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An independent-particle potential-scattering model is proposed for electron scattering by
atoms, which is similar in approach to the recent study by Green et al. for bound states of
atoms. The general model is discussed, including specific scattering considerations, and
specialized to the case of helium. Results of calculations for e-He elastic scattering are given
and compared with experimental results and with the calculations by LaBahn and Callaway. By
allowing the polarization part of the potential to be slowly energy dependent, the agreement
becomes quite satisfactory. The relevance of this study to future efforts to develop an optical
model for elastic electron scattering by atoms and molecules is discussed.

I. INTRODUCTION

The nuclear independent-particle model (IPM), '
based upon analytic shell and optical-model po-
tentials, has contributed greatly to the develop-
ment of techniques for calculating elastic and in-
elastic scattering cross sections, transition prob-
abilities, and other important nuclear properties.
A simple analytic IPM for bound states of elec-
trons in atoms, which maintains a close relation-
ship to the Hartree-Fock model, has been found
in a recent study. ' The intent of the present ef-
fort is to explore simple optical models to deal
with elastic scattering of electrons by atoms.
These two studies would lay the foundation for a
later attack on inelastic electron scattering using
a variant of the distorted-wave Born approximation
(DWBA).

The study of electron scattering by atoms has
had a lengthy history. An early review article is
that of Brode, ' who summarizes both theoretical
and experimental results available at that date
(1988). More recent references are given by
Goldberger and Watson.

For electron energies greater than or of the
order of a kilovolt, one can use analytical approxi-
mations to Hartree-Fock potentials in atoms to
predict scattering properties in terms of a single,
static potential. At these high energies, the ef-
fects of polarization of the atom and of electron
exchange are usually ignored.

These latter effects are known to be quite im-
portant for the low energy region around one ryd-
berg (18.6 eV) or less. Various analytical forms
for the polarization potential have been used, one
of the most popular, introduced by Buckingham
and by Bates and Massey, is given in Eg. (4) be-
low. Resonance effects are also known to be
rather large in this energy region.

It is in the intermediate region (around 100 eV),
where our primary interests lie at present. There
are several reasons for focusing on this region.

Here excitation and ionization processes are quite
important and may have some effect on the elastic
cross sections. Also, at these energies, isolated
resonances should have little effect on the elastic
cross sections.

The present effort is devoted to elastic scat-
tering of electrons by helium. This system is
studied from a somewhat different viewpoint in
a companion paper. ' Recent experiments' now
give reliable angular distributions for e-He scat-
tering, whose absolute normalization is, hope-
fully, accurately determined. Furthermore, a
detailed microscopic theory of elastic electron
scattering has recently been given by LaBahn and

and Callaway"; thus providing a point of contact
between experiment, microscopic theory, and the
more phenomenological approaches. The LaBahn-
Callaway and other" calculations indicate that
polarization effects are important in this energy
region also.

A summary of the types of potentials which are
used in the particular case of helium as well as
one which may be of use in the more general case
is given in Sec. II. The calculational procedure
is discussed in some detail in Sec. III, and the re-
sults of applying the method to electron scattering
by He in the energy range 100-500 eV are given
in Sec. IV. The implications of the results of
these calculations are discussed in Sec. V.

II. ELECTRON-ATOM INTERACTION
POTENTIALS

It should perhaps be stressed that what is being
sought in the general study of which this is a part,
is a representation of the interaction between an
atom and a colliding electron in terms of relatively
simple analytic potentials.

A major part of the interaction is the electro-
static potential due to the nucleus and the electron
cloud. For helium, an estimation of this potential
can be obtained from the simple Hylleraas varia-
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t1onal wave funct1on"

U(r) = (~'/&~)'"e '"'"",
where p, = 3. 375 ao', where ao is the Bohr radius.
The charge density of the He two-electron cloud
1S

p(r) = —Ze U'(r) = (-Ze p. '/BII) e '". (2)

The potential energy of an external electron in the
field of 'tile llllclells (-2Z/r) 'toge'tiler wl'tll tile 1'6-

pulsive potential energy of the electron due to the
exponential cloud is given by

Ve (r) = ( 2Z/-r ) (1+—,
'

u, r) e '", (3)

where Q(r) = [B(e"~ —1)+1], &= Dn(Z —1) ',
and, for all practical purposes, z could be fixed
at the valve a= 1. The parameter D has been
tabulated for all 2 ~8~103. It should be noted
that Q(0) = 1, Q(0) = 0. One modification of Eq. (4)
which may be useful for electron scattering by a
neutral atom is simply

V, (r) = -2r 'ZQ(r),

with Q(r) determined as given above. The poten-
't1als Ve glveII by Eqs. (2) and (4) will be I'ef61'1'ed

to as the static potential,
It must also be recognized that the target atom

is polarized by the Coulomb field of the incident
electron. This gives rise to R polarization poten-
tial, which at large radial distances behaves as

In the present paper we consider a polariza-
tion potential of the form

V„(r) = —n/(r'+d')', (6)

where n and d characterize the strength and range
of the potential. The quantity e is the electro-
static dipole polarizability of the atom and has the
value 1.39 az for He. The range or *'screening
length" d will be treated phenomenologically as
an adjustable energy-dependent parameter. For

where Ve(r) (and all other potentials) are given in

units of rydbergs (1 Ry=13. 6 6V) and lengths are
in units of the Bohr radius ao.

In more complex atoms, where a simple result
of the above sort is unattainable, one wouM ex-
pect to use potentials obtained perhaps from Har-
tree-Fock (HF) self-consistent potentials. A re-
cent study by Green et a3. showed that a simple
one- or two-parameter potential gave excellent
fits to Hartree-Fock-Slater (HFS) screening func-
tions and to experimental as well as to HF and
HFS single-particle energies. The single-particle
potential for a neutral atom of atomic number Z,
as used by these authors, is

V(r) = 2r '
[(-Z —1)Q(r)+1],

comparison, however, Mittleman and Watson '
estimate d to be

d'=(-,'n)Z "'.
This gives, for He, d =0.86 or d3=0. &4, which
ls R slmllar VRlue to thRt found emplrlcally 1n the
present paper (see Sec. IV).

In a,ddition to a static and a. polarization poten-
tial, it is reasonable to expect that an imaginary
term in the total potential w'ill be necessary. Al-
though the general form of such a potential is un-
known, it is possible to make reasonable guesses
about its form and attempt empirically to deter-
mine the constants involved. One such form that
we are using is

y ~&n& qt'
I

where q is chosen as the Hylleraas value 3.375
ao' in the 8-He case. A and n are adjustable
constants.

In the present work, the electron-atom inter-
action is taken to be a sum of V~ and VJ, given in
Eqs. (3) and (6). Some preliminary results ob-
tained using more general forms for the potential
are referred to in Sec. IV. For this reason, as
well as for completeness, the above discussion
has been expanded to include these potentials.

III. CAI.CUI.ATIONAI. PROCEDURE

The calculational procedure employed here is
a standard one for the most part. The approach
will be described in some detail in order to point
out those special considerations which are used.

The Schrodinger equation for the 1th partial-wave
radial function for electron energy E= k is

d'u, /dr'+[a'-f (f+1)/r'- V(r)]u, =o,
where units are as given after Eq. (3). Equation
(9) is solved subject to the boundary conditions
u, (0) =0 and

uI- rjI(kr) + AAI(- rnI+ irjI) as r- ~,
where j, and n& are the spherical Bessel and Neu-
mann functions. The coefficients A, are related
to the phase shifts 5, by

~, = [e'*'I —1]/2II .
The phase shifts are complex quantities when V(r)
is complex; otherwise, they are real.

The scattering amplitude f(8) and the differential
cross section do/dQ are obtained in principle
from the A, 's and the Legendre Polynomials P&

by the relations

f(8) = Q (2l+ l)AIPI(cos8) (11)

(12)
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The usual procedure is then followed. Equation
(9) is integrated numerically for partials waves
0& 1 & I.. (The manner in which I is chosen is
discussed below. ) A power-series expansion for
u, is used near r= 0 after mhichNumerov's method'
is used to integrate outward to a "matching radius"

The mesh size is doubled periodically in the
vicinity of r= 0 to allom a small grid mhere the
potential is changing rapidly and a larger grid
farther out. At the matching radius, the deriva-
tive of I, is computed numerically and the equation

f~~(8)=-E ' J rsinKrV~(r) dr

= (as/4d) 6 r",
where K= k [2(l —cos8)] ~'= 2k sin-, 8

is the momentum transfer.

(16)

(16)

~II g . , (rjI) +AI k(- rIII+ frjl)(numerical) =
sl (rjI)+AI k( rIII+-rjI)

is used to obtain A, and therefore 6I from Eq. (10)
and da/dQ from Eqs. (11) and (12).

For potentials which fall away sufficiently rap-
idly as r becomes large, the above procedure per-
mits the scattering cross section to be determined.
However, since the potentials under consideration
here include the polarization potential Eq. (6),
mhich has the asymptotic form r for large r, the
above procedure must be modified in tmo ways.
First, one must allow for contribution to 5, due
to the remaining potential outside of r= r . Sec-
ond, one must include an infinite number of par-
tial waves in Eq. (11). These two points can be
treated as folloms.

From phase-amplitude considerations, ' one
can derive a power-series expansion in r for
the contribution to the total phase difference be-
tween r„and infinity due to potentials such as
that given in Eq. (6). The difference between the
series with and without the potential gives the cor-
rection to the phase shift due to the remaining po-
tential outside of r . This correction term is
given (to order r„~) by

II 1 1 l(E+ 1) —2 Sd
2~r3 3+ r

Le

where n and d are from Eq. (6) and provided that
E(kr„) ' «1. The 6I'8 and the A, 's can be cor-
rected by adding ~, to the value of 5, found from
Eq. (12).

For sufficiently large $, the only contribution
to the scattering amplitude comes from the polar-
ization potential. The Born approximation can be
used to take this potential into account for all I' s,
at least approximately. In this approximation,
Eq. (6) gives the scattering amplitude

0,= 4II Q (2l+1) (IA, I')
0

= o, + 4IIg (2l+ 1) (I A, I
' -8'I),

where oa= {II'n'/6k'd')[1-(1+2kd) 6 '"]
and o„=Q (2l+1) (1 —Ie"'Il').

(19)

(20)

(21)

The reaction cross section becomes nonzero only
when 5I is complex, i.e. , when V(r) is complex.

We show the results of our calculations in Fig.
1. In the figure, the circles represent the data"
for 100-400 eV, from Vriens et al. as renormal-
ized' and for 500 eV, from Bromberg. The
dashed curve is the calculation of I aBahn and
Callamay' and the solid curve is ours. The
results of our calculations which are shown in
Fig. 1 mere obtained using a real total potential
given by

where Va(r) is given in Eq. (3) and V~(r) is given
ln Eq. (6).

Tile llltegl'Rted 61RstlC CI'088 86Ctloll [Eq.. (19)]
is tabulated on Table I along mith the results of
Ref. 12.

As indicated in Sec. II, the quantity d has
been treated as an adjustable para, meter for each
6116rgy. T116 values mhlc11 were used ill obtalnlng
the illustrated results are given in Table II. One
should notice that numerically they are roughly
the same as that obtained in Sec. II from a re-
sult of Mittleman and Watson. There is, however,
a rather smooth energy dependence to the values
of d which are given in the table. Roughly
speaking, d is given by

—200 E+ Oo 4 (23)

The total scattering amplitude is now rewritten
by adding and subtracting f ~(8) and its partial
WRve decolllposltloll 111 Eq. (11) whlcll gives

f(8) =f~ (8)+ Z (21+1)(A,—BI)PI(cos8), (17)
1

where BI= a f f &(C088)P, (cos8) d(cos8) . (16)

The assumption is now made (and calculations con-
fil'nl 'this Rssulllptioll) tllat tile 861'168 111 Eq. (1V)
effectively terminates at a finite value L. This
is equivalent to the assumption that the phase
shift 5, can be approximated by the Born approxi-
mation of 6, using the polarization potential alone.
More details are given below for specific cases.

In Rddl'tloll 'to do/dQ glvell by Eq. (12) llsillg
Eq. (1V) for f(8), the integrated elastic and re-
action cross sections 0, and o„are needed in
Sec. IV. They are given by
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TABLE II. Energy dependence of the parameter gP.

100 150 200 300 400 500
d (~0) 0.9 1.2 1.5 1.9 2.4 2.4

Tile vRIUG for 8=150 GV hRS been inclUded 1D tl16 tR-
hie, but, for convenience, the curv68 are Dot given in
Flg l.

lo Ro M 40 50

rRdlus o'Rs fixed Rt K = 20 Qo. Dlfferentlal cx'oss
sections coxnputed in this manner Rre stRM6 to
at least 1% by making rather large variations in
I and x Rs urell Rs in the numbex' of integration
IQ68h points.

It was of interest to 866 the effect of including
an imaginary part such as that given in Eq. (8}
to the poteQtlRl. Preliminary results 1ndicate
tha, t it is possible to find fixed values for A and
n in Eq. (8) which give roughly the right reaction
cro88 8ect1OQ ovex' R I'Rnge of encl g168 081ng
Eq. (20}. The aIlgllial' cllstrlbutlolls pal'ilcularly
the forward Rngles, Rre Qot seriously affected;
but a slight readjustment of the value of d in the
polarization potential 866M8 QecessRry.

Further preliminary results indicate that the
static potential given in Eq. (5) will be quite satis-
factory fox' higher Z atoms»

These lR8t bvo polnt8 —the imaginary pRrt Rnd

the general static potential —ax'e subjects for
further study.

FIG. 1. CoIDpRllson of differential clo88 sectlon8 fol
electron Scattering bg HG, TlM circles Rre dRta (866
text), the dashed CUrve8 are theoretical rGSUlt8 of LR-
Bahn Rnd Callavgagl Rnd the solid cUrve8 Rre tile present
author'8 results.

It should be noted that Ganas eg Q]. have obtaiQed

quite slmxlRr r6sults to those gxven hex'6 uslQg
a different calculational approach. Since the 400-
and 500-eV data, give essentially the same d, the
Rbove relat1onshlp cleRX'ly 18 Qot complet6ly Rc-
curate ovex" the entire set of results. %'6 return
to this point in Sec. V.

In the calculation, the method given in Sec. III
e'Rs followed. The upper limit on the sum in Eq.
(17) was kept fixecl a't L = 15 alld the matching

One conclusion to be drawn from this work is
that R real potential —vrith R static part resulting
from the nucleus and electron cloud Rnd a simple
polarization terIQ —18 sufficient to ROGN R de-
scr1pt1OQ of 6lRst1c scRtterlng of elections by
helium atoms. This conclusion is not a Qem' one
by any means. However, the fact that the polar-
ization potential should be somewhat energy de-
pendent is qualitatively in agreement with I RBRhn
and CRORmay. Ho@&ever, treating this effect in
the above manner is much simpler and should
px'686nt many px'RctlcRl RdvRQtRges ovex' R detRlled
microscopic theory.

One rathex' troublesome point is that the data
from 100 to 400 6V seem to be qualitatively dif-
ferent from those Rt 500 eV. It may pex'hays be
dangex'ous to dram this conclusion from the rather
simple model calculation-done here, but the shax'p

TABIE I. CompariSODS of total elRStic cross Section.

WW%

Z(ev) = 100 150 200 300

LRHRhn- CRllRWRQ 0~(ao) = 2. 230 1» 377 0.977 0.609
Present calculation o~(a02) = 2.512 1.469 l.003 0.63.45

The 500-GV rGSUlt 18 not given 1D Ref. 12. It was obtained bg Using tllelr pllblished
higller partial %'aves bp BorD RpproxiIDRtion 6886ntiallg RS desclibed ln Sec. II.

400 500

PhRSG Shifts Rnd coMPUting the
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break in d' versus E in going 400-500 eV (see
Table II) is suggestive that the data from the two
different laboratories are not totally consistent.
If so, the problem of obtaining accurate absolute
normalizations for differential cross sections
may still be present.

W'ith the above test case rather satisfactorily
accounted for by the simple model described in
Sec. II, we expect now to consider the more gen-

eral problem of looking for an "optical model" for
electron scattering by atoms. The problem is
more complex for larger-Z atoms both because
the static potential is generally less well known
and because existent data are perhaps less satis-
factory than for He. Preliminary results indicate
that the considerations given in Sec. II should be
adequate to carry us quite far into the general
problem.
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We discuss the elastic scattering of electrons from helium atoms in terms of an energy-
dependent central-potential model having the form

e gr p2 e~r
V(x) =2Z lim &2 2

+ p2 2 ~ 2 d2)2&A —p —p x (& +d

where p, n are fixed constants (for He, p = 3.375 and e =1.39), and d is an energy-dependent
phenomenological parameter. The method of partial waves is adapted for a generalized Yukawa
potential and a polarization potential. Phase shifts and scattering cross sections are calcu-
lated from our potential model using the first Born approximation and a modified form of it.
We develop an effective-range theory for a generalized Yukawa and a, polarization potential,
and apply it to generate a set of energy-dependent electron-helium phase shifts in the region
0-500 eV. Recent experimental angular distribution data in the region 100-500 eV are rather
satisfactorily accounted for by our potential model. Our results compare favorably with those
of LaBahn and Callaway.

I. INTRODUCTION

The general aspects of the elastic scattering of

electrons from helium atoms have been discussed
in Paper I. ' Here we examine the same problem
within the framework of the first Born approxima-


