequencies of the magnetization decay exponential-
ly, which is very fast compared to decay of the
type t ', where we have n &0. We conclude that
for large t, the contribution to f(t) from the
poles y„is negligible.

Case (1) b&1 —y'; assume baal. (The case b=1
does not introduce any major difficulty. The re-
sult for this case would be sum of two descending
series. One series vanishes for b= l. ) We
further assume a0 1. Having a =1, tanh [2pA]/A
becomes —,

'
P at the endpoints. Define

1

F(t)=" d,

„(1—y') ' 'tanh(-,' P [y'(1 —y') + (a —y)']'/' j
h"(1-y')+( -y)']"' [y'(1-y')+(b -y)']

x p(2 t[y'(1-y') (b-y)']"'],

namely, f(t) =A Re F(t). One can change the vari-
ables

or

[y'(1 —y') + (b —y)']'/' = x (Bl0)

for the simple poles y„ofP(y), we obtain contribu-
tions to the value of f(t) of the form

const e "'~ '~' = const e "'e "~ .

1 2

(B8)
Two possibilities for these poles are: (a) y„is
real so these poles, which must obey

l y„l»,
do not contribute anything; (b) y„is complex.
Let [(1—y ) y„—2by„+b2+y ] /=2)+i(, with

$40. Then $+iP is complex unless a=b. But the
case a = b is trivial, since the integral f(t) is pro-
portional to a —b. By calculation of the residue,

[b2 (1 y2) (b2+y2 2)]t/2

where

B(lb+ll)=-1 B(lb-ll)=»

and

xdx
[b2 (1 y2) (b2+y2 x2)] 1/2

(B12)

(B13)

F(t)
' "" e2~g [1 —B'(x)]' 'tanh{-,'p [y'(1 —B'(x)+(a B(x))']}-

(y [1 —B (x)]+ [a —B(x)] ]' [b (1 —y')(b +y —x—)]' (B14)

Let I(t) be the following contour integral in the complex x plane;

dx [1 —B'(x)]'/ tanh( 2p[y (1 —B (x)+(a —B(x)) ]' ]
x (y'(1-B'(x) + [a —B(x)]'p/' [b —(1 —y ) (b2+y —x ]'/2 (B15)

where the contour C, is shown in Fig. 3. Apart
from possible poles of [ tanh -,' P A (x, a )] / A (x, a),

which were shown to be negligible for large t, the
integral f(t) along the contour C, vanishes. The
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integral along s, z~ vanishes as Ixnx ~, especially
for E going to infinity. 8o we are left with

J(t)=f;, f—' =I',(t)-a,(t) .
Evaluation of P,(t):

(B16}

f ,(t) = ' ""—"taWQp [y'(1-&'(x) )
5-i X

+(a -B(x))']"')[(1+&(x)) (1 —&(x))]'"

xtanh f-,'p[y'(1 -B'(Ib —1I+tt.) )

+(a-B(Ib-1 +i&))']'

x [y'(1-B'(Ib-1I.*.a». (.-B(Ib —1I. ~) }']-"'

x exp(2 ttx) [y'(1 8'(-x)) + (a -B(x))' ]'t

«[(« () ——»')((« »' +«')]-"') (»»)

Z,et b —1 +t$=x (B18)

and id) = dx .

)',()) (f, =d((B»())&-(l)

x [b' —(1 —y') (b'+y' —(Ib —1I+t&)')]-'~'

«[1—8( 5-1»(()]'»'«zp [8((([b-)»i()]).
(B19)

Define next the function E,(Ib -1
I
+i]) such that

J,(t) = ze"'" "f,"d]xz,(Ib 1I-+ tt)
xe-'«x [1+a(Ib —1I+t~)]"', (B20)

where E,( I
b —1

I
+ i5) =E &( I

b —1 I).E,(Ib-1I)(t)-E,"(Ib-1I)t" "
(B21)

exists around $ = 0:

a( b -1 +tt) j

t Ib -1I(1-y')
[b - (1 —y'))'

t lb -11
b - (1-y')

[1 —a(Ib —1I+t()]"'=e""

x
- 1/]!

b —(1 —y )

].Al X Zi Z2
1/3

te«/4 )] em«[])
b —(1 —y')]'

g g y y y ~2tf 1/2

Ib-II

+fZ,'(Ib —1I) d~x~"' 'e«

J)

g Pt eo

~(«(sjs ««)
21

-&r/4 ~~ —~ &3$t la-sl
i/2

b-(1-y')

Ei(ib —1i)f'(4) t'ai(ib —1l)f'(-', )
(2t)sla + (2t)51]] +' ' '

~

~

(B24}

F/Q, 3. Contour C~.

Wtanh[2P la —ii]
ia-1ix ib-1i [b-(1-y')] '

W$1 —tarn'[-,'pla-1l]$ Qp[a —(1.—y'I}
+g(lb 11)

i 1i8[b (1 ym)]2

~tanh[2pla-1i] 1 (1-y)
ia —1 i'[b —(1 —y'] lb —1 l' [b - (1 —y }]
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+ B26
la —1 I [b —(1 —y')] 4[b —(1 —y2)]/I'

so P,(t) is calculated asymptotically for large i,
up to second order. It can be done, in principle, to
any order desired. In order to obtain P2(t), we see
by close inspection, or better by repeating the
above method, that replacing a —1, b —1,
b-(1 —y ), —,'i7/, —bya+1, b+1, b+1 —y2, ,'iv, —

respectively, in P,(t) gives the correct formula for
P (i):

�

%1/2

( )
(y/3 lb+1}

)I
e2(bl3bpl

b+(1 —y')/

E (Ib+l})I'(—', ) iE'(Ib ll)F(—,')
(2i)3/2 (2f)5/2

2 tanh[ 3p} a+ 1}]
Io. l} I b+1}V+(1—y')] '

(B2S)

E'(Ib+1})

b) 2[1 —tanh'(2'pla+ll)]{2'P[a+(1- y')])
la+1} [b+(1 —y )]

)) 2tanh[-,'P}a+1}] 1

Io+1I (b+(1 —y')) I b+ ll'

(4+1 —y') )a+1('(b+).-y') 4(b ~ 1 —y)) '

(a29)
Case II: b (1—y'; We compute f(t) for this

case up to second order. The existence of a sta-
tionary phase in the integrand will contribute the
first-order term. The second-order term will
consist of two parts, the second-order stationary
phase, and the endpoint integration, calculated for
b &1 —y'.

Here we cannot go to the complex x plane, since
A(b, y) is not a monotonic function of y.

We find a stationary phase at the point y =b)/

(1 —y ), and expand the two parts of the integral
around this point. Rewrite f(t):

(1-y2)'/2tanh[ —'P[y2(1 —y )+(a-y) ]'/ ]exp(2it[y (1-y2)+(b —y) ]'/2]

—= ARe dy E3(y) exp(2it[y (1 y)+(b --y) ]' ]. ,
a j

(Bso)

1 b2 ) 1/2 1 y2 b2 i 1/2 b 2

f(f)=ARe E,(y)exp 2it y 1—,
I

+ 1 —
2

I
y1 —yi 2y 1 —y& 1-y (Bsl)

We estimate this last integral in the complex y
place, along the contour C2 (Fig. 4). We have in-
troduced two more branch cuts, to define the sign
of the square root in the exponent. It is necessary
to mention that these branch points do not contrib-
ute any factor to the answer.

To complete the estimate of f(t) for this case,
one needs to compute the line integral P3(i) along
AB.

1 —y2 b2 ~ 1/2
where

2y 1—
(Bs4)

+ stet'y -5/(1- 1 )3( b 2 2

i1 —y

+@If
b e$tf)f(y- 5/(1-r )12 2

1 —y ~g 1 —y
pe g —

2

(Bss)

Let y ——
2- = e z, dy = e"'4dz

1 —y
(BS5)

+ E 2 S — + ~ ~ ~

(Bss)
e"'4dz e t~' 2

b 2 1/2-
P3(f) = A Re exp 2ity 1—1—

x —g,

P3(t):ARe exp 2ityI 1—-
2

e«/4ig2 - tb(e d' (1-y')
„
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y2 j / 2

P,(t)=-AReexp 2ity 1— 3

B,[b/(1 —y')]1(-.'),„/,
(t~)1/2

Z,"[ b/(1- y')] 1"(-',)
2(t+ P/8

f (t) = —I's(t) —&&(t)+&&(t), (B«)

Re y bP ) b ) 8 1/2

tanh 2 y &-
1 pp +~

1 2
(1 —y)/ 1 y)

2
b'

xy 1 —
1 32 + +

x y'1-1 22 + a-1 3 (a4i)

Because of its complexity, E3' ' [ b/(1 —y )] is ex-
pressed in terms of the following constants:

FIG. 4. Contour C2.

Since g dec ' ' =(tn) ~/ 1"(-,'),
f ~ ds e tee +2 -(t )-s/2P(3)

a 00

(asv)

(Bsa)

[1 b-R(1 y2)-2]i/a (B42h)

B-=y[i-b '(1-y')-']"', (B42c)

D-=[b (1 —y') ' —2ab(1 —y') '+a'+y']'/',
(B4M)

we have q —= (b —a), (B42e)

B 1~(y) y S-1qD-2B-2[1 tanh2 (1PD) ]1P S-1D-lB-2tanh(l PD) +2S-8/2D-1B-2tanh(1 PD)

-rS 'D-'B-'q[1-ta~'(-,'pD)]-. p+1'S 'D 'B-'qtanh(-. ' pD)

-SB D (—,
'

P) q32tanh(-, 'PD) [1 —tanh~(-,'PD)]+8 D ~B ~-,'P(l —y2)[l —tanh (~ PD)]

+F8 'D 3B aqtanh(-'PD) 28(—'P) qaB 3D 4[1 —t nha( —'PD) J

+ SSD-'B-'q'tanh(-, '
pD) —(1 —y') S B-'D-'taW(-,' pD)

—Sq (—P)B D [1—tanh (—'PD)] —(1 —y )SD B tanh( —'PD) . (B4s)

This completes the calculations for this case. Next we perform the asymptotic expansion for the inter-
esting case 5 = 1 —p . This point is the boundary between these two regions.

Case III: b=1 —y . Having the leading term-t '~~ in case II, and t ~ in case I, one would expect t as
a leading term for this boundary case, with —,

' ~& ~ ~. %'e indeed find O.'= —,'. We perform the first-order
calculation for large t. The interesting feature here is that the endpoint coincides with the stationary phase

point. A(b, y) will have now the following form: [by —2by+b +1—b]' =A(b, y), and using the notation of

cases I and 0, one obtains

f(t) =A Re dy (1-ya)'/'
~1
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tanh[-,'p[(1 —y )y —2y(I+a +)' '/ ] exp(i2t[by —2by+b +1 —b]
[(1—y2)y2 —2(Iy+a2+y ]'/ [by —2by+b +1 —b]

Near y = —1, one obtains same endpoint integral
as ease I, but we will see that this gives a contri-
bution, higher than second order. So we concen-
trate on the endpoint y= 1 (Fig. 5):

easily detel'IIIIIled fro)n (846) alld

m = (1 —y')/y' (848)

%'e perform the basic steps of the asymptotic ex-
pansion of W, (0) for large s, where s = 1/II:

where

Z,(s""g) = (2+s""g)"'tarn[-,' PA(c, s""()]

W,(0)= E([(is(-A +b —cos(I));

1 —2isA; —2is(a —b)] .
%e use the integral representation'

(C 1)

1-y2
)( A(n S(s/4 () y2

~'
(

(s/4 ()2
2@3

(846)

W,(0) =—I'(1 —2isA) I'[1 —is(- A+b —coeP)]
2)(iI'[1 —is(A+ b —cos p)]

)( f &
2(s(a -b)b

(
-f)-(I- (s( )(cb-c-osy)3

C

(84'r)

Using same method as before one obtains

f(t) =& Re e'" 'e"'" [E (0)-'(mt) ' '1'(-')

+ s" /4~, '(0) )(-,' (mf) ~/4 &(Q],

where Z4(0) and d/dz [E4(s)]for s=e"/ )=0 can be

X (1 f)-(s(A+ b-cosy ) di (C2)

where C is the contour shown in Ref. 17. Since the
asymptotic expansion of the I' function is well
known, ' it is sufficient to study the asymptotic ex-
pansion of the integral in (C2). Let

&-aim(a- b)f
~

-L'1- &s(- ~+5- co84)]

)( (1 f)-(s()( c 4 coa 4 )df- (C3)
Since the major contribution of 4', for large s, is
coming from the vicinity of the endpoint t= 1 in the
lower half of the complex t plane, we deform the
contour and approximate 4 by a line integral.

Let t=1 —sy, dt= —idy,

Re y

'( /2)t', -5 (A e

S 2s(a - b) b (1 iy)- I + (s(- A b cosy)
0

yy-&s(A. + b - cosy)~
ug . (C4)

Let 2s(a —b)y=f .
4 becomes

&&sfr(& - b+ cost )+ (if/2)s(4*5 - co (f)) -2 js(4 b)8
g

(C5)

FIG. 5. Contour C3.

)( [2 s ((I b) ](s(/(+ b - ccs y )- I

(o

e 1+. fs( A+ b ooe@)
i2s((I —b)

&s(A + b cos g ) yg
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Q~ h - b+ 8~)+( /2) (h+ b cp8g)

e- is(a-b) 28 + y is(h+b- cos4)-2i 1
2s(a —b)

1 is (h+b-cos @ )
A —5 t:Os&)1

2(a —b)

&+cos4 ] &s&A-+&- aose)dg

(C6)

Finally, we obtain

4, 2esa(h - b+ cosg) + (r/2)s(h+b- cosp) -2is(a- b)

I'[1 —is(A+ b —cos&t )j .

Combining (C'7) with the asymptotic expa.nsions
for I'(1 —2isA) an&i I'[1 —is(- A+6 —cosP)j, one
obtains (6. 12).
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