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The spontaneous decay of an atom located between two parallel plane mirrors of reflectivity
R is calculated using the Weisskopf-Wigner method, both when the two mirrors are very large
and when they are small. When the mirrors are large and of high reflectivity, the atom ra-
diates more rapidly than in free space and into the Fabry-Perot modes of the mirror system.
When the mirrors are small, their effect on the total radiation rate is small, but radiation
into the few modes defined is enhanced if the reflectivity is high. It is concluded that the ef-
fect of the presence of a laser etalon is insufficient to justify omitting the coupling of the atom
to non—Fabry-Perot modes from the Hamiltonian of an atomic system in a laser etalon.

1. INTRODUCTION

The emission of electromagnetic radiation by an
excited atom in free space — the process of spon-
taneous emission ~ is well described by quantum
electrodynamics, by the use of either the Weiss-
kopf-Wigner method' or the Furry-Low method,?
The emission of radiation by a system of many
excited atoms in free space has been investigated
by Ernst and Stehle,® using the Weisskopf-Wigner
method. They found that the photons emitted in
this process are strongly correlated with each
other both in frequency and direction, constituting
a ray whose spread in direction and in frequency
depends on the macroscopic distribution of the
atoms.

The operation of conventional masers* and
lasers® depends on the emission of radiation by a
system of atoms within a resonant cavity of some
sort. This interaction is usually described theo-
retically by assuming only one mode of the cavity
(or at most a few) to have an appreciable inter-
action with the atomic system, and therefore any
special characteristics of the emitted radiation
are ascribed to the assumed dominance of this
mode. It is of considerable interest to investigate
to what extent the properties of the radiation of
masers and lasers arise from the correlations
shown by the photons radiated by a many-atom
system in free space, and to what extent they arise
from the dominance of a small number of modes
of the cavity.

As a start on the study of this problem, the
emission of a photon by a single excited atom is
investigated when this atom is located between two
parallel plane mirrors, using the Weisskopf-
Wigner method. If the mirrors are large and have
high reflectivity, they form a cavity with compara-
tively well-defined discrete modes. If the mirrors
are within about a wavelength of each other they
simulate a maser cavity, while if they are small and
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separated by many wavelengths, they constitute a
laser etalon. Thus, this system is general enough
to include both the maser cavity and the laser
etalon. The results found here are qualitatively
what would be expected on intuitive grounds. When
the mirrors are large and of high reflectivity, the
atom radiates predominantly into the Fabry-Perot
or Fox-Li® modes of the mirror system, so an
atom in a microwave cavity tuned to the frequency
of the atomic transition radiates into the resonant
mode. An atom placed between two small or poorly
reflecting mirrors radiates predominantly into the
free-space modes and only very slightly into any
one mode of the etalon, but the radiation into etalon
modes does exceed what would be expected on the
basis of solid angle considerations alone. Mirrors
2 cm in radius separated by 20 cm are small in
the sense needed above.

These conclusions lend support to a hypothesis
of Ernst and Stehle,® which has been restated more
explicitly by Ernst,” to the effect that laser action
depends in an essential way on the emission of a
ray of radiation by many atoms, and that it is this
ray which is influenced both in its correlations
and its time development by the presence of the
etalon., The manner by which this comes about is
the subject of another paper.

II. MODE STRUCTURE

In free space, the interaction of an atom with
the electromagnetic field can be decomposed into
its interaction with plane waves. In this section,
we derive an expression for the field which re-
places the plane wave, when the atom is between
two infinite parallel plane mirrors.

Let the mirrors be perpendicular to the x axi_§
and intersect it at x=+3L, as in Fig. 1, LetX
be a point on the x axis between the mirrors. We
want to c_gnstruct the field FE (X) with which an
atom at X interacts, this field comprising the plane
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o= -2 - o | 2 3 FIG. 1. Atom at X between
. } o0 . . 5 0 mirros at + 3L has images
L X L X shown by the circles at X
-2L -L -3 0 3 L 2L =oL+ (9)9X.

wave exp(ik - X) and all its reflections. The phases

of the reflected waves must be considered carefully.

The 1mages of the point X in the mirrors occur at

points X - given by

)—(. =0i+(-)05(., O== o0, ...,
ag

"1’0’1,""+°°, (1)

where T is a vector, parallel to the x axis, con-
necting the mirrors. The image of the wave vector
K after |o| reflections is

K =K +)E, . (2)

With the image point —’X(, we associate a plane
wave f (%) given by

fﬁo&)=R o] explik - &- 550)] exp(ik-X). (3)

The first exponential factor contains the phase dif-
ference of the “reflected” wave between the points
X and Xo- The second exponential factor spec1f1es
the phase of this wave at the image point X= X0 to
be that of the plane wave correspondmg to 0=0,

the unreflected wave, at the point X. Thus, each
plane wave fEU(x) has the same phase at 1ts as-
sociated image pomt X

The image point X ls obtained by |o| reflections.

The two signs of o correspond to reflection in one
or the other mirror first. The plane wave fi 9(%)
has the amplitude appropriate to one having been
reflected |o| times from mirrors of reflect1v1ty
R, 0<R<1. We now assert that the field F*(X)
Wthh an atom at X would interact with is the sum
of all of the plane waves fi #9(X). This is equivalent
to replacing the system of a single atom and mir-
rors by a line of atoms without mirrors, all atoms
behaving the same way, i.e., interacting with
plane waves of the same phase but with suitably
attenuated amplitude. This represents merely an
extension of the classical method of images used
to satisfy boundary conditions. The existence of

a phase change on reflection can easily be in-
cluded, but is omitted for simplicity. The geo-
metric series involved are easily summed, The
result is

kx| 2R(1-R%)cos(k - 'f,)e_zk "X
(1 -R?)% 14R%sin?K - D)

(1—R4)e

(4)

For R~ 1, this has a very sharp maximum where

k-T= M1r and the size of this maximum is like the
one obtained by summing 2(1 - R?)™* terms with no
attenuation on reflection., Using this fact we esti-

mate that a time T given by

L/c
-2 (5)

is needed to establish the field FE()?) by radiation
between the mirrors,

For any |k|>7/L, there is a set of directions in
Kk space for which sink - r= 0, K-L=mm. These
are the Fabry-Perot modes of the mirrors for this

T=

k., If R®*~1, these modes are associated with the
fields
= 4cosk -X
FE(X)_ 1o m even
C (6)
=, 4isink -X
F-E(X)— hl_—_R—z—— , m odd .

These mode fields do not vanish for X =+ éﬁ be-
cause no phase reversal on reflection Wwas intro-
duced. If X is not on the x axis, the K in Eq. (6)
must be replaced by Kk |» and the f1eld glven in

Eq. (4) must be multiplied by exp[z’k” X]. For the
one-atom system this is not important.

III. RADIATION BETWEEN INFINITE MIRRORS

We now imagine an atom in its excited state to
be at the point X between two infinite mirrors at
time ¢=0 with no photons present. The time devel-
opment of the system can be studied by use of the
Weisskopf-Wigner method. If the lifetime of the
atom is 7, we require only that

L/c
1-R?

T>T= (7)
inorderto replace the plane waves occurring in the
free-space theory by Fiz (X), as given by Eq. (4).
The interaction of the atom with the electromag-
netic field in free space has matrix elements of
the form

% -i(A-R)t -1/2
(g,lemt[e;O)—CEe @ve)l/2, ®)

ko 003 - oy -iK-X
C; X)=-ie [d xug(x—X)yueuue(x-X)e s

in the notation of Ref. 3 (except for the inter-
change of CE and Cfé). A is the Bohr frequency

of the atom, and V is the field quantization volume,
eventually to approach infinity. In the presence

of the mirrors, O'(X) is replaced by C§ (X), de-
fined by

"E("’ —zejd3xu (X—X)'y e,u (x X)F -—(x)
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=F »X)D )
kT -T t i(A-R)
0
-e

where the usual assumption that the wavelength of (t )" A—p—irC (15)
the emitted radiation is long in comparison with °°
the atomic radius has been made so that the field . -
evaluated at the center of the atom factors out. with T =me A(X) . (16)

The matrix element D contains an angular factor
because the vector & must be perpendicular to K.
This gives just the sine dependence of dipole radia-
tion and will be ignored here.

The Weisskopf-Wigner equations may be written
down as in Ref. 3. They are

d - . ia-R)
igrag®=2 g Cp® o
-i(A-R)t

d ~ e
E—aﬁ(thc (X)W

The ansatz

a,(t)=B,(t) ,

o E(t) 3y
(10)

i ao(t)

-i(A-R)t (11)

A
(ZVk)llz

in which Bp(¢) depends on k only through %= |K|,
reduce the equations to

B o= Vzk

apt)=Cg Bk(t) ,

k Bk) ;
(12)

(A=k+id)B, ()=B)(0) .
In the first of these equations, the sum over all k
with fixed % can be carried out. Replacing_ the sum
by integration we define the function @ ,(X) by

= - 2
e, @)= f g CL @) . (13)
Then Eqs. (12) may be written

i-S8,0= [are, @B, ()

(14)
<A kil )B (1)=8,(0)

The function Bp(¢) is expected to have nonzero
values only in a narrow region around =4, and if
€y, is a slowly varying function of &,e A(X) can be
factored out of the integral in the first of Eqgs. (14).
The equations then have the solutions, with initial
conditions Bg(0)=1, Br(0)=0,

Bo(t)= e_r oot s

2T » is the reciprocal mean lifetime of the atom,
Under the present circumstances it can in princi-
ple depend on X because the mirrors have de-
stroyed translational invariance. It remains to
show that @ k(X) is a slowly varying functlon of k.

Ck(_i) is a rapidly varying function of K due to
the presence of Fabry-Perot modes, but integra-
tion over the angular positions of the Fabry-Perot
modes eliminates this strong dependence. We
write

kX g KXy 17)

¥
+

CE(X)= (A e

1-RY)
~ (1 -R?»2+4R%sin’k. T,

with A 0=

(18)
B‘ 2R(1 -R2%) cos kL
kK~ (1-R2)2+4R?sin’k. L

= __kD?
€,X)= 2(27)8 fdQE

x[Ag? +Bz?+ 2A; Beos2k-X)] . (19)
Contributions to the integral come from narrow

regions of cosf, 6 being the angle between K and
ﬁ, corresponding to Fabry-Perot modes and from
wider regions between these modes. We estimate
these two kinds of contributions separately when
R%=~1, the most interesting case. A mode labeled
by the integer m occurs when

Then,

- (1-R2)<2(kL cos§ —mm)<1-R?, (20)

In this range, sin? kL~ (kL cosf —mm)? and
cos(kLcos8)~ (- )™ so the contribution to the
integral in (19) from this mode is

[mm+(1 - R?)]/kL
27 d(cosd)
[mr - (1 -R*»)/L

8(1- R2)2(1 +(=)" cos 2mmX/L)
[(1-R?)2+4k%L%cos?0]2

1 -rR)?
~ 321 f d[i [(1 R2)2+4ksz 2]2 U(X) s

where UX)= cos?(mnX/L), evenm
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URX)= sin*(mnX/L), odd m

gives the relative energy density in mode m. Ex-
act zeros of URX) appear only when R=1 and one
has unit standing wave ratio,

We obtain a contribution ez (X) which is pro-
portmnal to the relative energy density of the mode
at X

- D2 -
e m e e—————
b B=—gy V) (21)
For infinite mirrors, the number of modes with
k=Ais

M = . (22)

The total contribution of the modes is M « times
the average (epm(X)) over the modes. From the
form of U(X) this averaging introduces about a
factor of 3, which is not important for our purpose
here and which will be replaced by unity.

The nonmode contribution comes from regions of
cosf, where the integrand is a rapidly varying
function of cos# with a smooth envelope, so it can
be estimated by inserting appropriate averages
over cosé in the integrand. Thus,

AE-—(I—RZ) s

B -0, Bﬁz’é(l-Rz)z )

and we obtain

e non 3kD

X)=

)2, (23)

which is independent of X. This establishes that
@ . is a slowly varying function of %2 and can be
factored out of the integral in Eq. (14).

The total radiation rate I'x is the sum of the
rates into the modes and between the modes:

non m
T w=TC, +2LA(BA
- 3D?A D?A (24)
) *T0-RY) ¢

The nonmode radiation is suppressed by the fac-
tor (1 - R2)? so we conclude that the radiation is
overwhelmingly into the Fabry-Perot modes, and
that it is emitted faster than it would be by an atom
in free space. The result becomes invalid for R?2
too close to unity, because then the time T needed
to establish the field exceeds the mean lifetime of
the atom, The condition on the validity of Eq. (24)
is
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1 7(1 - R?) s L/c

T=

ZI‘OO: 2AD? 1-R% (25)
25
2LAD?
_ R2)2s 2zl
or (1-R?)2> _ .

If this criterion is not met, the rate of radiation
into modes is obtained approximately by replacing
(1 - R?) by [2LAD?/(n¢)]*/? in Eq. (24).

IV. RADIATION BETWEEN FINITE MIRRORS

We must now see how the considerations of Sec.
III must be modified when the mirrors involved
are finite, We take them to be circular and to sub-
tend the angle © at the origin. There are two ex-
treme situations,

(a)K is so nearly parallel to the x axis that, after
(1 - R?)™* reflections, the ray with direction K
starting at the origin has not walked off the mirror
system. For such modes, the results of Sec. I
will be nearly exact; diffraction losses can be ac-
counted for by decreasing R if necessary. When
© is small, the condition for this situation is that

(1-R?)9<O (26)

The number of modes within this range M(©, R) is

M@©,R)=

25:1‘ [1-cos(1-R?)e]

=EL (- m)rer @7)

which counts k’s both nearly parallel and nearly
antiparallel to L. This number decreases with in-
creasing R, because the condition for a fully de-
veloped r_node becomes more stringent with increas-
ing R. Here again, the limit R=1 makes no sense,
because there is not sufficient time to develop a
mode this completely, and the substitution given at
the end of the previous section may be used, Then,
for R not too large

mode

(6,R)= (1 R )e . (28)

(b) K makes an angle 6 with the x axis so large
that no multiple reflections take place, If

>0

then the radiation in this direction is at the free-
space rate I',. The solid angle © available for this
radiation is

Q=4nr(l-302) |, (29)

the cones about ©=0 and © =7 being excluded.
Thus,
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2
t=r,a-L10) . (30)

Between these two extremes lie the not fully de-
veloped modes. These could be treated with the
help of the Fox-Li modes, but this is unnecessary
for our purpose here. It was mentioned in connec-
tion with Eq. (27) that M(©, R) becomes smaller
with increasing R because more reflections are
needed to establish the mode. We can overestimate
the contribution of modes by omitting the factor
(1 - R?) in Eq. (27), and thereby count as fully de-
veloped any mode associated with a 2 which yields
any reflections at all, Thus, an upper limit to the
rate of radiation is

I= 1_‘non . r,mode ’

I=T,(1-%02%)+T,(202) |, (31)
r=r,(l+3e?) ,.

with T'y=AD?/(4x), the free-atom decay constant.
This is very nearly the free-atom rate. For the
case mentioned in the beginning of this paper, 2-
cm mirrors 20 ¢cm apart, ©=0.2 and a 6% effect
is involved, at most.

There is an enhancement of the radiation into the
fully developed modes. This enhancement factor
is just the ratio of @ A" as given in Eq. (21) to Cp,
multiplied by the fractional solid angle preempted
by one mode,

m
®k___Dp*/21L(-R?)
C,0% D?/(2L) ’ (32)
@km ) 1
ckm “n(l-R?)

STEHLE 2

This factor can be large, but the solid angle in-
volved is small so that the over-all effect is also
small, because in using this one must also use the
number of modes M(©, R) as given in Eq. (27) in-
cluding the factor (1 — R?)2,

V. DISCUSSION OF RESULTS

It has been shown how the effect of the presence
of mirrors on the emission of radiation by an ex-
cited atom can be included in the Weisskopf-Wigner
method, yielding results which are in accord with
intuitive expectations. When a cavity is present
which affects many of the modes into which the atom
can decay, the radiation is primarily into those
modes. When only a few modes are affected by
the cavity, the decay is only slightly affected, but
the radiation into a mode is greater than the solid
angle of the mode requires. Even allowing for
this enhancement, however, an atom in a laser
etalon will decay predominantly into free-space
modes., The action of a laser in concentrating ra-
diation into modes of the laser etalon is not due
merely to the presence of the etalon, and the sup-
pression of interaction of the atom with any modes
other than etalon modes in the Hamiltonian of the
system is an approximation which must be justi-
fied by the behavior of a many-atom system be-
tween the mirrors. That theories based on this
suppression are valid in a large range of circum-
stances is beyond question, but the means by which
it can be established are themselves of interest
and will be the subject of a later paper.
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