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957 (1961), who gives a derivation of the Landau theory
of a Fermi fluid in which he invokes the adiabatic hypoth-
esis in a time-dependent perturbation formalism at
T&0 K.

22Equation (A6) is the same as Kq. (16) in M II if we

setnt(-p) and the last term in Eq. (A6) equal to zero.
3Details of the derivations of these identities are given

in Appendix C of D. W. J. Shea, Ph. D. thesis, University
of Colorado, 1968 (unpublished).

See Kq. (C. 27) of Ref. 23. This identity was given

earlier as Kqs. (39) of MI.
F. London, Super luids, Vol. II (Wiley, New York,

1954), p. 45. See also F. Mohling, Phys. Rev. 135,
A876 (1964), Sec. 6, for the case of a dilute hard-sphere
Bose gas at very low temperatures.

6See Eq. (C. 38) of Ref. 23. This identity was given
earlier as the first of Kqs. (40) in MI.

~~To derive this result, Kqs. (C. 19), (C. 22), and (C.26)

of Ref. 23 must be used.
28See Appendix H of Ref. 2.
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A formalism is presented for the calculation of the quantum-mechanical third virial coeffi-
cient in terms of two- and three-body phase shifts. This is done for Boltzmann statistics and

in the absence of bound states. The method is based on the expansion of three-body wave func-
tions in terms of hyperspherical harmonics in six-dimensional space. Basic scattering equa-
tions are set down, including expressions for three-particle 8, T, and 8 matrices and for the

three-body phase shifts. Connection is then made with statistical mechanics and an expression
proposed for the evaluation of the Boltzmann three-body cluster in terms of these three-body
phase shifts. Using this method, the behavior of the third virial coefficient of a gas subject to
binary square-well interactions is studied in the limit when T approaches zero.

INTRODUCTION

One of the earliest continuing and important
concerns of statistical mechanics has been its ap-
plication to the calculation of the equation of state
of simple fluids. For moderately dense gases,
we associate the names of Boltzmann, Ornstein, '

Ursell, Mayer, as well as many others with the
successful effort to develop methods and to calcu-
late virial coefficients in classical statistical me-

chanics. The problem was reduced, at least in
- principle, to the evaluation of integrals of products
of functions of two-body potentials and steady
progress is being made in calculating increasingly
complex coefficients.

For quantum fluids the situation is very much

more intractable. Instead of evaluating integrals,
one is faced, for the /th virial, with the need to
calculate traces of statistical operators involving

the /th-body Hamiltonian as well as lower ones.
An elegant method was proposed for the second
virial coeff icient, involving only the two- body

problem, by Uhlenbeck and Beth, and by Grop-

per, and has been used for a number of calcula-
tions. For the third virial coefficient the first at-
tempts date only from the late 1950's and so far a
number of distinct approaches have been used.

The first, which was also the original method, has
been the use of the binary-collision expansion by
Pais and Uhlenbecke and by Larsen. 7 This ap-
proach suffers from shortcomings relating to the
convergence of the series expansion in the vicin-
ity of bound states (which is the case for He ) and

from the exceeding difficulty in calculating any but
the simplest terms. The second approach repre-
sents attempts to use the %'atson- Faddeeve equa-
tions to obtain the third virial. Though the con-
nection has been worked out by Gibson and by
Reiner' no explicit calculations have been made
due to the difficulty of solving the watson-Faddeev
equations. Approximations involving a variational
method and an assumption of a separable two-body
scattering matrix have been proposed. " A some-
what related work is that of Haumgartl who de-
rives an approximate expression for the third
virial coefficient which involves the two-particle
scattering amplitude. It is very hard to under-
stand the consequences of this approximation or
its domain of validity. Finally, a most interesting
method has been the use of numerical Monte Carlo
path-integral techniques by Jordan and Fosdick
to obtain the three-body density-dependent terms
of the pair-correlation function and then the third
vll lal. The IQethod IQay perhaps be characterized
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as a super Wigner-Kirkwood method in that con-
trary to the latter (which has also been used by
Kthara and by Larsen and Lleberman ) lt faces
no fundamental limitations to its domain of appli-
cability but, nevertheless, it is especially suited
for high temperatures. As the temperature de-
creases the calculations become increasingly la-
borious and good aceuraey is difficult to achieve.

Comparison of the previous approaches with the
treatment of Uhlenbeck and Beth for the second
virial coefficient underlines the following facts.

(i) While in all of the foregoing methods one ob-
tains position or momentum matrix elements of
e ~" which are then integrated to obtain the trace,
this is not found to be necessary for the second vi-
rial. In this case we take advantage of the fact
that in the limit of infinite volume all positive en-
ergies are allowed and since what we wish to know

are the partition-function sums g„e 8 ~, our need
can be narrowed to knowing the energies of the
bound states and the density of states (number of
states per energy interval} for the particles with
and without interaction. The latter is found to be
related to the asymptotic behavior of the wave
function (and to its phase shift). Calculations are
then much simpler than those for the correspond-
ing density-independent pair-correlation function
which was only obtained recently.

(ii) The solution for the second virial coefficient
is obtained in terms of the contribution of partial
waves. This is especially convenient at low tem-
peratures where the quantum- mechanical effects
are strong. The lower the temperature, the
smaller the span of energy sampled by the Boltz-
mann factor in the partition-function sums and the
smaller the number of partial waves required.

(iii} The phase-shift formalism usually (depend-
ing on the model interaction) makes it possible to
develop expansions at low temperatures to supple-
ment and check the numerical results.

We see from this that for the second virial coef-
ficient important conceptual simplifications have
been made which free us from the brute-force
evaluation of traces and vastly extend our powers
of calculations. We believe that we can generalize
these important features to apply to the third and

higher virials.
In our method we expa. nd the continuum wave

functions of the three-body Schrodinger equation
in six-dimensional spherical harmonics. This
parallels a procedure used for the bound-state
problem by Badalyan and Simonov and we draw
upon many of their results in our work. The main
reason for following this approach is that it allows
us to define and make use of a radial coordinate
x, changing values of which correspond to sealing
of the three-body system, without otherwise alter-

ing the configuration. For large values of x the
three particles will then be far apart and we expect
that a radial wave function will reach an asymptotic
state allowing for the definition of a phase shift.

Inserting the wave function in a Schrodinger
equation yields an infinite set of coupled differen-
tial equations for the radial amplitudes, in gener-
al to be solved numerically. For large values of
the sealing distance x, the differential equations
uncouple and each individual equation takes the
form of Bessel's equation. This permits the as-
sociation of a phase shift to each amplitude. How-

ever, and this is very important, by choosing our
solutions to be eigenstates for the scattering"'
(a notion well known in the theory of two-body scat-
tering with tensor forces) we can require all of
the amplitudes of a given solution to have a com-
mon phase shift, and therefore are able to ascribe
a unique phase shift to our continuum wave func-
tions. This phase shift is then identical with the
phase appearing in the elements of the diagonalized
8 matrix, and we take advantage of this relation-
ship.

Accordingly, in this first paper, we devote the
initial sections to establishing our general frame-
work and to writing basic scattering equations for
the three-body problem as they appear when mak-
ing expansions in hyperspherical harmonies. This
includes expressions for the three-particle S ma-
trix (and the R matrix) and for the phase shifts.

We then propose a formula for the third virial
coefficient in terms of these phase shifts (in a gen-
eralization of the formula of Uhlenbeck and Beth
for the second virial coefficient) and, using the
first a d second Born approximatio, ~8 study t e
1.imiting behavior of the third viria1. as T-o.

BASIC FRAMEWORK

The quantum specification of a system of three
particles requires nine operatorsand its associated
quantum numbers.

If we call r; and p;, i=1, 2, 3, the posit'. on and
momentum of each o. the particles of equal mass
m, we find that the following canonical transforma, -
tions:

P = ps+ pa+ps~ R = 3&rj. + ra+ rs&~

p&=(3)"'[2 (p~+p2) —ps],
t' = (-'. )"'[-', (r, + r, ) —r, ],
P.=2'"(Pi-l~), v=2"'(Fi ra), -

reduce the Schrodinger equation in the center-of-
mass coordinate system to
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where pg= —'EA Vg, p~= —'N +q .
(2)

Pl =Pl =P Slnsp Slnglp Cospgp,

r, = r sin3„sin/1„cosg4„,

p2 —p4 =p sinsp Sinflp Stnp2p,

ra —r sins„sin/1„sin/2„

P4
——P4 =P stn9p cosplp,

r, = r sine„COSP, „,
P4 =Pq =P COSBp Sinfsp CO8$4p

r4=r ciao„si sg n„SC$O48„,

p, =p„=p cossp sing, p sing4p,"2

r, = r ciao„sins&]&,„insg „,4

P4 ——P„=PCossp CO8$3p

r4 = r Coss„co844„~

(sc)

Written in terms of the six-dimensional vectors
the Schrodinger equation reads

[p'/2m+ V(r) jy(F) =Zq(r),

where p = —s0 Ve.

Using, then, the identity

p' =p'„- 5i p„/r + K'/r',

where we have defined

We will be interested in applying our calculations
to helium, the paradigm of a quantum-mechanical
gas. We assume that our potential is the sum of
short- ranged everywhere-finite spin-independent
potentials and that these do not allow the existence
of any two- or t ree-body bound sties. These
restrictions allow us to simplify considerably our
formulation, although eventually we shall wish to
relax some of them, especially the stricture on the
existence of bound states.

Our next step is to define a six-dimensional co-
ordinate system where the new variables have as
components the canonical variables defined in (1),
l. e. )

p=(p„p„), r=(h, n). (3a)

These six vectors p and r may then be labeled by
specifying their moduli and a set of polar angles.
The moduli obviously should be defined by

p8 g
2 + fpPi ya (2+~ 2

The set of angles may be chosen in a great variety
of ways. In order to use calculations already done
elsewhere we adopt the following notation:

expressed in terms of the new r's and p's, and p„
= 7" ~ p, we find that we can write the kinetic energy
as the sum of a radial and an angular part. %'e

have

v,'= v'„+ v', /r',
where —)f Vp =Km, —5 V„=P„-(5i/r)P„.

These can be given explicit representations. Using
our spher ical coordinate. system we find

1 8 58 82 58
V =——x —= +-

8F

. z 3 san Q„cos g„

1 1 8 . 8
+ g . S111$4„cos 3„sing,„&$4„"s&f&,„~

sin $4„9/4„sin B„sin/1„s'il„

(
8 1 82

x sj.nay

The eigenfunctions of Vae are surface hyperspher-
ical harmonic polynomials which satisfy

V',~,(r") = —K(K+ 4) ~„(r").
It can be shown that K is an integer and at the same
time the degree of the harmonic polynomial.
These eigenfunctions are degenerate; in fact, for
a given K we have (K+3)!(K+ 2)/12K! of them
Included in the set of operators which removes
this degeneracy we find the angular momentum and
its projection over an axis such as z:

I =r&~ p&+ra~ pa+r3~ p3, M=z I .
Two other operators are necessary for a complete
description of the system„but they are somewhat
arbitrary and we shall not specify them here. The
surface hyperspherical harmonics are then repre-
sented by

The vector f indicates a given direction in the six-
dimensional space, and the index ~ stands for the
set of quantum numbers L, m, p, , v. We identify
L and rn as the angular and the azimuthal quantum
numbers.

For obvious reasons the surface harmonics are
chosen to be orthonormal and will satisfy the com-
pleteness relations

f&*., (r") ~„(r")dnp = ~'„",
) ~,„(r)~„(r')=C(r —r').
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For the purposes of this paper we do not need to
study in further detail these hyperspherical har-
monics. As we will see, a great deal of our meth-
od is based on the use of very simple relations
which suffice to outline the path to follow for the
study of the first few quantum virial coefficients.

SCATTERING

%6 wish to represent three free particles in the
center-of-mass coordinate system. In our six-
dimenslonal spRce this 1S I'6Rdlly wl ltteD Rs

q =(2v} 'e'" ', ek =p.

We want to expand this in a series of surface
hyperspherical harmonics. Using relations
(4)-(6), we find that the radial part of the free-par-
ticle Schrodinger equation, associated with har-
monics of degree K, reads

8' 6 8 K(K+4), + ———, +u' u(I, r)=O
Bg

and has as solutions Bessel functions of order
K+ 2, divided by x . The general solution that is
I'egulRI' Rt 7 = 0 cRD therefore be wr1tten Rs

Jy +2(kr}~ A»x 2 2 +»x (r)

Since a plane wave is a solution of the Schro-
dinger equation which is well behaved at the origin
we expect that we can express it in this latter
form. In Appendix A we show, using an addition
theorem for the hyperspherical harmonics, that
we can write the plane-wave expansion as

„,e"'=Z &, '", , ~*,(&)~,(&). (8)

Using the orthonormality relations

{klq}=(»)' f d're'""'"=6(a q)6($ q)&--
we readily obtain a condition for the constant A, E~,

(8)

Let us now introduce the Green's function which
takes into account an "outgoing-wave" boundary
condition for the scattering:

.
(~ )

2m exp[i (k,
' (+k„' g )]

I2 y2~ ~~ yt2 p&2

de dQ~

(2») ' (2v) '
Using the expression given by Eq. (8) for the ex-
potentials we obtain a useful expansion

G'(0; r r'}-
E)t

where

d» 2(~r) 6» ' x'
EX y2 2 KX +

k g tt)lt

G„'(u; r, r')
'7 J'

x V„""'(r')y'„'.,",„(a,r')r" dr ',
where U»»,

"""= (2m/A ') V»»',
"'(r),

V,"',"' (r) = f lt,„„,(r) V(r )&„(r") da„- .

(Is)

(i4)

If we apply V~~ to the terms of Eq. (13) we obtain
a system of associated differential equations which
we can write as

d 5 d K(K+4) 2 ~»i~. („)2

3+ d
—

a +& ~»t

or equivalently

(&' v &'+——— =+0 ~ (k r)
d 1 d (K+2) g». g~

ÃX

U» ~
' (r} &4 '~- (» r},

gtt)ttt

wheI'6 we have set

~»""(r)=(r'~'/A»~) P»~'

Equations (15}and (16) represent the generaliza-
tion of the radial equation of the two-body problem
and, in a manner analogous to that development„
we shaD wish to solve them to obtain three-body
phase shifts.

In order to study the scatteI'ing we must analyze
the behavior of ~P»,

" when r ~. Usin-g the asymp-
totic expansions

+, I, J»+,(k r)cT»+, (k r )
K& i+~+ j y2 && y'2

0

'. vt-.,(ur «)a,",',(ar &).

The last expression for the radial part of the
Green's function may be obtained using the general
method outlined in Morse and Peshbach, or using
the theory of Bessel functions. ' Here we used the
standard convention that r «(r&) represent the
smaller (larger) among r or r

The 1ntegI'Rl I'epI'eseDtRt1on of the SchI'odlDgeI'

equation is then

]'(k, r) =(») 'e'""
+ f d'r'G'(k;r, r ')V(r') )'(k, r'). (ll)

%'6 can write the wave function as

p'(k, r)-- »", ~*„(r)~„.;(&), (12a)

where

)»»',
"' = f )'(k; r)g», (r)~»*, ;($) dflf, dn„-. (12b)

Equation (11) therefore implies that

~,", (u, r}
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d...(kr) -(2/Kkr)" 2 cos(kr -', (-IC+ 2)»- —,'»),

a„"!i2(kr)-(2/»kr)" 2exp(i [kr- .' (Z—+2)»-—,'~] j,
we obtain

(p»»'„"'=, ,„,A», exp(-i[kr -', {S-a+2)»--,'»]) &»»",

1 e xpf'i [kr ,'(Z- +—2)i'/ —,'w]-]'{kr)"' (2»)"'

f»'X'A 2k2 5 ( 2)
d»+2{kr }

2 g 2 2)122

"UI, ' (r ) i ..((» ( r ' dr),

%'6 wish to express this in terms of the scattering
matrices 7.

' and 8 defined by'8

(18a,)

(qfS fk) =a(q-k)-2»2O(Z;-Z-„) &q f
T fi } . (18b)

Using Eqs. (8) and (12) we expand the first of the
above equations to obtain

&qf T fk) = 5 T', ,"(q, k) ~p, (q)&..., (k), (19)

where

TK'x'( k) ) A4 E+2 {q
g 2 ~ get

x V, '„"'( }gr'„",'. (k, r) r'dr.
We see then that Eq. (1V) can be written as

Kg/I I 2/2 exp(- i [kr —2(if+ 2)» i7/]]
'(t»I,

" ={« "'AE~ (2~)i/2

exp(i [kr- -', (lf+ 2) i(- —,'»] f
x6» + kr A» (2 )
x[f„'„"'-(2~ik'm/k') T,", (k, k)],

Furthermore) using for the definition of the den-
sity of.states

q dq dA; = p(Z, ) dZ, de);,

we get p(Z, ) =mq'/k'.

Hence %'6 f'End

—q =
2

—q =
( )

( )
5(k —q) (~ )

0(z» —z )„(" )

Taking advantage of this we factor a 5 function ex-
pressing the conservation of energy and write

(22)s",„"'(q)=~, ", - 2»i p(z, ) T '„'(q).

Finally, Eq. (20) reads, with the help of (19) and
(21),

»i(e(
)

A»g exp[ —$[kr —2(Z+2)& —477] j»e i
Ex ( (kr) 2/2 (22}i/2 Ek

exp(i[kr ,'(I-C-+2}»- —,'i/]/». „.+ (kr)5/2 (22)1/2 S»x

(23)

This is a fundamental equation which, if we wish,
IQRy be generalized to RccoIDmodate R 1Rrger num-
ber of particles.

%6 recall that the S matrix is unitary:

P ~E"1" ~tK X ~ ~fE»)t» E&)t& g»g~SE)t L7E» gled ~ SE p $g»g»—
g»gal» E'» X»

Furthermore, if we make the assumption that
the potential is symmetric,

lt'EX' Z X
Vg )t

——Vz

we can show (see Appendix B}that the S matrix
Rlso SymInetric)

SC'X' If )tE' X' ~ (25)

Actually we feel that the hypothesis that the poten-
tial 18 symmetrM does Qot. 1mply R restrIctIOQ on
the kind of interaction that we are interested in
considering, i. e. , time-reversal-invariant poten-
tials.

where 5~ is a real function which we may call the
three-body eigenphase shift, then when $ is not

diagonal, we CRQ write Rn arbitrary matrix ele-
meQt Rs

SE'X~ p I/n 2ib(M p1'(»~X'&
Sf)t ~0/ EX e 0,'r (27a)

(27b)where ~ Uo UE'2),.= 5~ .E»)t' pg g

Z'2)t'

The T matrix can be obtained from (22} and (2V}
and since S is symmetric T(k) =T(k, k) is also. In

its diagonal representation the diagonal matrix
elements are

Since the 8 matrix is symmetric and also unitary
we can diagonalize it by an orthogonal. matrix,
8Ry U.

If 8 are the resulting diagonal elements, i.e. ,

(28)

T =- (k2/7/mk') e"~ sinf (28}
«fs fr&= p{z,)

&& & S,", (q)~p„(q)~, .„,(k). (21}
EX E'X'

From Eq. (18), {19), and (21}, we then readily
arrive at (q f

R fp) = &q f
v

f @;), (29a)

In order to discuss or calculate the phase shifts,
it is often convenient to work with real quantities
rather than complex ones. This is done by intro-
ducing the reaction matrix R, ' defined by
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R = V+ VG(E)R, (2eb)

but now G is a standing-wave Green's function:

where g", denotes a standing-wave function. R is
then related to a Green's function by

We can see that the linear combination

(kr) II )-
KX UKtx

K)t K')tt
(34a)

&r ~G(&) ~r'&

2m exp(i [kI (( —('}+ k„~ (rj —r/) ]]
k2 a2 e" u12

de dQ~ '

{
= —,

' II z„.2(r )iv. .2(r ) .
The general relation between the T matrix and the
R matrix' is

T(Z) = R(Z) iIIR(Z) 5(E —g r(E),

where here K stands for the kinetic energy. It fol-
lows that in our formalism

has the asymptotic behavior

q'»1- (&I'I,/cos&, )cos[kr- 2'(If'+ -2) II —,'II+ 5, ].
(34b)

That is to say, these solutions are characterized
by the fact that for a given n, the wave functions
having different indices K, X have the same phase
shifts. We will refer to each set as a scattering
eigensolution of the problem and represent it as a
column vector having as components the pic, with
different K, X, i.e. ,

0 Kp1p

4»111

r»»", (q, k) =R„", (q, k) —i Iip(E, )

x ' R, '
(q, k)T -"; (k, k). (30}

K tl hatt

q (kr) = (34c)

In an analogous way to what we have done for the
T matrix we obtain the following relations:

,)»' ' g ~IC+2 5»' ' ' GIC(k
KX KX/ h2 ICX + 2 I2

K"X"

xV,',"(r') q, ,",„,(kr') r" dr',
(31)

R»K X'( k) ) gg d»+2(qr) VE"I"
( )

K tt pit

x itic ~ ~ 122 (kr) r dr,

It can be shown that the usual orthogonality prop-
erties for the scattering eigensolutions hold. In
order to clarify the role of the index a and its re-
lationship with the set K, X we study the limit of

&f
' as the potential V goes to zero. We do this in

two steps. We first make the nondiagonal terms
go to zero, i. e. ,

We also have
KX KX KX

~Kt)t' ~K) &K'tnt ~ (35)

U
k /@

LT
&mk 8

(32)
and then consider VK", infinitesimal. In this limit,
using Eqs. (31) and (35), we calculate the R ma-
trix in the Born approximation

This last relation may be obtained using (28) and

(30).
The asymptotic behavior for the wave function

is then

P»"- 2W„/(kr) "'(22)"'
x cos[kr- —,'(Z+ 2) II-!2] 5»'„'

+ (tim k'/k 2) sin [kr- -', (Z+ 2) II ——,
'

II ]Ric'„"');

(33a)

RIC1 = 5», k f J».2(kr) V»I„J»,2(kr) r dr. (36)
0

We observe that for an infinitesimal interaction
the first Born approximation is essentially exact.

When the matrix R is diagonal, Eqs. (27b) and

(32) enable us to define a way to correlate the index
n with K, A. Since R is diagonal,

R»„=—k tan5, /Iimk

then U is also diagonal, and in fact simply

hence, UK X gKA,
Q S (37)

~K~
~»1 (kr)2/2(2&)1/2 ~ Ex

X
cos[kr 2(Z+ 2) 2 —.I-I+-&„]-

Uocos6 (33b)

and this in turn implies that any scattering eigen-
solution has only one component different from
zero and we shall refer to the eigensolution by this
index KX.

In the limit when V goes to zero we clearly have
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As we turn on the interaction other components of
the eigensolution vector become different from
zero. However, we can expect (and we shall see
this in an actual example later in this paper) that
there will be regimes for. which these new compo-
nents are small compared to the dominant compo-
nent associated with the index K.

In any case, and quite generally, given an ex-
pression for g (or some analytical numerical ap-
proximation for it) we can evaluate the left-hand
side of Eq. (32) by using (31). Equation (32) with

(27b) then clearly represent a system of algebraic
equations to be solved for the eigenphase shifts
and for the matrix elements of U. If we assume
that the number of components which are effective-
ly coupled is equal to N, then due to the symmetry
of 8 we have (N'+ 8)/2 algebraic equations from
(32) and the same number from (2Vb). The num-

ber of equations and of unknowns, i. e. , N phase
shifts and N matrix elements for U, are then the
same and the system should have a solution pro-
vided detiB I +0.

THIRD CLUSTER AND THREE-BODY SHIFTS

We recall that the third virial coefficient ean be
expressed in terms of the coefficients b» b» and

b3 which appear in the expansion of the pressure
and the number density in powers of the fugacity.
If we write

&1 f~;f»=&1 fw;f»,

- &1'
f
W,

'
f

1& &2'
f W,

'
f
2&,

&1'2'3'
f

f/', f12 S&=&1'2' 3'
f W,' f123)

—&1'2'f w,' f12&&s' fw,' fs&

- &s' 1'
f
w;

f

31&&2'
f w,' f

2&

+2&1' fw; f»&2' fw; f»&3'fw;f».

(42)

To express the Ursell functions in terms of non-
symmetrized Boltzmann matrix elements it is con-
venient to use a result due to Feynman:

express the b, 's as / particle-cluster integrals

b;(V) =(1/fj V)Z„ f d"~

&rs psra pa'' ' r( I( f
f/( frypy ' ' r((u(& ~ (40)

where Ij, ; is the z component of the spin coordinate
of the ith particle, r; is its space coordinates. The
integrands are the generalized Ursell functions de-
vised by Lee and Yang. ~' The volume V is taken
to be large and, in fact, we intend later in our
discussion to let it go to infinity.

The N-particle Ursell functions U„', appropriate
to symmetric (+) or antisymmetric statistics, are
in turn related to the matrix elements of the N-

body operators W„=exp(- PH„) where P= 1/kT and

H„ is the Hamiltonian. We also label these matrix
elements by a plus or minus to indicate that the
basic states, with respect to which we evaluate
these matrix elements, are symmetrized or anti-
symmetrized, i.e. , these states are

fl a 3 i) =(N!)-"'5 (+)~ fs'(1, 2 " N)&

(41)
where we sum over all permutations and have let
1. ~ -N refer to the coordinates and spin. For the
cases / = 1, / = 2, and l = 3 we have the relations

p/I/T= ~, b, z', N/V=Eg fb(z', (se)
&1' "N'

f
WN'

f

1" N&

=' 4(~)~&(p(1'" N')f w„ f7. " N&. (4s)
then by elimination of the fugacity z we obtain

B=-Xb,/b', ,

C =N (42/b2, b— 2b, /b,') =4B 2X bs/b—~s ~

(39).

N is, of course, the number of particles in a box
of volume V and here k is Boltzmann's constant.
The fugacity coefficients b, become volume inde-
pendent in the limit of large volume. To evaluate
them we proceed in two ways, related in that they
represent two approaches to the calculation of
Thiele semi-invariants. In our first procedure we

b, = (2s+ 1)/~'„b, = b',ol™+b,'"'", (44)

Since we assume a spin-independent Hamiltonian
we can sum over the spins and then, separating
the results into the Boltzmann contribution and
that due to exchange (to the non-Boltzmann statis-
tics), we readily obtain after some rearrangement
the following expressions for b, and b3 which we
r equi re:



QUANTUM-MECHANICAL THIRD VIRIAL 1025

(2s+ 1)
b3 =

31 + dr1dr2dr3

r1r2r3 e "'- e ' r1r2r3

—3(r, ra le
"2 —e lrlra) (rale "li.a&)

(48)

2s+ 1 r, r2 r3

«rar3rl
I
e '"'Irl rara&

+(r3r1 r2
I
e '"3

I
rl ra r3&

(2s+ I} ~ ~ ~ - - - B//dr, dr, dr, (rarlral e

u R, +-'2(Ic'+ 2) 1&- o 1/+ b»„=-2'(2n+ I) 1&,

k RB+ ~z(A + 2) t& —t t& = 2(2n+ 1)1&, n = 0, 1, 2, . . .
(50)

for the case with and without interaction. In the
limit of infinite volume we then obtain for the dif-
ference between the density of states of a system
with and without interaction,

system with or without interaction and we deter-
mine this difference. We chose the relative vol-
ume to be a spherical box of radius R0 much larger
than any length involved in the problem. The wave
function must vanish at the wall of the box and this
implies for a component E of the eigenfunction
&!1»' the relations

—e 1 11r2r3 (48)

The upper sign holds for bosons and the lower one
for fermions. The spin is denoted by s, and X~

is the thermal wavelength, equal to b/(21&mkT)'/2.

Let us now concentrate on the Boltzmann part
of b3. For very large volume we can, with negli-
gible error, separate and evaluate the contribution
of the center of mass. Using the set of canonical
variables previously defined we obtain

b'ol™=[(2S+ I}'/3!](3'"/)')

xj @d„((g„l
3(t ~ I

BHzot&123) Broot&1231
I t ~& (47)

where

II„,(123) = (p,'/2m) + (p'„/2m) + V„(],1})

+ v„(t. , q) + v„(t. , q),

a...(12/S) = (p', /2m) +(p'„/2m)+ V„((, q),

r„,(123) =(p', /2m)+ (p„'/2m).

A term V,aa(t, j) could, if we wished, be added to
H„„(123). This expression for b, '"' can now be
rewritten as
bBoltz (2$ + 1)3(31/2/2)) -3 ) ((e Bez»1 e-Boa»&-)

A, KBX

—3(e B'Brn e B'f»1)],12/ 3
(48)

where e,'~, e,'K„', E,Kp„are the eigenvalues of

a...(123},a...(12/S), and T.,(123}.
We now argue in a way patterned after the dis-

cussion of the second virial coefficient by Uhlen-
beck and Beth. As we make the volume of the box
very large these eigenvalues become very dense
and essentially span all positive energies. We are
then able to replace the sums by integrals:

(49)

The density of states dn/dk is then different for the

dk E), dk)K„& dk

Our formula for b, ""then becomes

(2S+ 1)'(S"'/2) ) -,3—
0 E), dk

x(b&'"l sb«2/») exp pfaalEX EX 2m
(52)

where we sum over all possible values of the quan-
tum numbers KX.

Another way of establishing a phase-shift formu-
la is to follow the point of view of Watson (for the
second virial coefficient). For a finite but large
spherical box of radius R0 we calculate the shift
in the eigenvalues of the energy caused by the
presence of the interaction. These changes are
reflected in slight shifts in the eigenwave vectors.
We have for the K component of the solution

b R, + -,'(Z'+ 2) 1& - -,' t&+ b», = -,' (2n + I) 1&,

kBRB+-'2(E + 2)t&- ot& = —', (2n+1)t&, n =0, 1, 2, . . . .

2

e K)t -e E) 1+—p —5 + ~ ~ ~
-0~0 @ k0 (123)

KA,
0

)

letting dnKq R0
dk

(84)

we can write
B lbt o(z23 1)3

(21&)2 ),

Keeping terms to first order in 1/RB it follows that

b/3 = b —!'BB ———b»t /R&l

and
h2 h'k 82(B'- n', ) = be=- ub, „.2m m mRB

(53)
Possible slight differences in R, for different com-
ponents would only manifest themselves in higher
order of R0'. We now observe that
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x exp — &3k kd!2,
2m

(55)

The possibility of writing

(Tre 'Tl)'= Tre 'TS

only holds for Boltzmann statistics. Now

(I/V) Tr(e S"'—e S ')

=z Tre s l+z [Tre "2- 2(Tre l) ]

+z'[Tre s"2 —Tre s l Tre s"2

+ -', (Tre ' ') '] + ~ ~ ~ .

Using then relations such as

Tre s"2=(1/3!)Tr e "2+(1/3!)f dl d2 d3

(57)

x? (+) (tP(1 23) e "2~1 2 3), (56)

where we denote with a B traces which involve all
states irrespective of symmetry and where the
matrix element, above, is taken with unsymme-
trized basic states. We can separate the traces
into a Boltzmann part and an exchange part. We
obtain for the Boltzmann contribution of each
cluster,

b, = (I/& ', )(2S + 1),

f&Boltz [Tr B sH2 (Tr Be sTl)2]--1 1
V2t

f&Boltz (1/V)(1/3! )[TTBe sHS 3 Tr-Be-s Tl

x Tr e s"2+2(Tr e s l) ]. (59)

As we know from the Ursell development the 5, 's
are volume independent (in the limit of large vol-
ume) but the individual traces appearing in the ex-
pression above are not, i. e. , the trace Tre ~"3

- O(V'), the trace Tre s"2- O(V'), etc. It is then

very important to regroup these terms into quan-

tities which can be calculated but which have lower
volume dependence. Thus we write

f&""' = (1/V)(1/3!) [»(e '"'- e "2)
—3Tre s lTr(e "'—e s 2)]. (6o)

which in the case of no-bound states, which we
have assumed, is related to our previous formula
by a simple partial integration.

The two formulas for b, represent one of the
most important results of this paper; to show the
difficulty in extending it to non-Boltzmann statistics
as well as to clarify some of the features and as-
sumptions of the present derivation we back up a
bit and then proceed from a somewhat different
tack than we have so far. Instead of relying on the
Ursell expansion let us simply take the logarithm
of the grand partition function. If

:-=1+zTre s l+z2Tre s"2+z' Tre s"'+ ~ ~, (56)

then

In= = VF t&t
z'

and (3/V) Tre lTr(e 2 ' —e 2 2)

both still go as the volume, thus preventing us
from usefully writing a neat formula in terms of
three- and two-body phase shifts. We find that we
must write our answer as the trace of a three-body
operator, which we do,

I&Boltz (1/3&V) TTB[(e-sHS sTS)-

3(e-s(H2+Tl& e-sTS)] (61)
and this, as we have seen, can be written as an
integral involving phase-shift sums or their deriva-
tive. We should emphasize that in the phase-shift
expression

? (5H~

the phase shifts (or partial sums of phase shifts)
must be subtracted before the sums are performed
since each separate sum K5„"P& and K ~,2~2& is
divergent in the limit of infinite volume.

The difficulty in extending our results to non-
Boltzmann statistics stems from the fact that the
product of one- and two- body traces involves far
fewer permutations than three-body traces (if we

express them as we have done earlier as integrals
involving basic states and their permutations), and
we have yet not succeeded in writing a useful
phase-shift expression for the exchange. We hope
that a detailed examination of the properties of the
hyperspherical harmonics, which we chose to form
a representation of the permutation group as well
as the rotation group, will help us to do this.

LOW-TEMPERATURE BEHA VIOR

2 2~3 S
C~oytz = 4BBo],tz N A~

'tl'
0

KX KX ~

-x& (a /4~ &

(62)

In the preceding sections we have set up a for-
malism which allows us to calculate the Boltzmann
part of the third virial coefficient at arbitrary tem-
peratures. To summarize the required procedure:
We have to evaluate hyperspherical harmonics and
the coupling matrix elements for our chosen poten-
tial. We must then solve, in general numerically,
the set of differential equations (16) or a truncated
set for possibly unnormalized solutions which then
yield the desired phase shifts. Finally, we use
these phase shifts in integrals which involve a
Boltzmann factor. We evaluate formulas for the
cluster b3 or an equation such as
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Two very important features of such a calcula-
tion must be emphasized, both of which mirror the
situation which holds for the second virial coeffi-
cient. First, for any given T, the presence of the
Boltzmann factor in the equation above acts as a
cutoff on the energy or wave-number range for
which one must calculate phase shifts in order to
evaluate the contribution of the cluster to a pre-
scribed accuracy.

Second, for any wave number k for which we are
interested we find that the bulk of the contribution
comes from the consideration of polynomials of
order extending roughly up to kR, where 8 is a
length which describes the extent of the three-body
cluster. The argument is an adaptation of that
used by Badalyan and Simonov for the bound-state
problem. To describe a change of the wave func-
tion over an angle 0,«requires K's such that
K8,«- i. The effective angular parameter 8,« is
then determined by the ratio of the distance over
which the wave function changes significantly, I/O,
to the radial distance in six-dimensional space

which is of the order of the three-dimensional ex-
tension A, and the estimate follows. From another
point of view, as shown by Smith, ' K measures
how closely three bodies simultaneously approach
each other. One finds classically that if A is a
three-body impact parameter describing with a
value of the parameter x the distance of closest
approach, then again E= kR, which implies the re-
suIt we need.

A key point in the application of the above anal-
ysis to our situation is that thanks to our being
interested in the contribution of the partial waves
to a three-body cluster we also have this finite
distance B. The cluster is so constructed as to
contribute only when the particles are involved in
a genuine three-body event.

Even with these simplifications the calculation
of the third virial up to temperatures of a few de-
grees Kelvin is clearly nontrivial and still lies
ahead of us. In the limit of very low temperatures,
however, we see from our discussion that we only
need to know the behavior of the phase shifts at
very low energies and for small E. This behavior
can be determined analytically for a model such as
a square well Rnd we show the details of such a
calculation in Appendices C and D.

By specifically using a square well we are able
to draw upon explicit calculations of the angular
matrix elements of the potential for I = 0 (total
angular momentum) by Badalyan and Simonov and
this is, or course, very useful~ The results,
however, are not narrowly restricted to the square

well as it turns out thai for any finite short-ranged
intermolecular potential the matrix elements be-
have as I/3 3 for large distance r, and the low-en-
ergy behavior of the phase shifts reflects the shape
of this tail. Thus, consideration of another poten-
tial would simply change the numerical coefficients
of our RnSWel .

%e do make approximations. The most serious
of these is that we only evaluate phase shifts cor-
responding to the total angular momentum of zero.
This does, however, include E= 0; it also enables
us to study the convergence of the phase-shift con-
tribution for higher K (albeit for only one angular
momentum), and the approximation on'. y affects
a numerical coefficient of the phase shifts. This
is also true of another approximation which we
make and which states that the phase shifts are
given by the diagonal elements of the R matrix in-
stead of by the elements of the diagonalized ma-
trix. In both cases the leading wave-number de-
pendence of the phase shifts is not affected and
therefore the approximations do not affect the lim-
iting temperature dependence of the third cluster.

A consequence of the I/3 3 tail of the coupling
matrix elements is that there does not exist a scat-
tering-length effective-range approximation for
the low-energy behavior of the phase shifts. '4 The
Born approximation does however apply Rnd we
have calculated the A matrix and the phase shifts
ln first Rnd second Born. The conti lbutlon of the
fll st Bol n VRnishes ldentlcRlly becRuse of the sub-
traction between 5'"" and —35'"i". The second
Born gives us to leading order in k,

b(123& b(13/3) 0(b3)

and inserting this in our formula for 5, we obtain

b""' =A(2n1 V,/h') 3(a'/X3 )(28+ 1) '

where a is the range, t/ is the depth of the poten-.
tial, and A is a constant which we evaluate in Ap-
pendix D.

The results of Pais and Uhlenbeck for hard
spheres, using the binary-collision expansion, re-
veal the same limit:ing temperature dependence
for the third cluster. Since our results hold for a
repulsive potential as well as for an attractive one,
and since at the lowest thermal energies a finite
repulsive well is very much like a hard core, this
common temperature dependence is satisfactory.

The third virial is then

Cs„„=48'„tm —2N b3/by =4(- N XT Q)

—2ar'~', [X(2m V,/b 3)'a'j,
since in the absence of bound states, at very low
temperatures, we can write a scattering-length ex-
pression for 8. The scattering length n is defined
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by 6" ' - kn for small k. We thus find that unless
there is an exact cancellation of this term the lim-
iting behavior for C~„« is

Ca, 11, - I/7

at very low temperatures.

CONCLUSION

The methods that we have presented for the third
virial can be generalized to apply to more numer-
ous particles. For the four- or higher-body prob-
lems we can define new canonical variables, gen-
erate higher-order hyperspherical harmonics, and

develop a scattering formalism. We can obtain
phase shif ts and in a straightf orward extension of
our present work, use them to evaluate Boltzmann
clusters. Thus, at least from a conceptual point
of view, the way to the calculation of an arbitrary
virial coefficient is open to us t

Two restrictions remain. We have no phase-
shift expressions for the exchange part of the clus-
ters, and we have not allowed bound states. These
limitations must be overcome, and these topics,
together with the evaluation of more hyperspherical
harmonics and the detailing of our program for the
higher virial coefficients, will be the object of
future work.
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APPENDIX A

APPENDIX B

We are interested in showing that if the potential
is symmetric, the 8 matrix is also symmetric.

Let us write

pK'2' (22 yr)1/2 ~K 2

Then Eq. (16) reads

d', (K+ 2)'- —,
'

a +& —
a 1t1»2dr K")t"

K' r X' K'g'
U»2 'It'K''X''

(B2)

defining
(K+ 2)

K d~2
+ ~2

Krkr —, KuXrr Kwe have L» p»„= " U»2 pK„„.,
K")t"

is only one harmonic of degree K such that I2» (r" )
depends only on r and r ~ 5, and UK(k) = 1. This
surface harmonic is given by CK()a ~ r)/CK (1),
where C~~ is a Gegenbauer polynomial of degree K
and order 2.

It follows from this and from our remarks on the
general solution of the free-particle Schrodinger
equation that we can write

J».2(/ar) Ca»(5 r)
K para C 2 (1)

We learn further from their theorem (4) that if
our %,K, 's are chosen real and orthonormal on the
unit sphere then

C„'(i r)/C'(I) =(~/h)~, &„(r)~„(5),
where &u//1 is a constant divided by the number of
linearly independent polynomials of degree K. We
thus have established our theorem when the sur-
face harmonics are real. A modification of this
argument supplies the proof when we allow com-
plex surface harmonics. We find then that

F, ~„(r)~+ (5)

is an orthogonal invariant and therefore can be
equated to a multiple of C»2 ()2 ~ r). We note that
the coefficient AK, is in fact independent of X.

We wish to show that
Z„.,(A.r)' '= ~ ~»1 a 2 'u»1 (r)+»1.(&).

K)t

The argument relies heavily on the results pre-
sented in the Bateman manuscript project. '

From their Lemma (1)aa we learn that there ex-
ists one and only one surface harmonic of degree
K which is invariant under all those orthogonal
transformations which leave one point of the unit

sphere fixed, i. e. , given our unit vector 0 there

Hence

K")t" '

KX
UKX = UK")i"

K~2' i[ar- &K+ 21 r/2- r/4] r»'V-
»2 KX

4
K'&' /~q it:&p - (K+ 2)ff/2- I j'4]

+~Kq Wi e

In order to define general "Wronskians" we

consider first a set of interactions such that only
four equations are coupled. We call this a four-
level system. We will see that the generalization
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for any even number of levels follows at once. An

odd number of levels produces some difficulties
that we do not need to consider since we may al-
ways assume that the number of equations effec-
tively coupled is even.

Because (B2) is of second order, the system is
equivalent to eight first-order differential equations
which, of course, can be reduced to one of the
eighth order. Bince we are interested in solutions
that are not singular at the origin, we need only
consider four solutions.

We can build six independent Wronskians. They
are

w, (y"„', y"„')

41L141 41L141+41L141 0'1Llf1

+ AaLR 0'8 AaL-R 4a+ ARLR 4a &a L—2%a

4 3 3 43 43 2 43+ 4'SLS 48 4'3 Ls 4'3

+44L444- 44L44'4+44L44- 44L41t4=-0

~.(~",', ~ )

41L141+ 41Li 42 1I 1L141 tt 1L1 Al

48 2 42+ ARL2 4'2 ~a L242 42 L24 2

43 343+ 43 3 43 43 3 43 ASLS 43

+ &i 4L4 44+ &( 4L444 44L4 1-tlat- 44L844-=0

&3(4". 0:)
41L14'1 4'1L1 41+ 41L141 41L1 41

+ QRLR $2 $2 L2 4'2 + 42 LRAR 42 LRAS

43 34'3 4'3 343+43 343 43 343

+44L444- 44L444+44L44'4 44L44=-o.

The other three Wronskians appear as a result of
a convenient change of sign in the first three.
Then, we have

+8 41Ll Al+ 41L1 41 0'1L1 0'1 0'1Ll Al

+O'RLRAa+AaLRAR P-aLRAa- AaLRPa

+Ps Lsd s +As Ls&f&s 4—MLS 4s- AsLS &t 3

+AL444+44L444 —44L444- A'L444=0.

Now we integrate the Wronskians from zero to
infinity. Hence, for example, we have

y,-Wad.

CO

4d 3 1d s+ %ad—48+4'ad 4—2- Cad 4—2- Pad
—

48

sd g 4d 3 1d s 2$ 4+lsd 43+Pad 4'3-lsd &3-lsd 4'3

We see that if we replace L, by d/ds in the expres-
sion for W2, we obtain the above expression. Now,
taking advantage of the asymptotic behavior of the
wave function we readily obtain

J ~ads = 2Q(- &13 —842+&'3+842) = 0 .

Hence S~+S2 —Ss —S4 ——Q .s 4

Analogously, using 8', and Ws we get

S) —S~1+Ss —S4s ——Q, S( —S2+Ss —S4 = Q.

From W4, Ws, W6 we get

S1 —S2 —Ss+S4= Q ~ Ss —Sa-Ss+84= Q ~

S~+S~ —Ss —S4- Q „
4 s 2

Therefore,

S', =S,', S4, =S,', S,'=S„
S4, =S4', S', =S4 .

~4 Al Ll 0'1 42 L141 41L14'1+ 41 L141

+ y', L, y,' y,'L, y,'-4a La&2-- 42LRAR

+&SLsds —
1t SL343 —43Lsd'3+ASLS&3

+ $4L4 $4 —$4L4$4 44L4 4'4+ 44L4 lt'4

Here the change in sign is in the third and fourth
term, seventh and eighth term, and so on, of W&.

3 41 14'~I4~1L14'1 41L14'1+41L141
+ 42L842 ARL24'2 42 248+ I|RL24'8

+ $3L3 $3- $3LS $3 —$3L8$3+ QSLS $3

+ $4L4 $4 —$4L4 $4 —$4L4 P4+ $4LR (ih4= 0,

W5 is obtained from W2 if we change the sign of the
second, fourth, sixth, eighth, etc. , term in W2, and

Obviously we can generalize this proof and obtain
E''P4' EX

APPENDIX C: EXAMPLES AND APPROXIMATIONS

TYCHO-LEVEL SYSTEM

In order to clarify the formalism and state a
relevant approximation concerning the R matrix,
we will study the case when the number of levels
is limited to two. The general form for the orthog-
onal matrix in two dimensions is

cose sine
U=i

!
—sine cos e

Hence using Eq. (22) we obtain
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tanO, cos2~+ sin2~ tane2 = —R,',
0 sln26(tang( —tanI50) = —Rl )

sin & tan5, + cos & tan52 = —R2,

where R,'= (I(m 44/h')R', .

If in some approximation we calculate the matrix
elements of the reaction. matrix, then the
equations above allow the calculation of E, 5„and

We can observe that this is due to the symme-
try of the R matrix.

Making use of the fact that the trace and the de-
terminant are invariants we readily obtain

—(Rl+Rl) = tanf) I+ tango

—2R', /sin(2e) = tanf}I —tan5,

Hence the solution is

—tan&, = .'(R—', +—R',) +-.'[(R,'+R,')'- 4(R,'R,' R', )']"',-

—tang, = ——.'(R', +R,') ——.'[(R,'+R', )'- 4(R',R,'- R',)']'",

—sin2e = 2R, /(tansy( —tanf)0) .

If we now assume that the following approximation
holds,

R,'R,'» (R',),
then, using Eq. (C2) in the equation for f}„f}0,and

E we obtain

tanO, = —R„ tane2 = —R„1 2

sin2& = —R, /(R', —R, ) .
That is to say that the phase shifts are determined
in this approximation merely by the diagonal ma-
trix elements of the R matrix.

Square-Vfell Interparticle Potential

As we have already stated, we are interested in

applying our formalism to a kind of potential that
is finite everywhere, short ranged and without

bound states. It is clear that this interaction can
be approximated by an appropriate summation of
square-well potentials.

With the goal of studying the behavior of the ma-
trix elements A&~" and of b, as T-O, it is, in

principle, enough to study just one term in that
representation, the square-mell potential.

We then have

V(r) = V„(/ZII)+ V„[(K-:)] +jH2]
+ v„[(&l)( —n i&&l,

where V;/(r;;) = Vo lf
~
r;/ ~& a

=O if ~r/~ a,

Hence, we have —,'K+ I polynomials of degree E
with L = 0. When v = 3m, m = 0, 1, 2, . . . , the state
is symmetric under permutation of particles. If
m= —1, —2, —3, . . . , the state is antisymmetric.
All the other states belong to a two-dimensional
representation of the permutation group.

Using this representation, Badalyan and Simonov

calculated the following expressions for the matrix
elements of the square well:

~A1OO 2 ~ ~ ~ 1 0
vooo = 3Vo arcs1n ~ —

g sin 4 arcsin I—
V 2m V2x

a

vROO"ooo=2V0 )

2( 1 )z/4-) /0

&z, o, =q& 2)I/0

coII III'[) (I')+ ) I (I')]}( . /2 (03)

00 2( 1)r/4 Ivi /0-
(K+ 2)I/0

x[v„'")(r)+ v„'")(r)]sin-.'~~ ~~, @&0

(;, ) 16 (a/r)'[2 - (a/I )0]0/'

i C(SC+ 4)

02 tl9 y-—,for E&0

where Cor/0„(a'/r2 —1) is a Gegenbauer polynomial,
8(I'- a/)}"2) is a step function, and V, and a are the

height and range of the well, respectively. Recur-
rence relations exist for the Vz„" which allow

and r;& is a function of $ and p which can easily be
obtained using Eq. (3).

If we kllow 'tile hyperspherlcal harmonics [Eq.
(6)] we can obtain the matrix elements Eq. (14).
As stated in the body of the paper, in this illustra-
tive example we restrict ourselves to a total angu-

lar momentum of zero.
Calculations done by Simonov show that in this

case the harmonic polynomials are totally speci-
fied by two quantum numbers, namely, K, the de-
gree of the polynomial, and v, the symmetry quan-
tum number. A representation in terms of the
Jacobi polynomials is

~, , „=(SC+ 2/2I/')'" e

PI/4(I(/I —I( i) (1I I/ I I I/), 0 2

/1 =cos'2g +sin'2g cos'(( I}),
tanp=tan2g cos($ I})

1 1 1V= —2K) —2K+2] . ~ . ) 2K;

K=2m, n=0, 1, 2, ~, etc.
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them to be expressed in terms of Vz„. However,
for our numerical estimate we will use the property

TyEOv Tg0, 0,0 .

"E'Ov' " }K-E'I 0 lv-v' I

which holds for large quantum numbers, i.e. , for

E»1, ~'»1, t=K-K'«E,
—,'Z-v»1, —,'Z'-d»1.

When the quantum numbers are small, (G4) gives
the order of magnitude. For the sake of simplicity,
we will use it for calculating all the matrix ele-
ments.

To continue, we shall calculate the phase shifts
in first and second Born approximation. Since at
low energy the phase shifts are small, we have

(CQ)ft"„"„=~[(m v, /a')&']I„"„",

where It+"„was already defined in Eq. (Cl).
Using the formulas above, we may write for the

phase shift in first Born approximation,

fz"'"'[ =
f
v 'I"'"'/u'f

%e then can easily see that

(Itr+(;&v+8)R/ItlcPIts+t &A+8
& ] /t8

for large t and thus becomes quite small. In our
illustrative example we ignore the nondiagonal
terms in computing the eigenphase shifts for the
square well. Using Eqs. (32) and (C6) the solution
then reads

6,„(n) =-ft",',(I ) .
To calculate Rz"„(/'t) in the first Born approximation
we set

g&123 ) &128 )yE,O, v ~Ev', 1

23) ~~0 3 1
7//2 (A+~5)(A+ 2)

(clo)

Est gt 0 vis AEs () p cJKst 2 Est vis
"-0 p ~2 2t t . y

E'v' (C6)

To calculate the phase shift in the second Born, we
start with the wave function

E'X' 1 Z~ 2 2SrA E'X' 1
Es l)s t (1j+ f JL~EI s)s ccJEts+25Egs)s s + AEsyP 2 p

in Eq. (31). In general, we then need to evaluate
the integral

I',„"= J "z...(I ~)v'„"(r)~,.„(/~)~dr .
Recalling the behavior of the Bessel function for

small values of the argument, we are led to eval-
uate the above integral at low energy using the
asymptotic behavior of the potential

(c6)

(CVa)

where CE„" is a constant which can be easily eval-

x(2m/e') jZ„„„(Ir&)N„„.,(tr&)

x I/~","gs.„(yr )r d ~ ]

After replacing this in Eq. (31), we obtain
~E'Op' ~&1)E'v' ~&2)E'v'

~+KOv ~~Kv + ~Ev

where

ft,"„"'=A,"„~,.„.(I/t ') 1 "Z„„(t~)

x v,"„'"'(r)z,,„(u~)rd~,

uated using Eqs. (C3) and (C4):

Cs+t, )i+()
( I)s ) t I/O-s/3

Kyv

s&o, s &-,'~t~, t~o
Cr'„'""= (6/v&2), t=O, s=O

r+ trav+ s ( 1)8 tl /4l+s/2 8
1 3vv 2

, (ItI + 6)(ItI + 6)
ItI(ItI+2)'" ('""' '

(, )
„(I t I + 6)(l t I + 6)

It I (It I 2)g/2 (1+2 cos 32))'S) )

(c7b)

&2)E' p'
REp = AEv'AE. v.

2k

2mx "gs„„(yr&)Ns„.,(yy &)
0

x v „"„„(r)z,„(its')r'dr'I,
The summation over intermediate states should

be done using all of the states. Nevertheless, in
the spirit of our approximations we sum only over
I.= 0 states, and we can verify that this procedure
will modify only the estimate of the constant A in
the final formula.

We then write the following approximation:

IE', X CE, g ~K+2' ~+ ~K+I+2 ~+ 2

We therefore find
&2 )E» 7TSS 2—

2 VOaI
( I )

t /2 CK+8, )('
E.X

7r (1 —t')(K+ ,'t+ j)(SC+.'t +-,') '——
where

etc QI . Ktvi
Ev K*'v' E E E

E"v" (c12)

where we have used the fact that t is an even inte-
ger. Thus, using Eq. (31), we get for the modulus 4, /(' ~, s' =J d+ [~a+ 2(&) /& ]
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X dg JE",2 y'& NE",2 y'& ZE.,2 8

and thus in the diagonal approximation

~KV & Ev'1~ Y ~Q~
(123) ..(123) ~~ 3 2

Using our results from Appendix C and Egs.
(C14a) and (C15a) we obtain a null contribution in
first Born (n= I). The leading term as T-O is
from the second Born. After some algebra we
obtain

We find

E"v '' Ev~ W CE'. CE""IE,E",E
E32 vt2

(c13) 53
ol™-(2S+ I)'a(I/~3 )(2m Vga )' &',

where A- —3'/ (8/4511) .

I», »' ~ » = 2 5 dll [J»+ 2(~) &»"+ 2(11)/11 ]

X J J»...2(V) J», 2(1/) dn/n2

and show in Appendix E that for K"=E me obtain

I, , „=(12/11) [r(2K ~ 2)/r(2K+ '7)] .

We have not been able to evaluate the more gener-
al integral IE E,E.. Using our methods this mould

require a generalization of Eq. (E3). We expect,
however, that in analogy to the integral given by

Eq. (C8), the contribution of I»»» for K"
much different from R or R mould be very much

smaller than that of IE,E,E.

We can then mrite

At this point a further remark is in order. It
is clear that the extension of our Born formulas
to include nonzero L mould not change the mave-
number dependence of our results since it follows
from essentially dimension~1 considerations.
Would a more careful diagonalization alter this 4
dependence? The answer is negative. This fol-
lows from the fact that in the first Born approxi-
mation me have

(II123)»'A, ' 3(g12/3)»'3' 0

together with an expansion of the respective U

matrices (i. e, I/ '22 and I/ ' /3 ) in powers of )3.

We find then zero contribution to order k but that
both first and second Born contribute in order k .

g(123) - +(123) y & &123) y2
Ev ~ Ev', 1 +~ Ev; 2

where, using (C13), we have for a»1'„,321,

(C14a) APPENDIX E

We have to evaluate

(C,")' = 84/2»2 (C14c)

For computing the third cluster integral we

must calculate the phase shifts mhen me turn on

only the interaction betmeen tmo particles, say, 1

and 2. In this case, me set V = V' =0, and use

the same procedure already outlined. We can

easily see that

g12/3 & (123)y (12/3& p2
Ev 3 Ev'1 Ev'2

where g ' I ' -—-' g

(C15a)

(C15b)

APPENMX D: CALCULATION OF b, %(HEN T-+0

(123) /v) 2113 V2 3 12 I'(2K+2)
(

I, 2) 52 m 1"(2K+'7)»" (' I )

We readily estimate (C) using Eq. (CVb),

S, (x) N, (x) — Z, (y) Z, (&) V2 . (ZI)—

Making the transformation
x=x, $ = xtanep

mith the Jacobian

8(x, y) x
8(x, 8) cos28

me can write
dx

t

'
( ( )

J,(xtan8) J,(xtan8)d8
x J2 S111 8

Q (z2)
Using the integral representations25

J,(x)~,(x) =-(2/~) J J»(2xcosht)dt, x&0 (Z3)

J,(xtan8) Zp (xtan8)

= (2/11) J J»(2xtan8 cosp) dp, Re2p & —I
(E4)

Our Born development yields a power series in

k for the phase shifts

5»3 +tl+»Qn~

It then follows using Eq. (55) that

b'01™= [(23+ I)' P3/211] I/a'

n/2

E2 )t2 n

we obtain

2 2 p d pr/4 de
/3eo pg/2

x i sin 8"0 +Q gQ

x«2/, (2x tan8 cosQ)J»(2x cosht),

with 0~ tan8cos) ~ cosht

Now25 we have

f, t-3J»(at)J„(5t) dt

= [a222 3 52 22r(2tl)/lI" (2) r(2P + 1)]

(z5)
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x zE, (2p —1, —1; 2p+ 1; a /b ),
Re(2p —2)&0, 0&a&b

EG
where

,E&(2p —1, —1, 2p+1, tan'8cos p/cosh t)

2p —1 tan'e cos'&f&=1-
2p+ 1 eoshat

We, therefore, can integrate over each variable.

Using

J dt/(cosht)'" = 2'" ' [I'(m)/I'(2m) j,

we obtain after some algebra

I= (6/r) [I'(2p —2)/I'(2p+ 3)]
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