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Rotational Brownian motion of an asymmetric top
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We describe a method which enables us to calculate both the orientational and the angular-velocity
autocorrelation functions of an asymmetric top driven by white noise. The results are valid for both short and
long times, and provide inertial corrections to the classical result of Perrin. They are applied to the
calculation of complex polarizabilities for asymmetric-top molecules and the correlation times associated with
the dipolar broadening of nuclear magnetic resonance lines. We take the angular-velocity vector to be the
stationary solution of the Euler-Langevin equation, and obtain it in the form of a perturbation series. The
random angular velocity drives the random orientational motion, and we use methods of stochastic
differential equations to obtain an equation of motion for the aftereffect function. This cannot be solved in
general by direct integration, and we use the method of averaging to obtain the aftereffect function in a form
which is asymptotically correct both for large and small times.

I. INTRO'DUCTION

In this paper we compute inertial corrections
to the classical theory of Perrin' of the rotational
diffusion of an asymmetric top. Perrin's theory
is the extension to the asymmetric top of the
well-known Debye theory' of the rotational diffusion
of a sphere. Inertial corrections to the Debye
theory have been obtained by many authors for
special cases. ' " They are usually expressed in
the form of an expansion in powers of the quantity
kT/IB', where I is the moment of inertia of the
sphere and B is the frictional decay rate. Since
(3kT/I)" is the mean thermal angular velocity,
inertial corrections to the Debye theory will be
small when the mean thermal angular velocity is
small compared with the frictional decay rate.
Our results for the asymmetric top are expressed
in terms of a similar expansion; there are three
distinct principal moments of inertia and three
frictional decay rates.

Our starting point is the Euler-Langevin equa-
tions of motion for the angular velocity of a body-
fixed coordinate frame, including the effects of
frictional relaxation and random (white-noise)
torques. In Sec. II we solve these equations for
the stationary random angular velocity in the form
of a perturbation series. We then use this solution
to form various angular-velocity correlations
needed in the later discussion. Such correlations
have been derived by Hubbard" using a Fokker-
Planck equation.

The random angular velocity drives the random
orientational motion. In Sec. III we use methods
of stochastic differential equations, described
and applied to the sphere in Ref. 9, to obtain an
equation of motion for the after effect function,

II. ANGULAR-VELOCITY CORRELATIONS

We begin with the Euler-Langevin equation of
motion, which we write in the form

—L+ tax L+ F&u=N(t),
dt (2.1)

where L is the angular momentum and e is the
angular velocity, related by the moment of inertia
tensor t.

L = Iso. (2.2)

Equation (2.1) is just the well-known Euler equa-
tions for the angular velocity of a body-fixed co-
ordinate frame" supplemented by a frictional
torque j= ~and a random torque N. The random
torque is Gaussian white noise with mean zero
and covariance determined by the generalized
Einstein relation, '

(N(t)N(t')) = 2kT F5(t —t') . (2.3)

The brackets ( ~ ) denote an average over the
white-noise ensemble of the stochastic variables
contained within them. The moment of inertia
tensor I and the friction tensor F are both positive
definite symmetric quadratic forms which we
assume are simultaneously diagonalizable. The

again in the form of a perturbation series. For the
asymmetric top this equation of motion, which
is explicitly time-dependent, cannot be solved in
general by direct integration. Instead, in Sec. IV
we use the method of averaging to produce a
solution for the after effect function in a form
which is asymptotically correct both for large
and smal. l times. Finally, in Secs. V and VI we
use our results to compute the complex polariza-
bil. ity and correlation times.
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eigenvalues of I are the principal moments of
inertia, I„, I„, I„ those of F are I+„,I+„and
I+„where the B's are the frictional decay rates.

We seek the stationary stochastic process e(t)
which is a solution of (2.1). We use a perturbation
expansion in powers of the quantity

n

x L'" '(t') x ~ ~'(t'), (2.8)

(kT/I)'~'B ' (2.4)

where

L(" (I) =l(d " (t),
and

(2.9)

((o(t)) = 0, (2.5)

and so the zero-order term in the perturbation
series is identically zero. It follows from this
and the structure of Eq. (2.1) that

(g(t) —g(1) (t) + «~(2) (t) + ~(3)(g) + ~ ~ ~ (2.6)

where I is a typical moment of inertia and h is a
typical frictional decay rate. Because of the
dissipative character of the friction term this
stationary process must satisfy

(2 ' 10)

is the frictional decay rate tensor. The first-
order term (d ' (t) is a Gaussian Markov process
with mean zero and covariance

(2.11)((d (t)&u(" (t')) =kTl exp(-B(t -t'().
It is clear from (2.8) that (»)

" (t) will be a homo-
geneous functional of degree n in e ')(t), so that
using (2.11) we can form correlations of (»)(t) to
any desired order.

More explicitly, with the principal directions of
I as the coordinate frame, (2.8) becomes for
n-2

and

t
L(')(t) = dt' exp[-8(t —t')]N(t'),

m OO

(2.V)

where &u" (t) is a homogeneous functional of
degree n in the random torque N.

For a rigorous discussion of stochastically
perturbed dynamical systems such as our Eq.
(2.1), see Ref. 14. Inserting the expansion in

(2.6) in Eq. (2.1) and equating separately terms
involving functionals of the same degree, we get
a sequence of equations determining the m

" (t).
They can be written

t
~(3)(t) )( dtI &-&»( &- t') (» (ts)&(1)(tg)

m c)O

t
(2)(t) ) dt

- „&
- '&(d(x)(t ) (t)(t )

e OO

t
+(2)(t) )( dt's e B»(t-t')~(1)(tl)(g(1)(tI)

where

)(.=(I» -I.)/I», )(» = V»-I.)/I»,

)(» = (I» -I,)/I'
Using this in (2.8) for n =3, we get

(2.12)

(2.13)

e &»(& ~) 4p(1) (t )(y(1) (tll) ~(1) (g )] (2.14)

together with two similar expressions for (L)»(s)(t)

and &d,
' (t), obtained by cyclicly permuting x,

'

y,
and z. And so one can continue, finding expres-
sions for successively higher terms in the ex-
pansion (2.6). However, in the discussion which
follows we shall not need terms beyond m =3..

These explicit expressions for &u" (t) in terms
of &u

') (t) can be used to form various correlations.
A useful general principle follows from the fact
that (d(')(t), &o(»' (t), and &u(')(t) are independent
Gaussian processes, namely that only correla-
tions involving an even number of factors of each



19 ROTATIONAL BROWNIAN MOTION OF AN ASYMMETRIC TOP 909

will. be nonzero. As an application of this prin-
ciple we can verify that the condition (2.5} holds
term by term in the expansion (2.6), i.e.,

(v " (t)) =0. (2.15)

The proof consists in noting that when n is odd,
contains an odd number of ~„' and an even

number of factors of each of e, ' and e,', while
when n is even ar„" contains an even number of
factors of &e,

' and n odd number of factors of
each of &„' and ~,'; and correspondingly for

and &&"). This is obvious for n = 1, 2, 3 from
the explicit expressions (2.12) and (2.14), while
for general n it is a simple exercise to verify it
from (2.8) by induction.

III. EQUATION OF MOTION FOR THE

AFTEREFFECT OPERATOR

The operator R(t) describing the rotation of
the body-fixed coordinate frame during time t
satisfies the kinematical equation of motion

A = (d(t) oR,

where

(3.1)

[c„o„]= -o, (3.3)

and its cyclic permutations. Since R(t) depends
on the stochastic process &1)(t} it is a stochastic
operator. The reason for the minus sign in these
commutation relations is that x, y, and s refer
to body-feed axes." In general for the jth ir-
reducible representation of the rotation group, 8
and the o's are (2j+ I)-dimensional matrices.
In particular for j = 1, 8 may be taken to be the
familiar 3 x 3 matrix describing rotation of a
rigid body, "in which case

l0 0 0" 00-1
0 0 1 e„= 0 0 0

(v(t) ~ o = &u, (t) +o&u„(t)o„+(a,(t)v, (3.2)

in which &4)„(t), &u„(t), and (1),(t) are the components
of the angular velocity of the frame referred to
axes fixed in the frame and o'„, 0'„and 0, are
time-independent operators satisfying

R(t) =[1+&E ' (t)+e'E ')(t)+ ~ ~ ~ ](R(t)), (3.8)

where E " (t) is a stochastic operator with zero
mean

(E'"'(t)) =0. (3.9)

Then (R(t}) satisfies the nonstochastic differential
equation

(R) =(60 ' (t) + t'0 ' (t) + ~ ~ ~ )(R)

with 0(")(t) a nonstochastic operator

(D "'(t)) =0" (t).
Since differentiating with respect to the time and
averaging over the white-noise ensemble are
operations which commute with one another, we
have (dR(t)/dt) =d(R(t))/dt; we denote their com-
mon value by (A). Inserting (3.8) in (3.6}, using
(3.10), and equating the coefficients of equal
powers of e on either side of the equation, we
get the following sequence of equations determin-
ing the 0's and the I' s,

(3.10)

(3.11)

We now insert the expansion (2.6) in (3.1),
which we now write in the form

R = [off(1)(t) + $2ff(2) (t) + ~ ~ ~ ]R
where E " (t) is the stochastic operator defined by

eX (t) =(1) (t)'&. (3.7)

Here the formal parameter e, which has been
introduced to keep track of the orders in the ex-
pansion, may be taken to be the quantity (2.4).
So-called multiplicative stochastic differential
equations, of which (3.6) is an example, have
been studied by a number of authors using cumu-
lant techniques. ""We shall, however, use a
somewhat different approach, "inspired by the
averaging methods of nonlinear mechanics, ""
and applied earlier by us to the discussion of the
rotational Brownian motion of the sphere' and the
linear rotor."

For e small, the solution of (3.6) will consist
of a slowly varying mean (R(t)) about which there
will be small-amplitude random fluctuations. We
accordingly seek a solution in the form

0-1 0

0 1 0

0'g = -1 0 0

0 0
(3.4) g(X) + E( j.) ~(1.)

t

g(2) + E(2) If(2) +Jf(l) E(1) E(1)g(1)

g(3) ~ E(3) Jf(3) +E(2)E(1)+R(1)E(2)

(3.12)

(3..13)

Q 0 0

The after effect function, or rather, the after
effect operator, is the mean (R(t}), subject to
the condition that R is the identity at t = 0,

R(0) =(R(0)) =1. (3.5)

E«)g(» E(»g«) (3 14)
g(4) J'(4) ff(4) +R(3)E(1)+Jf(2)E(2) +if(l)E(3)

(x) (3) E(2)g(2) ~(3)g(&)

(3.15)
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and so on.
Each of these equations is of the same form,

the right-hand side being expressed in terms of
the solutions of the previous equations. The
solution of the first equation is therefore typical.
Forming the mean of both sides, using (3.9) and
(3.11), we find

In this same way we can continue. Inserting (3.17)
and (3.19) in the second-order Eq. (3.13) and
forming the mean, we find

tg
0 ')(t ) = dt (Id')(t )E(')(t )) (3 20)

0

where we have again used (3.18). Using this, we
can integrate (3.13) to find

Q(1) (f) &~(1)(f))

Using this, we can integrate to express

(3.16) t
E(2)(t) = dt,d2)(t )

0

(3.17)

so (3.16) becomes

0 "(f)= 0. (3.19)

Here we have chosen the lower limit of integration
to be zero, in accordance with (3.5). Finally,
using (2.15) we see that

&E(")(f)& = 0, (3.18)

+ dt dt E ' t E ~ t
0 0

From the third-order Eq. (3.14), we find

Q(') (t}=0,

and

(3.22)

t t t~
+("(f)=

J
d«'"(f )+ df df [lf'"(f )ff'"(f )+1~'"(f )ff'"(f )]

0 0 0

+ dt dt dt [R'( )(f )~ )(f g'(' (f ) f('(')(f )&ff«)(f )R«)(f ))
0 0 0

R (&)(f )&I('(&)(f )Z(&)(f )) Z(&)(f )&I( (1)(f )Z(1)(f ))] (3.23)

Finally, from the fourth-order Eq. (3.15}we find

tj
() ' (f,) = df, &f('"(f,)ff("(f,)+I('"(t )ff(2)(t )+Z("(f )Z'3)(f ))

0

dt, qC
' (f )E(' (f )K(')(t )+E(' (t )K(')(t )X(')(t )+K(')(t )if(')(f )I((')(f ))

+ «2 «3 «4 E ' t, E " t. '" t, E'" t, —E"'t, x'"t, E'" t, E'" t,
0 0 0

(g )f'f ( (f ))&E
(])(f )E(])(f )) &ff(1)(f )lf (1)(f ))&ff

(])(f )R (g)(f )&]

(3.24)

Since our aim is to calculate the after-effect
operator &R(t)), the principal result of our discus-
sion so far is the formal expressions (3.19),
(3.20}, (3.22), and (3.24) for the 0's occurring
in Eq. (3.10). Clearly the 0 ") with n odd vanish
in general, so the right-hand side of (3.10) is in

fact an expansion in powers of the square of the
quantity (2.4), just as in the case of the sphere. '
To evaluate the expressions for 0", we use
(3.7) and the expressions for ~ ")(t) constructed
in Sec. II, being cq,reful. to preserve the order of
the o' operators. Thus;. in (3.20) using (3.7) and
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g gygz gxgygg 2 O g g2+O21(
6

gZg„g = — O' g„g + ~ g2- g2+g21(

x y~ ~ & 3~

0' o' g —g„o'„=—— o'„o' 0' —g + o'

1(

(3.33)

From each of these identities, two more may be
obtained by cyclically permuting x, y, and z. In
these expressions

g„g,g, =g„g„gZ+gZg„g„+g„g,g +g,g,g„
P

(3.34)

Using these identities and the results (3.28)-
(3.31) in (3.26) we obtain a result which may be
expressed in the form:

(~) ()'3T)2
' Bt -B, B,-B, B,-B„1(~

r I r * II*II'" '~ rl'rl''' ' rl'rl'* s Ir * " ')Z )I Z g Z x X p

2B,B2(B,+B2) —B,(B22+B„B2+Bt) B„(B,+Bt) —2B22

Bt(B„+B,) —2B'„(I„-It)2
'B„B22B,(B„+B,) I,B2(B„+B,) (3.35)

where g„, means the sum over the three terms
obtained by cyclically permuting x, y, and z.
This expression, together with (3.25) are all we
shall need in forming the aftereffect operator in
the next section.

The calculations made so far enable us to obtain
correlation functions for the components of
angular velocity. We see from (2.6) that

((t)„(t)(tt,(s )) = ((u(') (t) td(" (s ))

+ (td( 1) (t )tu( 3) (s ) + (d( 2) (t ) (u( 2) (s )

+ w '
(t)&u

' (s)) + ~ ~ (3.36)

the terms ((I),' (t)j2 (s)), (~„2 (t)~u, ' (s)) vanishing
because they involve the mean of an odd number of
&J')'s. Similarly (~„(t)~„(s))vanishes because it
is the sum of terms, each of which is the mean
value of an odd number of cu„' 's or u„' 's or
(tr(')'s. On substituting (2.12) and (2.14) into (3.36),
employing (2.11) and performing the integrations
we deduce that

((u„(t)&u„(s)) = —e Bx" "
I„
(I I )2 (yp)2 eB2 ~t sl

I 'I„I,(B„+B,—B,)2
x [1- (B„+B2 Bx)lt —sl-

-(8&+aZ-8„) l &-a I q
J ~

IV. SOLUTION FOR THE AFTEREFFECT OPERATOR

The aftereffect operator is the solution of Eg.
(3.10) corresponding to the initial value

(R(0)) =1. (4.1)

As we have seen in Sec. IG, all the odd-order
terms vanish in the expansion of the right-hand
side of (3.10), so we write this equation in the
form

(R) ~(yS ' (t)+y $ ' (t)+ ~ ~ ~ )(R)

where the operator $(" (t) is defined by

y II$(II) (t) e2llfl(2II) (t) (4.3)

(4.2)

and the formal parameter y may be taken to be
the square of the quantity (2.4). Expbcitly, using
(3.25) we cari write

y$(1) (t) D(1) (1 e Bxt)g2 +g)( 1)(1 e Byt)g2

+D(1)(1 e t)~B2t) (4 4)

This agrees with Eq. (6.2) of Hubbard. "
As a check on the results of the present section

we made independent calculations of 0 ')(t) and
0 ' (t) for the symmetric rotator. These con-
firmed our results. The results for the symmetric
rotator may, of course, always be obtained as
special cases of those for the asymmetric top.
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where

( ) pg (~) kTIB'
X X g g

(4.5)

to exhibit only slowly varying behavior on the
scale v~ and must therefore satisfy an equation
of the form

where

+a — o,o„o, ,3 E)
(4.6)

(2) (kT) f B2-B, B„B2-B„-B,
I I I li * B2B2 & B2B2 2 B2B2

X 3) CX X x

(4.7)

(2) (kT)2 2B,B~(B„+Bg)—B„(B2+B„B,+B22)

B,(B„+B2)—2B',

are the well-known rotational diffusion constants
of the Perrin theory. "" Using (3.35), we can
write

y2$(2) (~ ) D(2) o 2 +D(2) p 2 +D(2) o2

IR {yG(1)+y2G(2) ~. ~ ~ ) 6& (4.10)

where t" ") is a time-independent operator. In-
serting (4.9) in (4.2), using (4.10), and then equat-
ing the coefficients of equal powers of y on either
side of the equations, we get a sequence of equa-
tions for determining )he G " and the A " (t). The
first two of these equations are

(4.11)

(4.12)

These equations are of the same form, the
right-han&i side of each being expressed in terms
of the solutions of the previous equations. &,"on-
sider the first-order Eq. (4.11). Since for a long
time we require A ' (t) to be bounded, the operator
6 ' must be chosen to cancel the long-time be-
havior of $(' (t);

I B2(B2+B2)—2B',

(4.8)

Then
t

A(1)(f) df i [$(1)(fs) $(1)(~)]
0

(4.13)

(4.14)

(4.9)(R) = (1+yA ' (I) + y'A ' (f) + ~ ~ ~ )(R

where the A(")(t) are operators whose time-de-
pendence is on the scale vI. The operator 4 is

with similar formulas for D~' and D,' obtained
by cyclically permuting x, y, and z.

The integration of Eq. (4.2) is not entirely
straightforward since the operators $ ")(t) do not
commute at different times. The solution can be
expressed formally as a time-ordered exponen-
tial, but in practice this amounts to an expansion
in powers of y which, because of the appearance
of secular terms, is only useful for short times.
Instead we shall apply the method of averaging""
to obtain a form of the solutiori which, for small
y, will be valid for all times. The idea is that
there are two time-scales entering in (4.2). The
first is what we may call the frictional decay
time i~=B"' and is the scale of the explicit time
dependence of yS " . The second is what we may
call the Debye time r~ = (kT/IB) ' and is the scale
of the magnitude of yS ' . The ratio of these scales
is the quantity y= rq/rz&. For y small, therefore,
the solution of (4.2) will have a slowly varying
(on the scale of r))) average behavior, about whi. ch
there will be small-amplitude (on the scale of ri)
oscillations. Ne accordingly seek a solution in
the form

Here the lower limit of integration has been
chosen so that

A&"'(o) =o. (4.15)

With these results the second-order Eq. (4.12)
becomes

G(2) +A(2) (t) $(2) (f)
t

+$(1)(I) df t [$(1)(fl) $(1) (&g))]
0

$(»(~)+ Jr df [$«)(~) $(»(f)]
0

(4.1'1)

This gives a first-order correction to yG ' in
(4.10). Since A(' (f) gives a first-order correc-
tion to 1 in (4.9), we do not need to calculate
A ' (t) or G(2)(t) if we confine our investigations
to first-order corrections as we shall.

Using (4.4), we find from (4.14) the explicit
expressions

t
dfl [$(1)(ft) $(1)(~)]$(»(00)

0

(4.16)

Since G ' must cancel the long-time limit of
the right-hand side, we have
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D(l)
y+(1) (f)

D(l)

BZ

D(l)
(1 —e ~M')v2 — ' (1- e. s~')o'„

(1 —e s"}o'„ (4.18)

and using (4.4) and (4.6) we find from (4.13)

g(l) D(l) 2 D(l) 2 D(l) 2
X X 9 g Z Z P

and from (4.17)

y 2Q(2) ~D(2) +2 +D(2') p 2 +D(2) Ot2

(»1—e™— g e e e ) .
P

(4.19)

(4,20)

Note that this last expression differs from (4.6)
in the signs of the last term. This difference
arises from the nonvanishing commutator in the
integrand in (4.17). Finally, the integration of
(4.10) is now straightforward, since the right-
hand side is time independent. Using (4.1) we
can express the after-effect operator in the form

(R(t)) =[1+ydt(')(t)+ ~ ~ ~
1 e '

where

yG(t) +PG(2) +. ~,

(4.21)

(4.22)

The expression (4.21), with (4.18), (4.19), and

(4.20}, is our solution for the aftereffect operator,
including the lowest-order inertial effects. It
should be clear that with our methods one can,
in principle, continue to any desired order, but
that the calculations will be very laborious.

V. COMPLEX POLARIZABILITY

The complex polarizability of a polar molecule
is given by the expression":

e(te) = (M -tie Jl dt e '(M(0) ~ M(t)) ),
SAT

(5.1)

where M(t) is the permanent electric dipole mo-
ment vector at time t. The correlation entering
in this expression can be expressed in terms of
the after-effect operator in the three-dimensional.
(j =1}representation where the o operators are
given by the matrices (3.4). The expression (5.1)
can then be written in matrix notation

principal body-fixed axes. For this three-dimen-
sional representation it is easy to verify directly
using (3.4) that the operator gd, c'„e„c,given by
(3.34) vanishes identically and that the squares
of the o' operators are diagonal and therefore
commute. Hence, we can write, using (4.21) and
(4.18)-(4.20},

j.-i& dt e '"'A t
0

g D .(ya

X,g, Z

(5.4)

where

D =D(')+D(')+ "
with D„' given by (4.5) and 8„' given by (4.8).
We can put this expression in a more perspicuous
form by noting that to the same order of approxi-
mation, i.e., neglecting terms of order y
= (kT/IB'}2, we can replace D„' by D„ in the sec-
ond term in (5.3). Then putting the sum (5.4) for
the first factor in the first term of (5.3) and then
rearranging, we can write

(5.5)

1-i~ dt e '"' B t, ,
0

=- g D,&'„(-G+B„)

x(-G+i(d) '( G+B, +-i(d) ', (5.6)

where the approximation consists in neglecting
second-order terms.

The matrices appearing in the expression (5.6)
are all diagonal, so it is a simple matter to
evaluate the matrix products explicitly, using
(3.4). Putting the result in (5.2) we obtain the
explicit expression

=-G(-G+i(t)) '+i(d Q D ' o'(-G+i(d) '
X,y, Z

x (-G+B, +i(u) '+ ~ ~ ~,

(5.3)
where, again, g„„,means the sum over the
three terms obtained by cyclically permuting
x, y, and z. In this expression

af((d)
3AT (D„+Dd+i(d) l (D, +D, +B„+i(d)X,y, Ze(e)= M' t —te I dte' '(R(t))t M, =,

0

(5.2)

where M is the column matrix whose rows are
M„, M„and M„ the components of M along the

D,(D„+Dd +B,)
(D, +D, +B,+i u)

(5.7)
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where, again, the approximation consists in
neglecting terms of second order in the quantity
y= (kT/IB').

Let us apply (5.V) to the case of a spherical
molecule. Then from (4.5) and (4.8),

where y =kT/(IB'), and

M 2D(2D+B)
(2 ((()=

3kT (2D+i(a))(2D+B+i&u) '

where
M

D = (kT/IB)(1+ R y+ ~ ~ ~ ), (5.8) so that

M' 1+i(&o/B) , y-
3kT [1+i(MB/2kT)(1- —,'y}][1+i((o/B)(1—2y)]' (5 9)

If we neglect the corrections of order y, we have

3kT [1+i((oiB/2kT)][1+i((u/B)] '

Putting a(v) = at((o) in"-(&u), where at, o(" are
real, we deduce that

Mz 1-(I aP/2kT)
3kT [1+((o /Bz)][1+ ((uIB/2kT) ]

This agrees with Eq. (8) of Rocard, " if in it we
put 8mga' =IB, replace the Avogadro number by
unity and correct the erroneous sign in the numer-
ator. Equation (5.9) is therefore a first-order
correction to Rocard's result.

In further rearranging (6.2), we will assume
that v is of the order of kT/IB; again, I is a
typical moment of inertia and B a typical frictional
decay rate. Since C and D ' are of this same
order, this is clearly the region of u& where J((o)
shows interesting structure. Moreover, most
experimental interpretations involve only the
correl. ation time, which is proportional to the
matrix elements of J at +=0. Keeping these
orders in mind, we see that the first term in
(6.2) is of order (kT/IB) ', the second term is
of order B ', and we have neglected terms of
order kT/IB'. Within this same approximation
we can, in the second term of (6.2), put

VI. CORRELA'/ION TIME
(-6+B„+i&a) '=B,'. (6.3)

z(tt) = f dt t '(R(t}) .
0

(6 1)

As we show in the Appendix, the correlations
occurring in physical applications can be expressed
in terms of matrix elements in the body-fixed
frame of the mean rotation operator (It(f)). In

interpreting nuclear-magnetic-resonance measure-
ments in terms of dipolar interaction, one needs
to know these matrix elements (or rather their
one-sided Fourier transform) in the j =2 repre-
sentation. '4 We will. first form this quantity in
the general representation and then exhibit ex-
pl.icit results for the j =2 representation. We
consider, therefore,

Next we note from (4.22), (4.19), and (4.20) that
we can write

a( )
Q=G — Y ooo, (6.4}

where

G, =p D„o',
Xzgz+

with

D(x.) +D(2)

(6.5}

(6.6)

Since the second term in (6.4) is of order kT/IB'
relative to the first, we can expand

(-G+i(Lt) z= (-Go+i(o) '
Using (4.21) and (4.18), this becomes

(6.2)

J(ur)=(-G+i(u) '- g D,' o'„( G+B„+i&g) '-
X,gz4

x (-G+z(a&) ',

a{2)
-(-G +i(o) '

0

x p o„o„o,~( G, +i(o) '-.
P

(6.V)

where the approximation symbol means that we
have neglected terms of relative order of the
fourth power of the quantity (2.4).

Putting this in the first term of (6.2), and in the
second term using (6.3}and the first term of
(6.V), we find
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( j.)
J(&u)=(-G, +in) ' —p " o', (-Go+i&u) '

X~g~C

-(-G,+i~)
~ g o,o„o, ((-G, +i~) '.

(6.8)

Next, from (4.5), (4.V), and the commutation re-
lations (3.3), we can demonstrate the identity

a' l 1-
(&) 2

D'
o g g D(z)g2» 02

~

~

~

The inverse of this matrix has the form
(m'j(-G, +i(o) '[m&,

-2
I

ac -d2
~2 a(ac-2d ) ac 2d

d2

a(ac - 2d')

where

a =D„+D„+4D, +i u, 5 = 2(D„+D„)+D, +i &o,
(6.13)

c=3(D.+D,)+i~, d=( ')"-e=(k) '(D. D.)

(6.9)

We use this in (6.8) and then note that, within our
approximation, we can replace D»' by D„ in the
second and third terms of the resulting expres-
sion. Since with this replacement the first term
in the commutator (6.9) is just Go, we obtain the
final result

J(~)= (-G.+i~) ' -
2~ p ~ o: I(-G.+i~) '1f D

2I, , B„

d
ac 2d2

d2

a(ac —hP)

b
Q2 e2

a
ac-2d

Qc 2d2

-e
Q2 e2

QC 2d2

ac -d'
a(ac-2d )

—-(-G, +i~) '~ g &~o,'~. (6.10)B„j
This is our final form for the operator J'(&u),

valid for frequencies e less than or of the order
of kT/IB, and neglecting quantities of the order of
AT/1B .

Ne turn now to the explicit construction of
(6.10). We shall do this in the usual spherical
basis where the rows and columns are labeled
by the eigenvalues of -io', . The matrix elements
of the 0's in the 2j+1-dimensional irreducible
representation may be obtained from the formulas
given on p. 1V of Ref. 16, with the identification
J= -isa.

-2-1012t
-2 5 0 d 00

0 5 OeO
0d0c02
1 0 e 050
2 0 0 d 0 a

where

(6.15)

(6.14)

Finally, the operator (D, /ff„)o2 has the matrix
form: (m'( P(D„/D„)o'„m&,

(jm')o„(jm) =~i[(j m)(j+m-+l)]~25~

+ —'i[(j+m)(j —m+1)]' 6

{jm') [jom& = x'[(g - m)(j+m+ 1)]'"6„,~., (6.11)

—g(j+m)(j -m+1)]~ 6
I, d=(-')'"=(-.')"

I
—*-(D

(6.16)

(jm'[o, jjm& =im6. ...
Using these formulas for the five-dimensional
j =2 representation, we find the operator (-GO+i+)
has the matrix form (m'((-G, +i&@)jm&,

-2 -1 0 1 2

With the matrices (6.14) and (6.15) the matrix
of the operator (6.10) in the irreducible represen-
tation has the form (m'(J(&u))m&,

-2 -1 0 1 2

-2 a 0 d 00
Oboeo

0 d 0 c 0 d

1 0e 000
2 0 0 d 0 a

(6.12)

-2 A 0 D 0 E
-1 0 B Oso
0 D 0 C 0 D

1 0 S 0 B 0

2 E 0 D 0 A

(6.1V)
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where

A. =-(ac -d')(1+a) -ad3
a(ac-2d )

b+b5- ee
b2

a +ac 2dcf

ac —2d'

-2d+ (a+ c)d —d(a+ c)
2(ac —2d')

-e+be- e5
5—

(6.18)

d'+ d(da —ad)
a(ac —2d')

In applications one is interested in the quantity:

4m"'" ' —
(2s + i)r~s/

x g g 'S/~(&)*&m'IJ(&)lm)g, „(s),
m=- j m'=-f (6.19)

in which r and s are vectors fixed in the body and
'JJ&„ is the solid spherical harmonic. " For

Q, ,,(r) =
) 1 ~

(2r', -r'„-r', ),~
x/a

(16m& .

I' 15
5, „(r)=+]

8 r,(r„~ir,),&8~

'H. ,..(~) =
32 ~

(r.+ir,)'.16 ~'"
32m j

(6.20)

Using these formulas and the form (6.15) in (6.17)
we find for j = 2,

r(r, s; u&) = »([«A+ «E+ «C- (~)~D]r~~m +[«A+ «E+ «C+(2)~D]r'„s'„+Cr', s',

—(«A + «E- «C)(r '„s'„+r'„s'„) + «(A -E)r„r„s„s„-[&C —(&)~'D](r 2
s2 + r ', s„')

+3(B-E)r,r, s„s,-[ C+( ',) 'D](r'„s-', +r', s'„) +3(B+E)r„r,s,s, . (6.21)

Using now (6.13) and (6.16) in (6.18), we can write this in the final form

r2(~p st +) g 2 Q [+ 7gr s Q y (r'„s', +r', s'„)+R„„,r„r,s„s,]
««~«»

(6.22)

in which the sum is over the three cyclic permutations of x,y, g and

4D„+D„+D,+i&v+3 4 ' +4 ' '+2D„D,
(
—+ —tj+i&o ~ + —'

~

DD, D, D~ /1 1 & . ~D Dgl

12(D„D~+D„D,+D, D,)+ 4i(u(D, +D~+D«) —(o~

2(D +D )-D '+ice 3+D D ]
———)+D D,

(
———+D D, —+ —[+i&a~

t'3 1\ (3 1 1 1) . D
"EB B~] IBx B» " B B )

12(D„D„+D„D,+D„D,) + 4i co(D„+D„+D,) —aP

D D D»

B„ B„3I1+4~ + ~ + —'
4D„+D~+D»

(6.23)

As an application of this result we form the
correlation time associated with the dipolar
broadening of the nuclear-magnetic-resonance
line for two equivalent nuclei. '4 Since an asym-
metric top molecule can have no symmetry other
than a center of inversion or a symmetry plane

coinciding with a principal plane, the line joining
the two nuclei must be parallel to a principal axis.
Taking this axis to be the z axis, the correlation
time is the quantity (6.22) in which r =s =2, and
+=0:
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D„+D,+4Dg+3[4D„D /B„+4D,D,/B, +2D„D,(l/B +1/B„)]
12(D„D,+D, D, +D,D„) (6.24)

As a check on this result we apply it to the case
of the sphere. Then, by (5.8), D/B =y(1+-,'y+ ~ ~ ~ ).
Hence

6D+36D'/B 1+Gy(l+ ~y+ ~ ~ ~ )
36D' 6(kT/IB)(1+ ~y+ ~ ~ )

(1+Gy+ ~ ~ ~ )(1—ay+ ~ ~ ~ )
IB l
6kT
IB ~i ~ ~ ~(1+ —,y+ ~ ~ ~ ),

which agrees with the result of a direct calculation
for the sphere. "

It is of interest to exhibit the form of the quan-
tity (6.22) for the case of the symmetric top.
Taking the symmetry axis to be the body-fixed z
axis, (6.22) becomes

D. D„D»1+6—" 1+2—"+4—'
7', (r, s; &u) = » 4(

."
)
(3r', -r')(3s', -s') + 42

" . ' [(t'„'-x'„)(s,'-s'„)+r, r„s,s„]

D„ D»1+5—"+-
B„ B»

5D„+D,+su (6.25)

VII. CONCLUSIONS

We have obtained an expression (5.7) for the
complex polarizability which generalizes to the
case of the asymmetric top molecule the well-
known Hocard" form of the complex polarizability
for a spherical molecule, correct to terms of
order (kT/IB'). We have obtained also an expres-
sion (6.10) for the operator J (&u) which occurs in
the calculation of correlation times associated
with the dipolar broadenj. ng of nuclear-magnetic-
resonance lines, and tabulated its matrix ele-
ments in the j =2 representation. As an applica-
tion, we obtain the correlation time associated
with the dipolar broadening for two equivalent
nuclei (6.24) correct to terms of order (kT/IB').
The methods presented can be used to compute
higher-order corrections if required. A prelim-
inary account of this work has been given in
Hefs. 26 and 27.

respect to a space-fixed coordinate frame and a
and b are vectors fixed in the rotating body.
Here the average is over initial orientations to-
gether with the averaging used in the body of
the paper. We introduce F& and Y,", spherical
harmonics defined, respectively, with respect
to body-fixed coordinate frames at time t, and t, .
The point here is that

Yg„[8(t,)] = Y,'„(8), Yf„'[S(t,)] = Yf„(b), (A2)

are independent of t, and t„respectively. I et
now 80 be the rotation which takes the space-fixed
frome to the body-fixed frame at time to and
R(f) be the rotation which takes the body-fixed
frame at t, to the body-fixed frame at t, =t, +t.
Then the spherical harmonics in the various
frames are related by

jm g Yln(Fins Ro Ylm) t

APPENDIX: EVALUATION OF CORRELATIONS

OF SPHERICAL HARMONICS
Y& = Q Y(„'(1 „', [R(t)R ] 'F', „'), (A4)

Consider the correlation

(Y,[a(f.)]*Fi, [ b(f, )l) (A1)
Yg' ——Q Y,'„(Y,'„,R(t) Yg„) . (A5)

where F&, are spherical harmonics defined with Using (A5) and the fact that R(t) is unitary, so
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ft '(t) =R(t}',

we can show that

(A6)
A

(1 i [a(t o)]*1r [b(t )j)

&,„[a(t,)]+[1,"„,, &ft(t}-')1;„„]

We note next that
(A7)

(A8)
Using the orthogonality of the S functions,

(A11)

is the familiar representation matrix for finite
rotations. " Using (A8} in (AS) and in (A7), and
then putting (A7) in (A4), we get the relations (A12)

1'~e = Q 1'fAa(&o')

and

(A9) this becomes
A

(F„[a(to)]*Kg,.[b(t, )j)

1"g, = Q 1'f.' [1"f. , ft(t) 'rf. -]e.'-,. (Bo') ~

(A 10)

Forming now (Al), using (A9) in the first factor
and (A10) in the second, we get

g rf„(b)[1"f„,(ft(t) ') V, ,]Y „.(a)*.
m, m'

(A1S)

Here we have used (A2). This result is contained
in Sec. VD of Ref. 6.
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