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Scattering of a charged particle by a model atom in the presence of a low-frequency laser
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The problem of the scattering of a charged particle by a two-state atom in the presence of a low-frequency

laser is considered. The atom is a11owed to distort adiabatica11y due to the laser, and the scattering is

obtained as a power series in co, the laser frequency. When the distortion of the atom is neglected the .
multichannel generalization of the Kroll-Watson result is obtained but the distortion introduces new terms in

first order of co which are not simply understandable. The relevance of the model to the real problem is

discussed.

I. INTRODUCTION

When an electron scatters frolic an atom in the
presence of a laser field the laser photons may
play the role of a third body thereby allowing off-
shell electron-atom scattering and other exotic
effects to be observed. The laser is a particularly
useful "third body" in that its coupling to the other
two is simple and its "density" may be high. The
full problem is too difficult to have been solved
in fuQ but it can be handled in a variety of special
cases. ' One useful one is the limit in which the
laser photon energy ~ (S = 1) is low compared to
the other relevant energies of the prob'lem. Kroll
and Watson' have treated this problem in the ap-
proximation in which the internal degrees of
freedom of the atom could be neglected. In that
case the problem is one of potential scattering of
a charged particle in a laser field. They showed
that the scattering could be expressed in terms of
the on-shell T matrix for the scattering in the
absence of the laser in the lowest two orders in
(d, u', and &'. Another method' confirmed their
results and showed that off-shell effects entered
in ox'dex' .

A recent experiment' in which 11-eV electrons
were scattered off argon in the presence of a CO,
laser beam (&u- 1.2x 10 s eV) gave qualitative
agreement with the theory and thus raised the
question of the effect of the internal degrees of
freedom of the target on the scattering.

In this paper the second method' is used to
describe the scattering of a charged particle on a
model atom in a laser field. The atom is de-
scribed by a two-state model, but it is clear that
the results generalize simply to a multistate atom
as long as only a finite number of states are al-
lowed and excharige is neglected. The result, Eq.
(42), shows that the effect of the laser in lowest
order u' can be described by the appropriate
average of a 7 matrix, but that the next higher
order w' introduces off-shell effects due to the

internal degrees of freedom of the atom.
In Sec. III some conjectures are made concern-

ing the real problem in which both the effect of the
Pauli principle and the atomic continuum are in-
cluded.

II. FORMAL DEVIATION

In describing the scattering of an electron by a
two-state model atom our starting point is the
atomic wave functions in the presence of the laser.
These can be obtained analytically' in the adiabatic
approximation in which the laser photon energy is
low compared to the energy difference between the
atomic states,

(We shall set the energy zero such that the two
states lie at ~-,'W. ) The details of the states will
not be needed but they are included for complete-
ness:

x[[E(&dt)—8']u, + 2A~c os(otu P,
e" ' '+-'c f, dt' (e(&ut') -~)

[2~ (~t) (~ (~t) + w)]'"

x [- [e((ot)+ W]u, +2Acos(otu, },

(2)

c(&A) = (W + 4~A ['cosset)' ', (4)

and e is the average value of e (cut) The total.
wave function of atom plus projectile is then
written

g=E (r t)e"' 'C +I" (r t)e "' '4

where u, and u, are the bare atomic states, A is
the dipole matrix element of the laser-atom in-
teraction connecting the two, ~ (&ut) is a generaliza-
tion of the Babi frequency,
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where r is the projectile coordinate. This can be
substituted into the Schrodinger equation and with
the use of the orthonormality of 4 „equations for
I' are obtained of the form

where

tft' A(t') =o'a sintt)t, e„= 2, (11)
2m '

2

i —— —o, + + —p X(t) -V(r an't) F(r t)=0
Bg 2 21%

(6)

where a matrix notation has been introduced:

and u is the atomic state which in this notation
is ii = (a) for the ground state or u = (,') for the ex-
cited state.

The exact S matrix for scattering from the initial
to final state is

S„=—i&flV+ VGVli&, (12)

and
where G is the Green's function for the full prob-
lem. It can be expanded in powers of V yielding

( )
(V„V,

V r, ddt =

V + V
(8)

8/t = —i Xr (fIV(GV) li) = Qs/"t",
n=o n=o

(13)

V(r, (ut) = + V„(r)e '" '
n= =~

since the e'"' factors have been removed. The
initial and final states can be taken as the states
of (6) in the absence of the interaction, V=O.
These can be written

(9)

x = exp [i k r i k B—(t) —ie„t ,'i e to, ]u—, — (10)

The choice (5) assures that V can be expanded in
a Four ier series

where G is the Green's function for the operator
in Etl. (6) with V=O. It can be written

G ( rt; r't')

3
x expiPk (r —r') -Tc [B(t) —t). (t')](2tt)'

—(&~+-'«.)(t —t')] (14)

Let us consider one of the terms, S&";"), in (13).
If we make explicit use of (14), it can be written

gn+t) ( i) n+S
fi

d30 . @3k
tftt J

dt2' ' dtn+t
(2 )nn Jt, (K, na) Zt„„(K„„na)(-1)~&'t

&i' ' ' &n+Z
Sy' ' ' Stf+ y

x (u/e'""'V (K» t,)e'"2"V, (K» t,) ~ .

Vsn+ t(Kn+ i.t tn+ 1)ut ) 1

where we have used

eiK/ n(t/) g J (K . ~ ) ei ltd/t
(tI)i/t~ 9 o

ao

(16)

V (K t) eit tan/2V (K )e tt ta n/2 da-& e-tR/ t'ett tan/3V (&)e-tn tan/2
gp

—8 Sg J Sj

We have also defined

and

At =
En/ —En. —(tt + S/) (d —t'tt

with

K, = p/ - k„K2 = k, - R2 K„„=k„—pi (18)

(19)

u CPf ~ &a„+Z &P~ ~

The first objective is the extraction of the energy-conservation 6 function. This can be accomplished
by noting that the time dependence of the potential matrix (17) has a simple form which can be written as
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an expansion in Pauli matrices:

V, (K, f)=V(' (K)+V('(K)o, +V," (K)e"'o, +P, (K)e "'o (20)

The algebra of these matrices limits the combinations of c.„and o that can occur in (15). For instance,
if u; is the ground state and uz the excited state than one more power of o, than of o must occur in (15),
and from (20) this says that one more power of e" ' than of e ' ' must occur. Now with the substitutions

tg-t, —7'~
p

ts- ti - Ti - &2 ~

(15) becomes

8g' ' 'Spy'

&&«,e' ' V (K t)e*""'~ '~'V, (K„t, T,) ~ -~ ~

elANt1(tl rl )2 --«n)' V-(K t T. . . ~ )g }gy y f1+1& 1 1

Since t, enters in every potential and since the number of e'" ' factors from the potential product is fixed
by the initial and final states then the total t, behavior from the product of potentials is also fixed by them.
The t, integral can then be done yielding the energy 6 function of the form

f/+ g

i) e~ —a~, -((), —((i) —-a (s, +(,)),
where

0'~@&,y
= ~&g+&,y-

The summation variables in (22) can be shifted by writing
a+1 N+ $

f,=l-gs, —QL;, (24)

yielding

=-«lfi Q () (f~ +5@—-E~( -ig -fc()Til (i)
l=-~

thereby defining the transition matrix for scattering with transfer of L photons
OO OO 8

)'"'"())=(-i)"f dr, ~ ~ 1|„&* 2 Ji (« 'a)' ' 'zi„„(K 'a)(-))
0 0 Sj' @A+3

&3' '&n+X

x(tcyV«(K„O}e '« 'V, (KI, —v,)
&-gA„+ q()'|+ ~ ~ +i'n) V (K & . . ~ & )+ ) (25)

The v dependence of the potentials can be extracted with the use of the first part of (17) and then all the v.

integrals can be performed with the result

3 8
Tq', "'(l)=(-1)' '

2 i«Q (-1) 'Z) ~0-z (Ki &0)Ji ~ (K, .a()}~ ~ Z~ (K„,|~ n())

$0' o ~ $

n
(2V)
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where we have shifted variables by

nial

n+I

=Z' =Z (28)

and defined

(29)D& = ep + g E 8( —(Eg + 2 & &g) +~(Sg+L g) ~

Equation (27) is our starting point for the expansion in powers of ur. If only terms up to a&' are retained
this becomes

Sl0 '
n

n

I n

where

6,.= D&(&u = 0) .

The inverse of (9) can be Fourier transformed to give

217 dg
v~(K) = —e'~ v(K, e).

0
(31)

If each of the n factors of V in (30) replaced in this way then the S sums can be performed with the aid of
the identities

&-ireg (g) e iestne-
r

and

g e*"&"'&=2v8(e e ), (33)

which then allows the performance of all but one of the 8 integrals. The L, sums can then be done in a
manner identical with that used in Hef. 3, with the result

d 'Q " '~ dg 8
(I) & e~re~. &bao &ae, 1 v (k -p, ) ~ n, cose(2v)', 2»

n n+I

+(d Q „,.„s 88„8&q

&& u, v(K, e,) —v(I~,e,) " —v(K„„,e„„)M. . . , (34)

where q=p&-p;. The factor cosHI in the second term of the curly brackets can be replaced by

1 a
& fq 0.08int&II OS8 q 0'0Sinal

iq n Bg

and then an integration by parts on 8I results in a modified form of the curly brackets which is

(k, p, ) ~ Zo s " (k,. -p,).ZO 1 s s " "" 1 s s
1 —lw + (0

j=l q 0 ~k ~ j»l q ~ ™0 ~ ~1 ~kg j"-I r=j+I
(38)

The first two terms of this expression are identical with those occurring in the potential scattering prob-
lem and have been dealt with previously. " They can be absorbed by a shift in momenta in the zero-or-
der term

P, =p, —A, Pz= pz- A., k& =k& —A., A=ma&lao/(q o..,) . (37)
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Then summing over all g, we obtain

e~ V(K, 8~)—,V(K2, 8,) ' ' ' V(K„„,8„,) )u, () ~, ,n+ & n+ (38)

where the primes indicate the shift to the new variables of (3V). The n sum in the first term is simply
performed by use of

ui), —); )'„.,u) =(Pjf~T(ii), (P(, i),
n~

(39)

where

T(e) =v(e)+v(e)[1/(h; e)]T-(8),
where V(e) is the potential of (9) with ~t = 8 and

Eg = ep(+ p5) e+ig, H=P /2m+ 2eog.

The

(40)

(41)

last two terms may also be expressed in terms of this J operator with the result

T (I) = e""'& "'""''(&,f jT(e)+ — ' ' -iT(e) —T(e)I&, i),

which can be written in a more symmetric form as

(42)

r (i) = ( ""'~~'"'(Pyle(e)+ '
, )'(e) ' r(()) + — . v'(i))

i(d 1 &T(e)
(z' }' s 8 (43)

The interpretation of the first term is interesting:
V((dt} is the electron-atom interaction matrix as
modified by the distortion of the atom by the
laser. T(8) is the exact scattering T operator in
the approximation that the distorted atom is
frozen during the scattering (a low-frequency
approximation), and the 8 integral is a coherent
average over the cycle of the laser. The last two
terms are difficult to understand but if one makes
the approximation that the atom is undistorted by
the laser, then T is independent of 8 and equal
to the T operator in the absence of the laser.
Thus, the last two terms vanish, and the first
term is just the multichannel generalization of
the Kroll-%atson result.

This 7.' matrix can then be used to form a cross
section in the conventional way,

"(0 I)= "(& &) (46)
f}fo-0

It should be noted that the same type of sum rule
applies even when the distortions of the target
due to the laser are retained in (43). Again
neglecting the & dependence in pz and Q, we may
perform the E sum

Here the magnitude of the final momentum Pz(l)
is obtained from the energy-conserving 5 func-
tion in (25). It, and the momentum transfer g both
depend upon I as do the shifted momenta 5&(l) and

5,.(I). If the product far is small then these I
dependencies are all weak and the multichannel
generalization of the Kroll and Watson sum rule
may be obtained from (45):

„„'* (6- [P,(I)/p, ]IT„(I)l',

which in the no-distortion limit can be written

~g' (5,(&);5, ; (&)) =Z', [4(I),] '(0)

x -„„"-(&,(I), &,(I)).

(44) g IT„(i}l'=
2 IQ&,flT(e)IP& i}l' (47)

where terms of order ~ have been neglected.
This can be converted to a cross section with the
result

~' (()g, (), ' )= f 2 )~g (Pg, 0:,, ii) (48)
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where the cross section on the right-hand side
can be understood as follows: The target states
are distorted by the laser and so depend upon the
phase (&=rut) of the laser. The scattering cross
section is calculated with the phase fixed and then
an incoherent average over this phase is per-
formed.

The calculation has assumed a single-mode
description of the laser which is unrealistic. A
more realistic description can be obtained by al-
lowing the laser amplitude to be slowly varying
(on the time scale of &y '). This modification can
be included by performing an ensemble average of
the cross section over the various possible
values of the laser amplitude. '

(kiyi k') = v(iY-R').

This is not true for a nonlocal potential so the
Kroll-Watson treatment of the first-order terms
will not work. This means that the effect of the
Pauli principle (exchange scattering) will intro-
duce a correction of order ~ in addition to the
ones already contained in (43). The zero-order
term is still justified so barring our misgivings
about the adiabatic treatment of the continuur~
atomic states we may expect that the first term
of (43) can be applied in the real world

4
The experiment of Weingartshofer et aE. gave

only qualitative agreement with the details of
Kroll-Watson result but gave quantitative agree-
ment with the sum rule

HI. IMSCUSSION dv„(l)
(

do~) (49)

The development above made no explicit use of
the form of the atomic wave functions other than
the periodicity of V [Eq. (9)]. It is obvious that
there is no difficulty in generalizing to a multi-
state atomic model. Again, only the periodicity
is necessary but this is a general result for a
real atom. ' However inclusion of the atomic con-
tinuum presents some real problems since these
states are dense and it is questionable whether
the adiabatic approximation for the wave func-
tions are ever justified.

The inclusion of exchange between the projec-
tile and one of the bound electrons can be effected
through the device of the optical potential. The
principal modification of that inclusion is to make
the interaction-potential matrix nonlocal. If one
returns to the procedure of Sec. II it is evident
that the only use of the locality of p was made at
the introduction of the translations (37), where
we used

If one assumes that the argon target was not dis-
torted at aQ by their laser, then Eq. (43) reduces
to the Kroll-Watson result and this sum rule is
justified. We see from the two-state model that
the condition

(A(«w

w'ould justify that approximation. The excitation
energy of argon is a few eV and their laser inten-
sity was of the order of' 10' W/cm', which yields
a value of A of the order of 5@10 ' eV which
justifies the approximation. However, the analy-
sis given above shows that the sum rule would be
satisfied for much higher laser intensities.
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