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The thermodynamics of critlcR1 polnt8 1n multlcoInponent systems» Ino1'6 gene1'Rlly 8y8-
tems with more than two independent variables (including binary fluid mixtures, the helium
X transition, order-disorder transitions in anoys, and antiferromagnetism) are discussed
fx'om a unified geometrical point of view, in analogy with one-component (liquid-vapor and
simple-ferromagnetic) systems. It is shown that, from a few simple postulates, the qual-
1tRtlve behRV1ox' neRx' the clltlcal point of quRnt1tles such Rs compressibilities susceptibil-
ities, and heat capacities, with different choices of the variables held fixed, can be easily
pledlcted. A number of seemingly exceptionRl cR868 (such Rs cx'lt1cRl azeotropy), wh1ch
arise when critical or coexistence surfaces bear an "accidental" geometrical relationship
with the thermodynamic coordinate axes» Rre explRlned ln terms of the same postulRtes. -

The pledlcted results Rre compared w1th sevel"Rl theoretlcRl models Rnd experimental dRta
fox' R VRllety of systems o

I. INTRODUCTION

Mr understRQd1Dg of phenomena Deal' the cx'ltl-
cal points of pure fluids and simple ferxomagnets
has increased considerably during the last decade. '
The widespread adoption and experimental measure-
ment of DGQclRsslcRl cx'ltlcRl-polDt exponents, the
observation of specific-heat "anomalies" the pro-
posal and (to a degree) experimental vindicationof
scaling laws, the observation and at least tentative
explRQRtloQs of UDexpected anomalies ln tx'RDspol't

coefflcieDts, Rx'6 among the more notable BXRIDples.
It is natural to enquire how these advances may be
extended to more complex physical systems in
which a single critical point is xeplaced by a crit-
lcRl llDB ox" surf Rce, etc. Examples lDclude crltl-
cRl mixing Rnd llquld-VRpox' crltlcRl points lD mul-
tlcomponent fluids; X tx'Rllsitlolls III solids (includ-
ing the Noel transition in antiferromagnets); and
the normal-superfluid transition in liquid helium,
including He -He mixtures.

In this pRpex', we shall exhlblt R very Datux'Rl Rnd

consistent &ray to extend results for equilibrium
thermodynamic pxoperties neax simple critical
points to more complex cases. Oux approach i.s
geometrical in character and depends heavily on
a proper choice of independent thermodynamic vari-
ables. In pax'ticular, me find it most convenient to
use "intensive" rather than "extensive" thermody-
nRIlllc var1RM68 (the Ilotlolls Rl'6 111Rde IIlox'6 pl'eclse
111 Sec. II), lll colltrRst to the wol'k of Tlsza,
which is (so far as we know) the most general and
systematic work to date GD phR86 tx'Rnsltlons Rnd

critical points in multicomponent systems. Among

the large number of topics which can properly be
discussed under the heading of critical polDts ln
multicomponent systems, we shall focus our atten-
tion on the divex'gences of thermodynamic deriva-
tives such as heat capacities, thermal-expansion
coefflclents, RQd susceptibilities DBRx' cl"ltlcal
points (lines, surfaces, etc. ), since these serve
to illustrate rather well our geometrical point of
view and are directly relevant to a large class of
BxperlmeQtRl measurements. OUx" prlIDRry con-
cern is with qualitative rather than quantitative
aspects of these divergences, and in this sense,
the present paper can only be regarded Rs a vexy
preliminary effort in understanding the phenomena
of interest.

An outline of the paper is as follows. Some nota-
tloQRl coQventlons Rnd terminology, RloQg %'1th some
very gBDBx'Rl comments GD phase transltlons 1D mul-
ticomponent systems are found in Sec. II. The
reader vrho intends to read any part of Secs. III-V
would be vrell advised to first examine Sec. II,
since our terminology (for reasons there explained)
is not standard, and abbreviations are then introduced
which are employed throughout the remainder of
the paper. Section DI is a discussion of simple
critical points in fluids and ferromagnets from a
particular geometrical point of view &which is easy
to generalize to the multicomponent case consid-
ered in Sec. IV. Section IV contains, first, a
series of postulates which determine the general
character of divergence of thermodynamic deriva-
tives near critical surfaces'„second, a numbbr of
thermodynamic formulas useful for relating spe-
cific derivatives to the general postulates; and
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third, some comments on the relation between
these postulates and rigorous bounds for thermo-
dynamic quantities which we derived in an earlier
pRper. ApplleRtlons to R number of systems Rx'6

given in Sec. V where the explicit consequences of
our postulates are morked out for a number of sys-
tems —simple critical points, critical points in
multieomponent fluids, antiferromagnets in a mag-
netic field, order-disorder in P brass, the X tran-
sltlon 1n H64 Rnd Hes-He4 mixt res —Rnd compar
ison is made with experimental results. A sum-
mary of our conclusions together with remarks on
where further work is needed constitutes Sec. VI.

II. THERMODYNAMIC VARIABLES AND PHASE

EQUILIBRIUM

The customary division of thermodynamic vari-
ables into "intensive" and "extensive" is a very
important one, though the reasons for thisdivision
are seldom clearly stated, and the terms themselves
can be misleading. One knows, for example, that
temperature Tbelongs in the first category and en-

tropy in the second. But what about entropy per mole

s, a, quantity which remains unchanged upon the com-
bination to two identical systems (and consequent dou-

bling of extensive variables}'? We shall use the term
"density" for such a variable (a more precise defini-
tion of density is given below}, which though in one
sense intensive plays quite a different role in thermo-
dynarnic equations than temperature and pressure P,
which we shall refer to as "fields. "' Other examples
of fields are the chemical potentials of different com-
ponents in fluid mixtures, and magnetic and electric
fields in paramagnets and dielectrics, respectively.

The fields (in contrast with densities) have the

property that they take on identical values in tmo

phases which are in thermodynamic equilibrium
with each other. A system with n independent
thermodynamic variables (n= 2 for a pure fluid)
may be characterized by 'g+ 1 fields ho, ky, . . . , k&

mith one of these, say ho, regarded as a function
of the rest. The dependent field, for which we use
the symbol P, will be called the "potential. " With
this particular choice of independent and dependent
vax'iables, the n densities p& are defined by

(2. l)

For the thermodynamic systems we wish to con-
sider, it is always possible to choose the potential
as a concave function of the other fields, and the
statement that P is a concave function of all the hz

together comprehends all the requirements of ther-
modynamic stability.

The choice of variables is certainly not unique.

For example, if we introduce h'„..., h.'„ through

h)=Z T)„h, +tq (2. 2)

with T» and t& real constants, the determinant of

T» nonzero, and a new potential

c(h'„... , h'„) =ho= p(h„...,h„)+Z e„h„, (2. 3)

with the &, a set of real numbers, this new set of
variables will serve equally mell, and of course
there mill be a new set of densities

8@
» eI' ' (2. 4)

Alternatively, it is often possible to interchange
dependent and independent variables. Thus, if
ho= P is a monotone increasing function of h& for all
values of h2, ... , k„, then 8& may be expressed as a
function of ho, ha, ... ,h„, and the appropriate poten-
tial is

q(h„h„...,h„) = -h, , (2. 5)

(the minus sign yields a concave, rather than con-
vex, function of the independent arguments) with,

of course, a corresponding set of densities defined
in analogy with (2. l).

Finally, note that if one of the independentfields
h„ for example, takes on only positive values (for
instance, h, = T), one can define another set of
fields

gg = l/hg, g) = hq/hg for j &2, (2 6)

(2. 8)

and this, in genexal, defines in the space of the

n —independent fields (the "field space") a hyper-
surface of dimension n -1. Provided at least one

of the densities is a discontinuous function of the
fields at this hypersurface —that is, possesses
two different values upon approaching a point on

the surface from the side of phase a or of phase b

and the corresponding potential

g.= +(g&, ",g.) =gi 0»/g~, g2/g~, -.,g/g»
(2. '?)

with, of course, still another set of densities, Th&

concavity of 0' as a function of theg& in (2. '?), as
also of g and C in (2. 5) and (2. 3), is guaranteed by
the concavity of P.

For example, in a, tmo-component fluid mixture,
we could let h, = -P, h, = g, (chemical potential of
first component), h~= p, a, h~= T. Then p, and pa
as defined by (2. l) are the ordinary molar densi-
ties per unit volume of the tmo components and ps
is the entxopy per unit volume. An alternative
choice of variables is used in Sec. V B.

If tmo phases a and b are in equilibrium, each
field must have the same value in both phases:
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—we shall say that hypersurface is a coexistence
surface (CXS) or a first-order phase-transition
surface.

Such a hypersurface may terminate in the field
space in a variety of ways, some of which are the

following.
(i) A field may reach the limit of its definition.

Thus, if p,
&

is the chemical potential of the j th

component, p&--~ yields a system with (n-1)-
independent variables in which component j is
absent. Quite frequently, the (n -1)-dimensional
CXS terminates in an (n -2)-dimensional CXS in

the new field space.
(ii) The CXS may intersect another CXS in a

triple "line" (hypersurface of dimension n-2) at
which three phases are in equilibrium.

(iii) The CXS maypass intoanother hypersurface
which continues to separate two phases but which

has the property that all densities are continuous
at the hypersurface. One then has a "higher-or-
der" phase transition; in many cases, such a sur-
face turns out to be a critical surface [see (iv)] in

a suitably augmented field space.
(iv) The CXS may terminate in a line (hypersur-

face of dimension n -2) of critical points, which we

call the critical surface (CRS) with the property
that dlscontlnultles ln densltles across the CXS go
continuously to zero upon approaching the CRS in
such fashion that at the CRS there is no longer any
distinction between the previously separated phases.
The existence of a CRS implies that there is apath
in the field space extending from one side of the
CXS to the other, looping around the CRS, along
which all thermodynamic variables are completely
smooth functions exhibiting no phase transitions.

The geometrical notion basic to our analysis is
the following. Suppose that we have a CXS termi-
nating in a CRS; choose a particular point F onthe
CRS and consider the two-dimensional plane pass-
ing through this point parallel to two of the field
axes, for instance 0& and ha. In general, theinter-
section of the CXS with this plane will be a coexis-
tence line and this line will terminate in the inter-
section of the CRS with this plane, that is, in a
critical point. (The geometry is most easily
visualized for n = 3 when CXS and CRS are of di-
mension two and one, respectively). We then ex-
pect the critical behavior in this plane, given by

Q as a function of h, and h, (the other h&, j ~ 3 re-
maining fixed) to be very similar to that found at a
simple fluid or ferromagnetic critical point, at
least if one excludes the rather special case in
which the plane is parallel or almost parallel to
the CXS at the point 7. Nor do we expect this con-
clusion to be qualitatively altered if some new set
of variables h&, ha, . . . , A,„', linear combinations of
the original variables, is introduced. It is crucial,

however, that the variables be fields; the same
conclusion is almost certainly not correct when

fields are replaced by densities as independent
variable s.

The above idea has been used by Fisher' in a
particular case for discussing renormalization of
critical-point exponents, and he gives some rea-
sons for regarding it as not implausible. However,
it must still be regarded as a postulate in need of
further confirmation both by statistical calculations
and experimental measurements.

The notion of a line or plane parallel to some
(in general curved) surface at a particular point
plays an important role in the development of Secs.
III and IV. %e shall frequently use the abbrevia-
tions PCXS and PCRS for "parallel to the coexis-
tence (hyper) surface" and "parallel to the criti-
cal (hyper) surface, " respectively, including the
cases where the CXS (or CRS) is a one-dimensional
line.

III. CRITICAL POINTS IN ONE-COMPONENT SYSTEMS

Before discussing multicomponent systems, we

wish to review certain properties, by now fairly
well established, ' of the liquid-vapor phase tran-
sition in a pure fluid. Let the two independent
fields be -P and T. The coexistence curve termi-
nating in a critical point is shown in Fig. 1.

The natural choice for dependent variable is the
chemical potential p, , with the corresponding den-
sities, volume per mole and entropy per mole,
given by

g
Bp, 8/J, (3. l)
BP B+

As is well known, both the isothermal compress-
lbillty

and the heat capacity at constant pressure

FIG. 1. Liquid-vapor coexistence curve (solid line)
and critical point for a pure fluid. The dotted lines are
an aid in visualizing how regions in the pT plane near
the critical point are mapped into corresponding regions
in vT plane (»g. 23 —see text.
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diverge to infinity in the vicinity of the critical
point. It is not often emphasized, however, that
the form of this divergence depends on the route
by which one approaches the critical point. In
other words, if the approach is along the cxitical
isochore with T & T, —to a first approximation,
along a linear extension of the coexistance curve
in the pT plane —the divergence is of the form

with the index y typically about l. 2-1.3 (l. 0 in the
van der Waals equation). A similar divergence
occurs upon approaching the critical point for
T & T, along either side of the coexistence curve.
The corresponding index y' is harder to estimate
but is believed tobe about the same as ~. %'e shall
call these "p divergences. " Gn the other hand,

along the critical isotherm, one has an & diver-
gence

with e = l-l/5 in the customary notation, '" lying in
the range 0. 75-0. 8 (-', for a van der Waals gas).

The divergences are clearly different in the two

cases. With p divergences, the path of approach
is asymptotically parallel to the coexistence curve,
whex'eRs the 6 divergence ls Rlong R path Rppl oRch-

ing the critical point at an angle to the coexistence
cu1've ~

Indeed, it seems to us that when considering
divergences at the critical point, the only direction
in the field space which is, so to speak, singled out

by the nature of the phase transition itself is a
direction parallel to the coexistence curve. In sup-
port of this we note that (i) in a space spanned by

two variables p and T with different units there is
no natural way to define orthogonality, and (ii)
the stability requirement that p, be a concave func-
tion of p and T remains invariant under linear
transformations of variables (including rotations)
—thatis, if p. is concave inthe original variables, it
is concave in the new variables, and vice versa.

Consequently, it is our expectation that both K~
and C~ will exhibit an & divergence upon appxoaching
the criticalpoint along any line which is not asymp-
totically parallel to the coexistence curve; e. g. ,
along the cxitical isobar one, would expect

on a curve asymptotically parallel to the critical
isotherm one should, clearly, use )P —P, ) not
)T-T, ). It is possible that the index & will depend
on whether one approaches the critical point from
the side A or A' shown in Fig. 1. At present,
there is no definite experimental evidence for such
a difference, but we do not wish to rule out the
possibility.

To emphasize the importance of the notion of
"parallel to the coexistence curve" in Fig. 1, let
us consider the situation when P is replaced by v,
its conjugate density. The situation is shown in
Fig. 2. The coexistence curve has two branches
corresponding to two vallles of 5 (llquld alld vapol')
which may be in equilibrium at the same temper-
ature. In the pT plane, we find the following re-
sult, which, though obvious after some xeflection
on the matter, has often been overlooked. The
regions marked A and A' in Fig. 1, which include
(asymptotically) all approaches to the critical
point making an angle with the coexistence curve,
reduce jLn Fig. 2 to narrow wedges surrounding the
critical isotherm, while 8 and B in Fig. 2, which
seemingly include almost all approaches to the
critical point in the pT plane, are in turn but nar-
row wedges in the pT plane of Fig. 1. This is a
purely geometrical effect associated with I egendre
transformations of variables and is of course re-
lated to the large compressibility near the critical
point which means thRt SDlRll chRnges 1n p lead to
large changes in e. It shows why "asymptotically
parallel" to the coexistence curve in the PT plane
is rather easily achieved in practice by fixing v or
making it a slowly varying functionof temperature.
(Analogous results would be obtained, of course,
by fixing the entropy. )

One cannot make a completely precise definition
of asymptotically parallel without a more detailed
knowledge of the equation of state. In the case of
a scaling-law equation of state, the condition is
that deviations from a line drawn through the critical
point parallel to the coexistence curve at this point

t
A

/

/

I

a

A ~

There is, of course, no unique w'ay of specifying
"distance" from the cxitical point in some general
direction in the p Tplane. Either jp —p, ) or )

T-T, j

may be used, or [(T-T,) + (p —p, ) j
t if some dimen-

sionless units are adopted for T and p. Of course,

FIG. 2. Liquid-vapor coexistence curve (solid line)
and critical point for a pure fluid. The two-phase region
is crosshatched, and the dotted lines correspond to those
ln Fig.
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must be smaller than a constant times I T —T, (

with 6 = P5, in the customary notation "between
1.3 and 1.7 (1.5 for the van der Waals equation).

In addition to C& and K~, quantities which we
shall say are strongly di pexgent at the critical
point, there are other quantities —the best known
is the heat capacity at constant volume C„—which
in the classical van der Waals theory remain finite
at the critical point, but according to the more
recent experimental and theoretical studies' may
be expected to diverge, though in a less pronounced
fashion than K~. We shall refer to these as creak
divergences. Along a path asymptotically parallel
to the coexistence curve, the divergence is as
(T-T,) or (T;T) (for T&T„T&T,, respec-
tively) with n, typically, between 0 and 0. 2; we
shall call these a divergences. A logarithmic di-
vergence corresponds to n =0. On a curve making
an angle with the coexistence curve, the divergence
is as ~T T, i

~ or-IP-P, [ ', thus, a $ divergence.
There is no customary notation for this last index,
but in the case of a scaling-law equation of state,
it has the value a/P5.

Both strong and weak divergences are included
in the determinant D(P, T) of the matrix

of second derivatives of p, . Since me have

(3.3)

(K, is the adiabatic compressibility), we may say
that D(P, T) diverges "strongly times weakly" with
the precise exponent (n+y or $+e) depending on
the path along which the critical point is approached.

What is the geometrical distinction betmeenquan-
tities which diverge weakly and those whichdiverge
strongly at the critical point'F We note that Eland
C~ are essentially second derivatives of p, in direc-
tions parallel to the p axis and T axis, respectively,
in the pT plane, directions not parallel to the coex-
istence curve at the critical point. It mould, there-
fore, not be surprising to find that the second de-
rivative of p, in a direction parallel to the coexist-
ence curve diverges weakly at the critical point.
Consider d p/dT' along a straight line of slope
dP/dT in the PT plane. The thermodynamic iden-
tity

(3.9)

alyzed in the context of a scaling-law equation of
state to show that if dP/dT is the slope of the coex-
istence curve at the critical point, the second term
on the right-hand side is no more than weakly di-
vergent, so that —d p, /dT diverges weakly, where-
as, for any other value of dp/dT, the second term
is eventually proportional to K~, resulting in a
strong divergence.

Another point of view comes from noting that,
with a suitable choice of dimensionless units for
the P and T axes, D(P, T) is simply the product of
the eigenvalues of the matrix (3. '7). Gn the basis
of the experimental behavior of C„and E~ and the
fact that (ep/&T)„and (&p/& T), tend to a constant at
the critical point, it is easy to show that one of
these eigenvalues diverges weakly and one strongly
upon approaching the critical point, and the corre-
sponding eigenvectors become, respectively, par-
allel and perpendicular to the coexistence curve.

Along the coexistence curve itself, the densities
v and 8 are discontinuous from one side of the
curve to the other. The difference in specific vol-
umes 4e between vapor and liquid approaches zero
as (T;T), and the discontinuity 4s vanishes with
the same power law (from the Clausius-Clapeyron
equation and noting that the slope of the coexistence
curve dP/dT is finite at the critical point). Typi-
cally, P lies between 0. 33 and 0. 4 (-,') in the van
der Waals equation). Note that both v and s are
first derivatives of p in a direction not parallel to
the coexistence curve at the critical point, and that
either p, -p or T;T will serve as a suitable meas-
ure of distance from the critical point along the
coexistence curve.

Whereas the geometrical characterization of
thermodynamics at the critical point is largely
independent of coordinate axes, the prediction for
the behavior of specific derivatives may be altered
when one of the coordinate axes is parallel to the
coexistence curve at the critical point. A well-
known example is the Ising ferromagnet with mag-
netic field H serving, together with T, as one of
the independent fields, and a potential P such that
entropy 8 and magnetization M are given by

8= 'T

The coexistence curve is a portion of, and hence
parallel to, the T axis. Consequently, one expects
C„, involving a second derivative of P parallel to
the coexistence curve, to diverge weakly at the
critical point (in contrast to C& for a fluid), while
the susceptibility

which is a special case of (4. 10) below, can be an- involving a second derivative of Q at an angle per-
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H ~hf s XS ~T (3. 13)

which shows that on this line in particular the two

heat capacities must diverge in identical fashion,
and likewise, the two susceptibilities.

Another effect of the special orientation of the
coordinate axes is that the difference in entropy
(first derivative of P parallel to the coexistence
curve) across the coexistence curve is zero, while

the discontinuity in M vanishes as (T;T) . One

cannot, of course, use H to measure distance from
the critical point along the coexistence curve.

IV. CRITICAL POINTS IN MULTKOMPONENT SYSTEMS

A. General Description

Consider a thermodynamic system described by

N+ 1 fields h„h&, ..., k„, with the potential P = h, „

a concave function of the n-independent fields h&,

h2, ..., h„. Suppose there is a CXS, a hypersur-

faee of dimension n-1, terminating in CRS of
dimension n - 2. When A. is a subset of hj, h3, ..., h„
containing m elements, we define D(A) as the de-

terminant of the mmmm matrix

(4. 1)

with the h's drawn from A. and assigned some arbi-
trary order Con.cavity of Q implies that none of

the D(A) are ever negative. In particular, if A is
the single element fk~}, then

D{h,) = {4.2)

pendicular to the coexistence curve, should diverge
strongly (in analogy with Zr). The determinant of
the matrix of second derivatives D(H, T), since it
is invariant under rotations and other unimodular
transformations, is unaffected by the fact that T
axis and coexistence curve are parallel, so it
should be strongly times weakly divergent. Since
we have

(3. 12)

we expect C~ to be weakly and g& to be strongly di-
vergent. All these expectations are confirmed, at
least to a degree, by calculations, and certainly
hold for a scaling equation of state which seems,
at present, to represent the thermodynamic pro-
perties of Ising ferromagnets at least moderately
well. In addition, for H=0 and T&T„we have

In that event, D(h, ) should diverge weakly. However,
a third possibility remains which is not present in
single-component systems: that h, is parallel to
the CRS (PCRS) in addition to PCXS at the point of
interest. Various model calculations suggest that
in this case D(h&) will be finite at the CRS.

We next consider what to expect when A contains
a number of elements —say, h„h2, ..., h . The
determinant is invariant under unimodular linear
transformations of the h&, hq, ..., h, which shows
that it is not a function of the direction of any par-
ticular h&, but rather of the m-dimensional linear
manifold 8 of vectors which are linear combinati. ons
of the members of A. . From considerations of the
dimensionality of the CXS and CRS it is apparent
that at a given point on the CRS we can in general
choose a basis hq „h2,„„h' for 8 with the property
that h', is not PCXS, h' is PCXS but not PCRS, and
h&for 3&j&m are all PCRS. This suggests (we
are exhibiting an intuitive geometrical idea behind
our postulate, not constructing a proof) that in the
general ease, if A contains at least two members,
D(A. ) will be strongly times weakly divergent when

approaching the CRS. Exceptions will occur in
cases where, for example, g lacks a vector PCXS.
The various cases are catalogued in the following
postulates:

(a) If %contains a vector not PCXS, and also a
vector PCXS but not PCRS, D(A) is strongly times
weakly divergent.

(b) If d. contains a vector not PCXS, but no vec-
tor which is both PCXS and PCRS, than D(A) is
strongly divergent.

(c) If g. contains a vector not PCRS, but all vec-
tors in o. are PCSX, then D(A) diverges weakly.

(d) If all vectors in g. are PCRS, then D(A) re-
mains finite.

These four postulates may be summarized in
terms of the answers to the two questions: (i) Does
a. possess a vector not PCXS'? (ii) Does Q. possess
a vector PCXS but not PCRS? The character of the
divergence in the four possible cases is given by
Table I.

In addition, we make the following two postu-
lates:

(e) The character of the divergenceornondiver-
gence of D(A)/D(B), where A, B are two subsets of
h». . . , h„, is determined by the appropriate divi-

TABLE I. Character of the divergence in four cases.

is minus the second derivative of Q along this
coordinate axis. In analogy with the single-com-
ponent case discussed in Sec. III, it seems plausi-
ble to suggest that in general D(h, ) diverges strongly

upon approaching a point on the CRS, unless h& is
parallel to the CXS (PCXS) at the point in question.

Question

6)"yes
N" no

(io yes

strong xweak 1
weak

'Hefers to Question ii in text.
Refers to Question i in text,

(11) no

strong
finite
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sion; if D(A) is strongly times weakly divergent
and D(B) is weakly divergent, then D(A)/D(B) is
strongly divergent, whereas, if D(B) is strongly
divergent, then D(A)/D(B) is weakly divergent. II
D(A) and D(B) have the same degree of divergence,
then D(A)/D(B) approaches a, constant. Other cases
are determined in analogous fashion.

(f) Since the postulates (a)-(e) are geometrical
in character, they should be equally valid under
any of the transformations of fields mentioned in
Sec. II in connection with Eq. (2. 2) and the discus-
sion which follows 1t. In particular, they should
apply when A is a subset of h&, . . . , h„', where h'
coordinates are obtained from the h coordinates
by a nonsingular linear transformation. This
means that D(h,') for any h,

' PCRS should be finite
at the CRS and for h&, PCXS but not PCRS, should
be weakly divergent, etc, Therefore, we shall
regard postulates (a)-(e) as applying equally to the
h', . . . , h„' as well as to th orig'nal h„. . . , h„.

An alternative point of view closely related to the
above is to consider eigenvalues and eigenvectors
of the symmetric matrix (4. 1). Inthegeneralcase,
we expect that upon approaching some point on the
CRS, m —2 of the eigenvectors become PCRSand
the corresponding eigenvalues are finite, while
one eigenveetor becomes PCXS while not PCRS
with weakly diverging eigenvalue, and one eigen-
vector not PCXS is associated with a strongly di-
vergent eigenvalue. Although there is a close
intuitive connection between the properties of
eigenvectors and eigenvalues just mentioned, the
divergences of second derivatives of Q taken in
various directions, and postulates (a)-(d), the for-
mal relationship involves certain mathematical
subtleties we have not investigated in detail. The
postulates as stated seem the most convenient for
predicting the behavior of specific thermodynamic
functions.

We next wish to make the terms strong and weak
divergence somewhat more explicit. Consider the
variation of D(A) along a, line I.passing through a
point Y'=(h„h», ..., I»„) on the CRS. Let y denote
some measure of distance from F along L —for
example, jh~-h~ j provided the line is not asymptot-
ically perpendicular to the h& axis neax 1', ox per-
haps [$&(h& —h&) ]'~ . Whether D(A) has a strong or
weak divergence depends on the relationship of the
CRS or CXS to the manifold I at F, whereas the
orientation of L determines whether a strong di-
vergence, for example, is of the y or ectype. If I
is not asymptotically PCXS, the strong divergence
is of the form y ', and the weak divergence is of
the form y, whereas if I is asymptotically PCXS
but not PCRS, the strong divergence is of the form
y ', and the weak divergence is of the form y
%'e exclude the case where L is asymptotically

8. Thermodynamic Relations

We now investigate the implications of our pos-
tulates (a)-(I) for certain thermodynamic deriva-
tives near critical points. For convenience, the
following notation is used for partial derivatives.
The 1ndependent var1ables are h„h„..., h„except
that h, is replaced by its conjugate density p„, if
p~ appears as a subscript to, or in the denomina-
tor of, the derivative. For example,

means a derivative with ha, p„p4, h„he, ..., h„
held constant.

The derivative of a density p& with respect to its
conjugate field hj, when the other fields are held
fixed q ls

sp~ s'4
( ), (4. 3)

whereas, if certain other densities are held fixed,
we obtain, assuming j, k, $ all distinct,

sp» s(p» ps) s(p» ps
sh» s(I»», P)) s(h„, A~

s(&» p~)
s(a„, h, )

D(a„, a&)

D(a, )
(4. 4)

cps s(ps&p»& ps) s(p» p»& ps) ~(&t& p»& py)
S(I„p„p,) ~(4,I„,a, ) ~(ai, I„,I,)

PCRS, since the form of divergence will depend on
the rate of approach to the CRS. Given this rate of
approach it is, of course, possible (with reasonable
assumptions) to calculate the form of divergence.
A particular case has been considered by Fisher, '
who has shown that in some cases holding an appro-
priate density fixed leads to curves asymptotically
PCRS which "xenormalizes" certain exponents.

Just as in the one-component ease, various den-
sities will be discontinuous across the CXS in mul-
ticomponent systems, and the discontinuities for
different p& are related by analogs of the Clausius-
Clapeyron equation. When one of the h& axes is
asymptotically PCXS near the CRS, the correspond-
ing p& will have exceptional behavior; entropy for
the ferromagnet, (Sec. III) and composition for an
azeotrope (Sec. V) are examples. If we exclude
the case just mentioned, ~p& along a curve L lying
in the CXS will go to zero as y, where y is a
suitable measure of distance from the CRS (see
discussion in previous paragraph), provided, of
course, that L is not asymptotically PCRS. A
curve asymptotically PCRS requires special dis-
cussion. (Fisher's renormalized P is such a case. )
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D(k), k„, ky)

D(k», k))
(4. 5)

8pg 8 P sp»

Bk~ 8k~ 8k) 8k) (4 5)

may be obtained by considering the determinant

2

D(k, , k,) =D(k, ) D(k, ) —
i

(8p,. (4. 7)

by straightforward manipulation of Jacobians (see,
e. g. , Callen' or Tisza'0), and analogous formulas,
if additional densities are held fixed. Postulates
(a)-(e) determine the behavior of the right-hand
terms in (4. 3)-(4. 5). For example, in the general
case where the coordinate axes k, k2, ..., k„bear
no special relation to the CXS or CRS, D(k&) di-
verges strongly upon approaching the CRS by pos-
tulate (b), while D(k„, k&) and D(k, , k», k&) diverge
strongly times weakly by postulate (a). Conse-
quently, 8p&/sk& diverges strongly, whereas, by
employing postulate (e), (8p»/8k»)» diverges weak-

ly, and (8p, /8k, ), , approaches a constant. The
modification of these results when the k&, ..., k„
bear some special relation to the CXS or CRS, is
also easily determined by combining (4. 3)-(4. 5)
with postulates (a)-(e). Specific examples are
considered in Sec. V.

Information about the divergence of the off-diag-
onal derivative j 4k

d2y p f 8~&f) dkg dk,
Bk; BkJ dki dk

(4. 9)

where dk,./dk, = V& is the derivative of k& with re-
spect to k& in the direction specified by V (and

dk, /dk, = 1).
This quadratic form can be brought into diago-

nal form by a unimodular transformation of the
sort proposed by Tisza. ' When V lies in the k&k2

plane (V& = 0 for j) 3), the result is

combined with (4. 4) permits us to infer some pro-
perties of (8P&/8k»), from a knowledge of the be-

l
havior of the various D's.

The above predictions for off-diagonal deriva-
tives can be improved in certain cases, and the
sign of divergence (to plus or minus infinity) and

rate of divergence relative to certain diagonal
derivatives can be expressed in terms of geomet-
rical properties of the CXS and CRS. For this
purpose, and also because of their intrinsic inter-
est, we shall next consider derivatives of the type
(8k»/8k&), and (8k2/8k, ), , Their behavior upon
approaching the CRS is determined by the two for-
mulas (4. 10) and (4. 11), obtained a,s follows.

The second derivative of $, with respect to k,
along a direction in k„~ ~ ~, k„space specified by
the vector V with components 1, V~, V3, ..., V„, is
given by the quadratic form

lf both D(k&) and D(k„) diverge strongly, the same
must be true of l (8p&/8k») I, since D(k&, k») can
diverge at most strongly times weakly. However,
if one of the pair D(k&), D(k») diverges strongly and

the other weakly, the strongly times weakly diver-
gence of D(k&, k„) implies that (8p&/8k») is at most
strongly times weakly divergent. There are
several other possibilities and we shall not attempt
a complete catalog.

It is worth noting that similar reasoning can be

employed with one or more densities held fixed.
For example, with j, k, E alldistinct, the equation

—d P 8pq 8p2 dk» 8k
dki Bk, ~k2 dk, ~k

Pg P2

~kD(k„k2) („) dk2 8k2

P2

while for V lying in the k, k» k, manifold (V& = 0 forj) 4), the result is

i(8P, i(8P,.

(8k~ (8k»/'
P) Pg

PI P~

P) p)

D(kg, k„k,)
D(k, ) (4. 8)

8(p&i p»i pl) 8(pi i p»i pt) 8(4i k»i pg)

8(k„k„p,) 8(k„k„k,) 8(k„k„,k, )

8p, Idk, 8k, Bk3~ dk2 2

8k3
,
dki Bk~ sk»/

P3 P
3

D(kg, k2, k3) D(k2, k3) dk2 8k»

D(k„k,) D(k, ) dk, 8k,
'2'3

(8k, & dk, -,
'3 2

(4. 11)
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Note that in both (4. 10) and (4. 11), each term on
the right-hand side is non-negative. Details of this
diagonalization are found in the Appendix.

The evaluation of (Bha/Bh, ), in the general case!'2
proceeds as follows. Consider a plane of constant

h3. ..„h„, which intersects the CXS in a curve X,
and the CRS at a point x at which D(h2) diverges
strongly, i. e. , where the h2 axis is not PCXS (and

consequently not parallel to X). Let the vector V
which enters the quadratic form (4. 9) be parallel to
X at r. Bypostulates (c) and (f), the left-hand sideof
(4. 10) diverges weakly near r, and thus both posi-
tive terms on the right-hand side diverge at most
weakly. The strong divergence of D(h2) meansthat

li~ ABI„

!
Bhm!

P2h301 4

dh2

dh!
CXS,h „,

(4. 14)

/Bpg (eh2) dhm

I ep, (Bh, ]l dh,
h!P3h4 ~„ P2P3h4o ~ e CRSt hge ~ s

(applications in Sec. V 8) is contained in the above
argument as a special case.

Equations (4. 12) and (4. 13) immediately provide
information about derivatives of densities with
respect to other densities through the Maxwell re-
lations

)eh dh

! ! CXS) h3B e ~ shah~
eh dh

'3

(4. 12)

dh2

dh!
CESAR h4BQ ~ Bh

(4. 13a)

and, upon interchanging subscripts 2 and 3 in the
above argument,

t'

leh)) dhg
CRS, h4„,h

(4'. 13b)

By construction, the right-hand t:erms in Eqs.
(4. 13) are derivatives along the critical line R, the
intersection of the CRS with the hyperplane of con-
stant h4, ..., h„. A system with only three inde-
pendent fields in which the h2 h3 plane is parallel to
neither eoexistenee surface nor critical line at e

upon approaching x, where note that by construction,
the right-hand side is the derivative dh2/dh, along
X at x, that is, along the intersection of the CXS
with the plane of constant k3, ..., h„. A system
with only two independent fields in which the
coexistence curve is not parallel to the h2 axis at
the critical point (see applications in Sec. V A) is
contained in the above argument as a special case.

The evaluation of (ehm/eh, )» requires (4. 11).' '2 '3
Choose a three-dimensional hyperplane of constant
h4, ..., A,„which intersects the CXS and CRS in a
coexistence surface Xand a critical line R. Choose
on R a point x at which the conditions of postulate
(a) imply that D(ha, hs) diverges strongly-times-
weakly (consequently B is not parallel to the highs

plane at x). Let V be parallel to R at r By pos.-
tulates (d) and (f), the left-hand side of (4. 11) does
not diverge near x, and hence the same must be
true of all three positive terms on the right-hand
side. Since D(hz, h~)/D(h, ) diverges (at least weak-
ly), we conclude that, upon approaching the point

They are also useful in determining the limiting
ratio diagonal and off-diagonal derivatives. For
example, we have

(eh~i !P) Esp~)
Pa

(eh, &

P2

!t'eh,
&! dh,

I,eh&) dh,
P2 CKSh oooh

(4. iS)

provided the conditions used in deriving (4. 12) are
satisfied, and

!
Bpa&!

~eh,)
P3

(Bpm& teh~&

P3 P2P3

eh')
Bp,)l

P2P3

(4. ie)
~ehm& dha

'

~~h,) dh,
P2P3 ~CRS h4OO ~h

!&Bp, )

(Bh,)
P2

Bp.& D(h~) pep, ~! pep. lt

D(h2) Lehq) !~eh )
P!

!t'ep,'l !/eh,&(

I,eh, ) ~eh, ~

(Bp.& tbh1
h,i (h,,!

when conditions in the derivation of (4. 1, 3) are sat
isfied. Thus, in the general case when the CXS
and CRS bear no special relationship to the coordi-
nate axes, we expect that Bpm/eh~ will diverge
strongly with its sign given by (4. 15); that (shan/

Bp,), will go to zero weakly [that is, that [(Bhs/
Bp,), ]' will diverge weakly); that (epgeh, ),, will
diverge weakly, and that (Bhs/Bp, )» will remain!P2Pg
finite and nonzero approaching the t=RS.

From (4. 15) and (4. 16), we may obtain ratios of
certain diagonal derivatives. Thus, the ratio
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!' hl!
Esh, )

Pp Pg CXS, h3 ~ Q, h (4. 17)

D(h„h, ) !tsp, ~!

D(h„h, ) &h,)
P3

(sp,)
qh, )

(sp,~

h)
P3

sp,) !(dh,&!'

Edh,)
P) P3 cas, h4. ..4„(4.19)

provided that D(h2, h, ) diverges strongly times
weakly.

C. Relation to Rigorous Bounds

Consider the intersection of the CRS with a
hyperplane obtained by fixing the values of all the

independent fields except for h&, hh, and h, . This
intersection is, in general, a curvealongwhichthe
following inequality, derived in an earlier paper,
will be valid:

D(h, , h„h, )
!
spy

ID(h„h, ) (&h,.)
PhPi

dp; dp, dhh dp, dh)

dh~ dh) dh) dh) dh)
(4. 19)

The total derivatives on the right-hand side are
taken along the curve in question. In the general
case where CXS and CRS bear no special relation
to the coordinate axes, these total derivatives
should be finite (almost everywhere), while postu-

lates (a) and (e) predict that the left-hand side will

be finite.
The difference between right- and left-hand sides

of (4. 19) is

tends to the square of the slope of the CXS
at the CRS. The first equality is a consequence of
(4. 4) and the final limit invokes (4. 12), both in the
form given there and with h& and h2 interchanged.
The limiting ratio D(h, )/D(h~) is correctly given by
(4. 17) whenever D(h~) diverges strongly. The der-
ivation as given requires strong divergence of
D(h~), but should this not diverge strongly, the
derivative dh4/dh, is zero by our postulates, and
the ratio D(h, )/D(h2) obviously approaches the same
limit.

By an entirely analogous argument utilizing
(4. 16), we find

D(h, h&) !~spal
D(h) .h; 4) (&h))~ ~

Pg 0 ~
dpi'

(4. 22)

The inequalities of which (4. 19) is a particular
case indicate that the terms in (4. 22) for j~ 2 are
(in general) bounded on the CRS. This supports
postulate (a) that the divergence of D(h, h„) is at
most strong times weak [for D(h, ) and D(h„h~)/
D(h, )], respectively, rather than for example,
strong times weak times some still weaker diver-
gence.

V. APPLICATIONS

A. One-Component Systems

To illustrate the use of postulates (a)-(f) and the

associated thermodynamic formulas, let us use
them to derive the results previously pointed out

in Sec. III, as well as certain results not mention-

ed there.

1. I'use F/uid

If we let Q = p, h, =-P, hz= T, p, =@=V/N, pz
= s = S/N, then

D(P) = vK, = - p, D(T) = —C,=-
2

84', s~g ( sap )
D(P T) =spa sTa )

(5. 1)

If the total derivatives are finite, postulates (a)-
(e), together with Eqs. (4. 4) and (4. 15), imply that
this quantity will (again in the general case) vanish
at the CRS. Consequently, the bound (4. 19) is, in

general, the best possible at the CRS, with left-
and right-hand sides equal. Note that this equality
with two densities held fixed will not, in general,
hold true for the corresponding inequalities when
three or more densities are held fixed, even at the
CRS.

Another application of bounds of the form (4. 19)
lends additional support to our postulates. Tisza'
has pointed out that the determinant D(h, h„) may
be written

( )
D(h, h„) D(h, h„,)
D(h, ~ ~ h„,) D(h, ~ h„,)

x [D(h„h2)/D(h, )]D(h,), (4. 21)
where

hg
! !

p
! !

h
! !

gb!

Esp,) jdhs) (9p,) idh
P Ph

'i'sh, ) !&sh,&! dp, dp,

(Qp
PI

(4. 20)

By postulate (a) (note that PCRS is excluded in the

present instance since the critical surface is a
point), D(P, T) is st'rongly-times-weakly diver-
gent; whereas, if the CXS is not parallel to the p
or T axes at the critical point, D(p) and D(T) will
be strongly divergent by postulate (b). This in
turn implies that
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~»& T D(P)
V

(5. 2)

are both weakly divergent at the critical point.
The off-diagonal derivatives are expressed in
terms of the diagonal derivatives and the slope of
the coexistence curve as described in Sec. IV B.
For example, the ratio

(8tt ) (&g),l'BP&~ (& T)

(8 T) l(Bp) (Bs) I Bs)

&Bp'i „dP
&')„

(5. 3)

approaches the slope of the vapor-pressure curve
at the critical point. Thus, the thermal-expansion
coefficient o.'= v ' {Be/BT)~will diverge strongly,
and -(BT/8 ),e= (BP/Bs)„will go to zero weakly at
the critical point. The ratio of the heat capacity to
the compressibility is found from (4. lV) to be

C~ C„ /dP

Ter TnK, ~d T I

~

CKS

(5.4)

We remark that Eqs. (5. 3) and (5.4) imply that,
sufficiently close to the critical point, a knowledge
of any two out of the three quantities C~, Z~, n
permits one to calculate the third, and also the
slope of the vapor-pressure curve at the critical
point.

q, =D(a), q,=D(e, r)/D(r) {5.5)

should diverge strongly, and the heat capacities

2. I'exxomagnets

%e use the notation in the latter part of Sec. III.
Note that for experi. mental applications, H should
be the internal field differing from the externally
applied magnetic field by a demagnetization correc-
tion or, equivalently, the data should be corrected
to the case where both H and M are parallel to the
axis of a long thin needle-shaped specimen. Since
PCRS is again excluded, and since the CXS occurs
at H = 0, our postulates predict that D(H, T), D(H),
and D(T) should diverge strongly times weakly,
strongly, and weakly, respectively. Thus, the
susceptibilities

eM
D(a, r) =D(a)D(r) -,

2
implies that I(BM/BT)„] diverges at most strongly
times weakly. Along the coexistence curve this
implies (T, T) -is asymptotically not larger than
(T,-T) ' ", a result guaranteed by the Rushbrooke
inequality. " On the other hand, at B= 0 and T & T„
(BM/8 T)„vanishes identically. Another derivative
of possible experimental interest

&ST)
- '

(8M)
(88

)
(5. 8)

has, according to the preceding discussion, at most
a strong/weak divergence.

It is found experimentally' in some ferromagnets
that the zero-field heat capacity, while achieving
large values near the Curie point, appears on close
examination to have a finite rounded peak at suffi-
ciently high-temperature resolution, rather than
the weak divergence predicted by postulate (c). The
reason for this rounding is at present a subject of
some dispute. In some cases, it may be the effect
of impurities and crystalline defects and in others
an intrinsic property of the appropriate statistical
model for an ideal crystal. One may take at least
two attitudes towards this deviation from our pre-
dictions. The first is to say that as long as the
critical region is examined on a scale coarse enough
so that rounding of heat capacity does not appear,
our predictions remain unaltered. The other is to
replace "weak" in our postulates by "nondivergent"
and work out the appropriate consequences using
the ma, chinery of Sec. IV B. A siInilar problem
arises in the case of antiferromagnets (see Sec. V C).

4(&, P, T)=~2, (5. lo)

n,
ng+na

PvF

it
n1+ na

h, ,p

ng+na eP
(5. ll)

B. Two-t omponent Fluid

For a binary fluid, let n&n& be the mole numbers
and p& and p, z the chemical potentials of the two
components. If we let

{5.9)

and choose the dependent potential to be

c„/r =D(r), c„/r=D(a, T)/D(H)

should diverge weakly. The relation

(5. 5)
are the conjugate densities. The CXS is a two-di-
IQenslonal surf Rce Rnd the CRS ls R one-dimension-
al curve.
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Let us first consider the general case when the

P, T, ~ axes bear no special relationship to the CXS
or CRS at the point of interest on the CRS. Then,
by postulate (b), we expect that

Bv&

(5. i2)
/8~~

D(~) =
I

—I,
F86/

PT

will be strongly divergent. Derivatives of this sort
are of interest in understanding the intensity of
light scattering near the critical line. Experimen-
tal convenience usually dictates that direct mea-
surements of thermodynamic properties be made at
constant x rather than constant ~. According to
postulates (a) and (e), quantities such as

&v D(p, &) C~„Bs D(T, &)

Bp D(h) ' T 8 T D(&)
TÃ px

(5. iS)

c„, (ap '

CRS

(5. 18)

This result can also be obtained from Eqs. (4. 13),
which guarantee, in the general case, that deriva-
tives such as

iBT) dT
i

' (Bp) dp

(5. 19)

C~„C„„Bp
l~

v TK~ v TK,„BTt„
P

5 20

and also

tend to the corresponding total derivatives along the
critical line. Consequently, we have

should diverge weakly at the CRS while derivatives
with two densities held fixed, such as

~~v D(p, T, h) C„„ss D(p, T, n)
~BP D(T, 6) ' T BT „D(P,n)

(5. i4)

Tvo!„BP dT

Kz, BT/ dT

(5. 21a)

(5. 21b)

Bv& Bxl

»)r~ BP&„
(5. 15)

should diverge strongly, whereas

vo. „= I—x
(Bp

(5. 16)

should diverge only weakly.
According to Eq. (4. 19) and the following dis-

cussion, the (finite) values of C„„and K,„on the
critical curve can be expressed in terms of total
derivatives taken along the curve

C ds dp dv d&dxVX

T dT dT dT dT dT
(5. 17a)

ds dT dv d~ dx
vK,„=————+——

dp dP dp dp dp
(5. 17b)

Note that term by term, the ratio of the right-hand
side of (5. 17a) to the right-hand side of (5. 17b) is
(dp/dT), and thus we have

should not diverge at all, in agreement with previ-
ous arguments by Rice ~ and the authors3 (see also
Sec. IV C). Off-diagonal derivatives will diverge
in the same manner as the corresponding diagonal
derivatives in the general ease. For example,

so that a knowledge of any two of a„,K~„, C~„suffi-
ciently close to the critical line determines the re-
maining one a,s well as the value of dp/dT along the
critical line.

These predictions can be compared with a vari-
ety of decorated lattice-gas models of binary fluids
investigated by Widom, ' by Clark, "and by Neece. '
We have verified that postulates (a) —(d) hold in
these models (using p/T as dependent potential, and
1/T, p,/T, and pz/, T as independent fields) near the
appropriate critical lines.

Several exceptions to the general case are of
interest. One of these is when the critical temper-
ature passes through a maximum or minimum as a
function of x, and hence of & (this occurs, for ex-
ample, in CO, -H20, "Ne-Ar, "N, + NH„and CH4-
NHB ) at some point x on the critical curve, while
the CXS itself bears no particular relationship to
the coordinate axes at x. As the critical curve is
parallel to the pb plane at x, D(p, b) diverges
strongly rather than strongly times weakly, by
postulate (b), while the divergence of the other
D's is the same as in the general ease described
above. Consequently, K~„should remain finite and
C„„diverge weakly upon approaching x. In the dec-
orated lattice-gas model investigated by Clark, "
the critical temperature passes through a maximum
and our predictions are verified in detail. An even
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more common phenomenon is the occurrence of a
maximum or minimum in the critical pressure as
a function of concentration (as in several binary
organic mixtures ' ': CH4- C2H6, C H4-nC 3H„
CH,OH-C2H6, C2He-nCSH7OH, etc. ), and the reader
may verify that our postulates lead to K,„diverging
weakly and a nondivergent C~„near such a point.

A particularly interesting exception to the gener-
al case is provided by critical azeotropy in a bina-
ry mixture, when the azeotropic line intersects the
critical curve (illustrated in Fig. 3) at a point r.
An azeotropic point is one in which the composition
is the same in the liquid and vapor phase . Equiva-
lently, it is a point at which the vapor pressure
passes through an extre mum in x at constant T, and
the boiling temperature passes through an extre-
mum in x at constant p. Consequently, it is a point
at which the CXS is parallel to the & axis. Critical
az eotropy occur s in a number of systems, inc lud-
ing ' CO&- C 2H6, CO~- CzH4, C2HS- C&HB, and HCl-
(CHs)20. In general, the critical pressure and

temperature will not pass through extrema at x,
though systems which exhibit critical azeotropy
generally also have an extremum in critical tem-
perature (at some other point on the critical curve).
Thus, we expect that D(~) will diverge only weakly
at x, whereas the other D' s have the same charac-
ter as in the general case. This means that both

FIG. 3. Schematic representation of the coexistence
surface of a binary Quid mixture exhibiting critical aze-
otropy. [%e have used s~/z ~ (T, p), the value of the ac-
tivity of component 1 (z& = e "&~" ) divided by its value
in the pure fluid at the same T and p, rather than 6 in
this figure, so that the coexistence curves of the pure
components can be shown. The geometry will be essen-
tially unaffected in the interior of the diagram]. The
point r is the critical azeotrope. It is the intersection
of the critical curve c&mrc2 with the line of azeotropes
(dashed curve) . m is the minimum critical temperature
usually associated with positive critical azeotropy. The
points c~ and c2 are the critical points of components 1
and 2, respectively. At x, the CXS is parallel to the
g f/gf axis and, therefore, to the 6 axis.

Kr„and C&„should diverge strongly (as in the pure
fluid), but C„„should still remain finite (unlike the
pure fluid, and unlike a suggestion found in our
previous paper').

Experiments on real fluid mixtures which can be
compared with the foregoing predictions are, un-
fortunately, relatively few. Light- scattering
measurements exhibit the expected st rong diver-
gencess.

' There are also heat- capacity measure-
ments on binary mixtures by Voronel' and co-work-
ers. A C» measurement for air ' shows a much
less pronounced spike than analogous measurements
in pure N3, measurements of C» in. methanol-
cyclohexane at the critical solution point exhibit
a weak divergence analogous to that of C„ in a pure
fluid, and C„„at the azeotropic critical point of a
CO2- C&H6 mixture also exhibits a weak divergence.
The first two results are in agreement with our pre-
dictions and the third is in disagreement. There
are reasons to suspect, however, that neither the
conf irmations nor disagreement should at present
be taken too seriously.

Consider first the measurement of C„„in air
(regarded, to a first approximation, as an 02-N,
mixture). As indicated in Sec. IVC, the maxi-
mum value of C„„at the critical point of such a
mixture should be equal to the rigorous upper
bound we derived earlier. While the actual value
of the bound is hard to obtain because of lack of
information about the chemical potentials along the
critical curve very rough estimates show that it
could be quite large, substantially larger than the
largest values of C„which Voronel' and co-workers
observed in pure N2 . Another way of stating this

u ~

is that while our theory predicts in PxinciP/8 a
finite value of C„„, it may turn out that the rate of
variation of T with & along the critical line is so
small that in practice the situation all along the
critical line resembles the one discussed above in
which the critical temperature passes through an
extremum and C„„diverges weakly. The difference
between a weak divergence and a sharp cusp may
be extremely difficult to observe in practice (see
our discussion in Sec, V D of the liquid- helium ~
transition, where an analogous situation occurs)
with the temperature r esolution, etc . , currently
available. This is one reason we do not regard the
(apparent) weak divergence of C„„at the azeotropic
critical point of CO&-C~H6 as necessarily contra-
dicting our hypotheses, even though we are unable
at present to make eve n a rough guess of the upper
bound to C„, in this system.

There is, however, still another reason why the
results of Voronel' and co-workers should be treated
with some caution. As pointed out by Edwards,
Lipa, and Buckingham, severe corrections to C„
occur in the case of a pure fluid due to density gra-
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—8$ —Bg
BH' 8T (5. 22)

We shall want to assume H is the internal field cor-
rected for demagnetizing effects, and both H and g
are along the axis of easy sublattice magnetization.

Near the NOel temperature T& the CXS for this
system, shown schematically in Fig. 4, lies in the

g = 0 plane and terminates in a CRS labeled X in the

figure. Experiments can only be carried out at p = 0,

and the curve & is commonly called a phasebound-

ary, separating the antiferromagnetically ordered
region (cross hatched) from the paramagnetic
region, and the transition between these two re-
gions is called a second-order or & transition.
However it is more natural, considering the anal-

ogy with other systems, to refer to ~ as a line of

critical points. If this is done, the behavior of

various thermodynamic derivatives can be pre-
dicted in terms of our postulates. We shall not

dlents induced by the gl avltat1onal fleM, and these
have not been properly considered in the experi-
ments of Voronel' et a/. It is not at all clear that
stirring the fluid serves to compensate for these
gravitational effects. In the case of nonazeotropic
mixtures near a critical line, the total compress-
ibility K~„will diverge only weakly, but the gravi-
tational field then results in strong concentration
gradients in equilibrium, and again the result of
stirring is not too clear.

In conclusion, it may be worth remarking that
discontinuities in x and v on a binary mixture CXS
are found, in both theoretical models and experi-
mental measurements, to exhibit precisely the
behavior described at the end of Sec. IVA. For
example, composition and density discontinuities
vanish near critical points in close analogy to den-
sity discontinuities in a pure fluid. " An azeo-
tropic mixture is, of course, an exception, precisely
because x is the conjugate density to ~, and the
CXS is parallel to the ~ axis at an azeotropicpoint.

C. Antifcrromagnctism

Antiferromagnetism is one of several order-
disorder transitions in solids which, at firstglance,
does not seem to fit the categories of Sec. IV. The
reason is that there is no physically realizable
field conjugate to the sublattice magnetization (per
unit volume) g, which in the simple antiferromag-
net is the analog of ordinary magnetization M in a
ferromagnet. Nonetheless, for conceptual purposes,
it is very useful to formally introduce a field q, a
magnetic field which points in opposite directions
on the two magnetic sublattices, conjugate to g.
The potential P is a function of g, the ordinary
magnetic field H (same direction on both sublat-
tices), and T with

FIG. 4. Coexistence surface (cross hatched) and the
critical line X for a sixnple ferromagnet near the Neel

point,

concern ourselves with the additional complica-
tions which arise at lower temperatures and/or
larger fields associated with spin flopping.

Let us first consider the behavior at H= 0. The
susceptibility &g/Bq =D(q) should diverge strongly
at the NOel temperature accordingto postulate (b),
and though it is not directly observable, neutron-
scattering measurements of the pair-correlation
function give strong evidence that such a diver-
gence takes place. Nuclear magnetic resonance
measurements indicate a spontaneous sublattice
magnetization P varying as (Tz T)~ near t-he NOel

point, with P = 3 . The weak divergence of C H

= TD(T) is supported by direct measurements, as
is the fact that g = 8M/BH=D(8) achieves a finite
constant, in accordance with postulates (c) and (d),
respectively.

For H 10, the curve & is parallel to neither the
H nor the T axis, and consequently we predict that
both C~ and p should diverge weakly. The behav-
ior of the former is similar to what is found at
H = 0, while magnetization curves support the pres-
ence of large, if not infinite, values of &at&.

It is of some interest to apply (4. 10), choosing

h, =H, her= 7, and V parallel tothe curve & atsome
point in the plane q = 0, so that the left-hand side
of (4. 10) is finite. The divergence of D(T) upon

approaching & means that (BT/BH), approaches
dT/dH along the curve X. In other words, adia-
batic curves of T versus H should cross ~ tangen-
tially, which seems to be the case experimentally.
In analogy with (4. 15) we obtain the "Pippard rela-
tions" (note BS/BH= BM/BT)"

(5. 23)

results which hold upon approaching the X curve
from higher or from lower temperatures.

Again, as in the case of ferromagnets (see Sec.
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are consequences of (4. 15). None of the above
results are at all new; they can be found, for exam-
ple in the work of Buckingham and Fairband. %e
state them merely to show that this transition is
one among many which agree with our postulates.
It may be worth noting that near the intersection of
the X line and the vapor-pressure curve, (dT/dP)~
is so small that in applying our postulates to the
practical experimental situation it is best to regard
the critical (A.) line as parallel to the p axis. We
then predict no divergence for D(p) ~Kr and a weak
divergence for C„CCD(p, T)/D(p), results which are
in good accord with experiments performed with
currently available temperature resolution.

VA), there is evidence that in many cases the
predicted weak divergence is not a genuine diver-
gence, but that a "rounding" of Cs and )t', occurs in
a small interval near the CRS. ' Nonetheless,
our hypotheses yield a fairly good qualitative pic-
ture in agreement with observed behavior. While
the adiabats may not cross X precisely tangential-
ly, they are very close, and g is certainly quite
large (for T & T„), both in the antiferromagnetic
and paramagnetic regions near X —results which
are in contradiction with molecular field calcula-
tions. "

D. A Transition in Liquid Helium

Just as in the case of antiferromagnetism (Sec.
V C), we find it convenient in discussing the X transi-
tion in helium to introduce a nonphysical field q con-
jugate to the superfluid order parameter (. ' For
our purposes the phase of g is unimportant; we
shall choose both it and g real. The potential P is
such that

e=— 8= (s. a4)8$ 8P BT

The CXS is thatportionof the PTplane, g=0, where
superfluid He rr occurs, and the & line is, in our
terminology, a line of critical points. Our postu-
lates predict that near the & line D(p) and D(T),
and thus K~ and C~, should diverge weakly. If in
(4. 10) we let h, = -p and h2= T and evaluate the left-
hand side in a direction parallel to the X line (with
g= 0) at some point, we conclude that

~~

~~

8T& dT)
(s. as)8P), dP) x

and, interchanging the role of h, and hz, that
(8 T/sp)„reaches the same limit. The Pippard
relations

The situation here is somewhat analogous to that
described in antiferromagnetism. At temperatures
of about 740 'K an order-disorder transition takes
place in P brass involving the sublattice ordering
of' copper and zinc atoms. As in the case of anti-
ferromagnetism, it is useful to introduce a field q
(in addition to T, -p, 8 = pz, —p, c„) which couples
to a sublattice order parameter g, which may be
taken as the excess mole fraction of zinc on the
first sublattice over that on the second. The
potential

0(T, -p, &, n) = Vc. (s. n)

8$ 8$=8, =8eg BP

(s. 28)

The only physically accessible region is the

Superfluidity also occurs in mixtures of He and
He . The independent fields may be chosen as g,

-p, and 4 = p, 3- jL(,4, the difference of the chem-
ical potentials of He3 and He4, with potential P = p4,
and with conjugate densities g, s, v, andx=n3/{na
+nq) (compare with Sec. VB). Again, the only
region experimentally accessible is p = 0, and the
CXS lies in the g = 0 hyperplane. The CXS termi-
nates in a two-dimensional CRS, the surface (in T,
p, b space) of X transitions between the superfluid
and normal phases. (At lower temperatures, the
superfluid-normal transition is first order rather
than X-like; we shall not discuss this case. ) There
is no evidence that the CRS bears any particular
relation to the coordinate axes except as &-—~,
pure He, where it is parallel to the ~ axis. Ex-
cluding this case, we have D(T), D(p), D(b), D(T,
p), D(T, &), D(p, &), and D(T, p, 8), all weakly
divergent. This implies that C~„=TD(T, 8 )/D(b, )
and Kr„=vD(P, &)/D(b, ) should be finite at the CRS,
a conclusion we obtained earlier by means of rig-
orous bounds. The former prediction appears to
agree with experiment at least for p near the vapor
pressure. ' The quantity (8x/86)r~=D(b) should
diverge weakly, and this divergence may be acces-
sible to light-scattering experiments. There is a
plausible argument (we shall not give the details)
which suggests that this weak divergence should
also be apparent in that curves of vaporpressure
as a function of x for fixed T should cross the X

line (in the xT plane) with zero slope on both sides,
in contradiction to classical theory which predicts
a change in slope.

E /Brass
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(three-dimensional) q = 0 hyperplane, and the CXS
of the order-disorder transition (also three dimen-
sional) lies in this hyperplane, and ends in a two-
dimensional CRS in p, T, ~ space.

Because the PT~ manifold contains the CXS,
postulate (b) predicts that

(5. 29)

should diverge strongly at the CRS. Although itis
not directly measurable, neutron scattering mea-
surements. ,

3 as in the case of antiferromagnetism,
suggest strongly that such a divergence takes
place. They also indicate a spontaneous sublattice
ordering which vanishes at the CRS in the manner
predicted by our theory. In contrast, however, to
an antiferromagnet in which the II axis is PCRS at
the Neel point, we know of no evidence that the
CRS in P brass bears any special relationship to
the T, p, or ~ axes. Accordingly, by postulate
(c),

D(T), D(p), D(~), D(T, p), D(T, ~),

D(p, ~), D(p, T, ~)

should all diverge weakly. As a consequence, both

TD(T( 6) TD(T, p, n, )
Px D(Q) vx D(p g)

should remain finite at the CRS (which can alsobe
concluded from rigorous bounds presented
earlier' ), as should Kr„, K,„, n, and o(„. (See
Sec. VB for definitions. ) Experiments44 on the
heat capacity of P brass with x = 0. 475 indicate that
both C~„and C„„rise sharply in the immediate
vicinity of the CRS in a manner similar to a weak
divergence. In particular, the values C„„along a
line of constant p and x appear tobe in good numer-
ical agreement with series estimates for the heat
capacity of the three-dimensional Ising model over
a range of ~ T, —T/T, ~

between 10 ' and 10 '. 4'

From the values quoted in Ref. 44 of dp/dT,
dv/dP, dP/dT along a line of constant x on the CRS,
we obtain a value of -25B for the upper bound to

C„„, whereas the largest value observed experi-
mentally for C„„at (T, —T)/T, = 10 ' is about 6R.

The situation is similar to that described in our
discussion of bounds to C„„in Sec. VB; because
our bound for C„„is much larger than the largest
value yet seen experimentally, there is no contra-
diction between our prediction of a finite value of
C„„on the CRS and the apparent divergence seen
experimentally. The latter is so slow that it may
never be possible actually to observe the maximum.
It is plausible that this near divergence of C„„is
associated with the CRS being nearly parallel to
both the p and ~ axes so that the weak divergence

of D(p, &) is almost absent. There may be other
points on the CRS where the bound on C „„is smaller
and the absence of a weak divergence could be
checked experimentally, and an experimental de-
termination of the shape of the CRS would be of
interest.

VI. CONCLUSION

We have shown how the thermodynamic proper-
ties of a wide variety of physical systems near
their respective critical points including the so-
called X transitions may be understood qualita-
tively from a unified point of view. This point of
view is geometrical in character and attention is
focused on the fields (intensive) rather than densi-
ties (extensive) as appropriate thermodynamic
variables. Nonclassical behavior of various ther-
modynamic derivatives is easily introduced through
a small number of postulates, and the consequences
for a wide variety of cases is then a relatively
straightforward application of thermodynamic for-
mulas. Exceptional cases like azeotropy are shown
to be due to accidental relations between coordinate
axes and coexistence and critical surfaces, rather
than exceptional behavior of the surfaces them-
selves or of the thermodynamic potential near these
surfaces. We believe that similar geometrical
considerations are of value in suggesting anatural
extension of scaling laws to more complex systems
and may also prove useful in discussion of dynamic
phenomena near critical points.

There are also ways in which the theory we have
developed is incomplete and preliminary. Obvious-

ly, there is a particular need for quantitative eval-
uation of certain properties near critical lines in
order to estimate whether our predictions of diver-
gence refer to a physically accessible region of
observation or to an asymptotic region which can
only be checked mathematically in some model
calculations. Measurements or calculations of
chemical potentials along critical lines in binary
fluid mixtures would be extremely helpful in this
connection. Further thought needs to be given to
the characterization of quantities which, for one
reason or another, do not diverge near the critical
surface —they may nonetheless have rather inter-
esting properties. The caseswhen weakdivergences
are not real divergences but "round out" on a suf-
ficiently fine scale of measurement deserve addi-
tional discussion (some preliminary thoughts on the
matter occur in Secs. VA and V C). Despite these
deficiencies, we believe that our ideas provide a
point of view in essential agreement with current
experimental results and theoretical ideas, and

that although further developments may modify some
details in our postulates, the geometrical approach
we have adopted is basically sound.
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APPENDIX DIAGONALIZATION OF —8 Q/&&~ ~&y

Equations (4. 10) and (4. 11) are of the form
n

A 3
C ]~@]x~—~ 4~~ Fg,

f-»i )~1 a=i

with
e'y . j'ep,&

@rr = - @an=!eh) eh) Ph&j p&+r "p„

The diagonalization of the quadratic form (Al) in
the form specified by (A2) may be carried out by
means of a unimodular transformation of the sort
described by Tisza. ' The diagonalization is accom-
plished by the matrix M, with the properties

n n

Crr=C'&~err=~ ~ C'rrjifr~~»
f=j. )~i

with inverse

ehr
P 040 P

jbh )
leh, I

P DDDP
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0

Fr, = Zxr (M )rr

(A3)
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P

When, as in the case of Eq. (4. 10), X,=0 forj&2,
the reader will easily verify that M and its inverse
are

0

rt'eh, )
I(eh, jl

pg

(A6)
Equation (4. 10) is obtained when n= 2 and X, =

1, X~ = dh~/dh, ; Eq. (4. 11) is obtained when n = 3
and X,= 1, Xr, =dhr/dh„X~=dh3/dh„as the reader
mill easily verify by applying the chain rule of
differentiation and the Maxwell relations, Exten-
sion of Eqs. (4. 10) and (4. 11) to higher values of
n is straightforward.
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