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Numerical aspects of the approach to a Maxwellian distribution
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It has been conjectured, for the Boltzmann equation, that an arbitrary initial state tends first to relax
towards a state characterized by the similarity solution. We present here a simple model where the possible

validity of the statement can be studied numerically. The results of extensive numerical computation for the
first time give support for the validity of this conjecture.

I. INTRODUCTION

Several years ago, Krook and Wu' analyzed the
formation of Maxwellian tails, in the context of the
Boltzmann equation for homogeneous isotropic
distributions. The motivation was to study quan-
titatively certain gas-phase reactions. An espe-
cially important example is the controlled thermo-
nuclear fusion of a confined hydrogen plasma. The
taming of thermonuclear fusion is at present per-
haps the most important technological challenge.

The results of the previous analysis' consist of
an exact solution in one case and anasymptotic sol-
ution in another. The exact solution was also
found by Bobylev. ' Although special solutions are
of interest in themselves, their importance is due
to the possible special role played by similarity
solutions. More explicitly, the conjecture is as
follows. ' "An arbitrary initial state tends first to
relax toward's a state characterized by the sim-
ilarity solution. The subsequent stages of the re-
laxation is essentially represented by the similar-
ity solution with appropriate phase. "

Although this conjecture can perhaps be con-
sidered to be reasonable on physical grounds, no
evidence for or against this conjecture is known in
the context of the Boltzmann equation. It is the
purpose of this paper to initiate a numerical study
of the possible validity of the above conjecture.

Because the nonlinear Boltmann equation is no-
'toriously complicated, not much is known about it
even a century after its inception. We have re-
cently learned in a hard way that it is also very
difficult to study numerically. Our main difficulty
stems from the fact that the tail of the Maxweilian
distribution, although of great importance physi-
cally, is numerically small. Numerically, analy-
sis of the previous case' ' has not been accom-
plished, and instead we look for a simpler model.
In Sec. II we describe this model in some detail
and in Sec. III we give a physical interpretation
that is not completely satisfactory. Even this
simplified model is very difficult to program on a

computer, and we thus formulate in Sec. IV a
discrete version with all the necessary conserva-
tion laws. This discrete version is analyzed nu-
merically in Sec. V, and the results given in Sec.
VI.

The results indicate that the conjecture may in-
deed be true. However, it has to be remembered
that, in addition to the inherent limitations of nu-
merical analysis, we have also introduced modifi-
cations of the model and its discretization. Never--
theless, there is perhaps enough evidence now to
encourage efforts to prove the conjecture at least
for some simple circumstances.

N(l}=f f(v, t}dv

and average energy

E((} —fv'f(v;(}dv=

(2.2)

(2.2)

are conserved quantities. In a previous paper an
isotropic model for A was studied. The resulting
Boltzmann equation in appropriately chosen units
of time and velocity has the form

x sinydydqdw=0, (2.4)

II. MODEL

The collision term in the Boltzmann equation
contains in general multidimensional integrations
over the distribution function f. Confining our-
selves to the spatial homogeneous case, we have

+f [f(,&}f(vv, V} f(v', V}f(vv', V}]-
xAdv'dw'dw= 0 (2. i)

where the third term represents the contribution
from collisions of particles with initial velocities
v' and w' to particles with final velocities v and w.
The collision matrix A is such that the normaliza-
tion

j'9 883 1979 The American Physical Society



JOHN TJON AND TAI TSUN WU 19

G(~, 7)= g ~"M„(~),
n=0

where the normalized moments are given by

tin t
eo

M„(v') = 4v,2, I f(v, v)v'"" dv .

(2. s)

(2. 6)

where y and & are angles characterizing the two-
body scattering process.

Since our main objective is to examine how the
tail of the distribution function reaches equilibrium
for various initial conditions, the study of an equa-
tion like (2.4) is very difficult in view of the com-
plicated kernel. Instead we look for a simpler
equation that is both physically meaningful and nu-
merically tractable. Our starting point is the
generating function for normalized moments

and

v dv v~& =1. (2. 14)

G(g, ~)-(1-&) ',
we get from (2. 11) that

f (v, v )—exp(--', v'),

(2. is)

(2, 16)

which is precisely the Maxwellian distribution.
We shall return to a more detailed interpretation
of f in Sec. III.

It is clearly desirable to use the variable

Thus the particle number and average energy are
conserved and properly normalized. Second, as

This generating function G satisfies the nonlinear
partial differential equation"

2X= 2V

ln terms of x, G, and f are related by

(2. 17)

a' a)G+—(G = G'.
B&B& (}g

(2. 7) G((, v)=f dvvvp(vv), , (2. 18)

The relation between f and G is somewhat compli-
cated. The substitution of (2. 6) into (2. 5) gives

where

E(x, ~)=f (v, ~). (2. i9)

G(~, r) = 4v dv Z(~, v)f(v, ~),
0

(2.8) By (2. 13), (2. 14), and (2. 16), E has the proper-
ties

where

"nt

)( O

X/2
/ vexp g v erf v p

~0

E(x, &)dx = x E(x, &) dx = 1
0 0

for a,ll ~, and

E(x, 7')-e"

(2.2o)

(2.2i)

with

1/2 x
erf(x) = dx'exp(--', x'3) .

0
(2. 10)

as 7'

With (2. 20)p the substitution of (2. 18) into (2. 17)
gives the integrodifferential equation for E(x, &):

E(x, r)+—E(x, v)
a

The model that we shall study in this paper is
obtained by replacing the product of g

' ' with the
error function by a constant. Define a new dis-,
tribution function f by

OCI x'
dx'x"' dx" E(x'-x', ~)E(x",~) .

X 0

(2.22)

G((, v) =f v dvxpv(-' v'()f (v, ).v
0 v

(2. i 1) This is the basic equation for the model to be
studied.

G(g, v) = 1+q + 0{g')

as $ -0 for all 7, we get, for all &,

r vdvf (v, r) =1
0

(2. 12)

(2. iS)

We wish to find out'how f (v, &) approaches the
Maxwellian distribution as & —~.

Is it justified to call f a distribution function'P
We claim that it does have the basic properties of
a distribution function in two dimensions. First,
since'

III. PHYSICAL INTERPRETATION

In Sec. II we have derived, starting from the
generating function G($, &), the corresponding
Boltzmann equation for the distribution function,
its Laplace transform being G(fp v). We now turn
to describe a model for the collision matrix A. in
the Boltzmann equation (2. 1) which gives rise to
the same equation if we co)nfine ourselves to two
dimensions. Let us consider a d-dimensional
system in which the scattering between two parti-
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cles takes place diffusively, but still satisfying
energy conservation. The collision matrix A in
(2. 1}is assumed to be of the form

A. = a5(v'+ w' —v" -Iv") (s. 1)

where a depends only on the total energy of the
colliding particles and is taken to be

a =a,/(v'+ Iv')' '. (s.2}

Using (3.1) the Boltzmann equation for an isotropic
distribution can be written

In contrast to the general case, the kernel of Eq.
(3.7) is of a simpler form. In particular, if we
consider the case d= 2, (3.7) can be reduced to
(2.22). By (2.17) and (2.19) (3.7) with d= 2 can
be rewritten

eE(x„r)
( )

$7

«/2
dx s11128 d8 E[(x+ x }cos eq 7']

0 0

ef(v 7')
+f(v, r) — Io" 'dIv v'" 'dv'

a7' 0 0

X K dÃ v yT 20 p7
0

or

eE(x, r)
( )

(jT

xE[(x+x ) s1n'e, ~] (S.S)

xa5(v'+II)'-v" -w")=0. (3.3)

In order to have the normalization

N(v)= f v' 'dvf(v, v)
0

(s.4)

to be conserved and equal one, it is necessary to
have

x+x'
dx" E(x+x' x",r)-E(x",r),

0 +++ 0

(3.9)

which is precisely Eq. (2.2). Hence the basis
equations we study correspond to tht. Boltzmann
equation in two dimensions with diffusive scatter-
ing between the particles.

a, = 41'(d)/I" (-,'d)'. (s. 5) IV. DISCRETE VERSION

It is readily verified that with the choice of a0 we
a,iso have conservation of the average energy

Z(v)=2 f v"'dvy'(v, v). (s. 6)

In this model clearly total momentum conserva-
tion is absent. A similar model has been con-
sidered in one dimension by Kac. It is felt that
this nonconservation will not change qualitatively
the results we have found. In particular, various
models have been studied like the Lorentz sys-
tem' ' and the Ehrenfest wind-tree model, ' "in
which momentum conservation is violated while
the nonequilibrium properties behave qualitatively
in the same way as in the momentum-conserving
cases. Furthermore, the Boltzmann H theorem
holds for (3.3). The reason is that only energy
conservation, not momentum conservation, is
needed for the proof of the Boltzmann H theorem.

Introducing polar coordinates in the v', zo' plane
the Boltzmann equation (3.3) can be rewritten

ef(v, &) f( )
(j7

E —E(jg)

and
for j=O,

1 otherwise.

(4.2)

(4. s)

Equation (4. 1) holds for j&0. If j=0; it takes the
peculiar form

Equation (2.22) is a nonlinear integrodifferential
equation. It is simpler than the Boltzmann equa-
tion because the integral is a repeated integral,
not a, general double integra, l.

In order to solve this integrodifferential equation
numerically, the continuous variable x is replaced
by a discrete one, say j 4, where j= 0, 1, 2,
3, ... . If, for example, Gaussian integration
method is used, then it is necessary to interpolate
between the various values of j. Interpolation can
be avoided completely if the trapezoidal rule is
used:

l )v(v)dv —Q vp, .,E, V,
0 fa0

where

I'(d)
2' 'I'(d/2)' zv" 'dred

«/2
X de(sin28)~ 'f[(v'+go')' 'sine, 7']

0

f0
E(x)d --.'E, r .

0

We apply the trapezoidal rule to (2.22):

(4.4)

xf[(v'+u')'" cose, ~] . (3.7)
'+E, a g e I

—Q e,e~,E,E~, =O. (4.. 5)
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N(~)=~+ ~,F,.
j=0

and

E(v)=~' g jF,
j=p

are time independent.
Summation of (4. 5) over i gives

(4. 6)

(4. S)

In view of (4.4), 1/k with k=0 must be interpreted
as 4. Eq. (4. 5) is to be solved numerically.

Although (4.5) is thus obtained as an approxima-
tion to (2. 22), it can be considered to be a model
in its own right. So far as the physical interpre-
tation of Sec. III is concerned, the only modifica-
tion is that the possible energies are discrete.
The only conditions on this discrete model is that
the normalization and energy

minimizing
N -1

~

F;(7') —F ('r —7' )
~

i=p
(5.2)

We have not succeeded in finding exact special
solutions of the discrete version of the model.
However, since & ha. s been chosen sufficiently
small, we take in analogy to the special solution
of the continuum model' ' for F„'

F„=y "(A +nB), (5.3)

A =2(1 —y)(1+ y ) '[(1+y)b +(1 —y)]/&', (5.4)

B=(1—y) y '(1+y ) '[-2yh+(1 —y )]/& . (5. 5)

where y, A, and 8 are functions of v' —v'0. The co-
efficients A and B can be expressed in terms of y
using the conditions that (4. 6) and (4.7) are to be
equal to one. We find

ur(~) +N(7') = 6 Q E) Q k 'F~, Q.G,f~, f)f~. ~.
j=p

oo ao +g

&)&,f,f,(j+&) '«,„,j0 fP jp

Purthepmore, y can be parametrized as

7 —rp= Gin 1+

with

(5. 6)

=N(T)'.

Therefore N(ro) = 1 at some v, implies that

N(7)= 1'
for all &.

Similarly

(4. S)

(4.9)

a + (1 + ~')'~' . (5.7)

Although (5.3) is not an exact solution to the dis-
crete model, we notice that the stationary solution
can be determined exactly. It is given by

F„"= cy"„. (5.9)

dE(7') + E(~) = &' Q Q Q &; ~)f, f& (j+ I) 'fa,
-

g=0 )=0 j=0

= N(7)E(7) . (4. 10)

Equations (4.9) and (4.10) imply that E(v) is in-
dependent of 7.

V. NUMERICAL ANALYSIS

Equation (4. 5) is solved numerically on a Cyber
V3/28. In this numerical solution, a discrete time
interval ~7' and an upper cutoff N in the num-
ber of points are used. In other words for
i=0, 1, 2, ... , N —1 we calculate F,. at a later
time v+ 67

N-j

F,.(r+«)=F,.(~)(1 —«) +«n. g~, ,k
'

In order to get stable results with respect to the
time integration it is necessary to renormalize
F, so that N(v) = 1 after each application of (5. 1).
Having obtained the solution in this way, a least-
squares fit to the special solution of the continuum
version of the model is carried out. More pre-
cisely, for each 7', the phase v'0 is determined by

Tests were carried out in how far the fits were
sensitive to ~ and we have indeed found that the
results for Tp were stable for variations of ~. In
addition to ~, there are thus three para, meters:
&7, N, and N&.

In principle, the conjecture of Sec. I means that
lim &0 exists . However, this can be true only
if N is infinite. Because of the finite N, we can
at best get a, 7'0 approximately independent of w

over a finite range of ~.
As a test of the dependence on &v', and N&, we

first study in some detail the case where

F„(0)=F„"'(2). (5. &)

The result of the test is shown in Fig. 1, where
When hz=0. 1 and N=128, deviation from

127
v'0= -2 occurs later for smaller N&. We thus con-
clude that for N=128, a suitable choice for N& is
74. To have some idea of the origin of the rapid
deviation, we used a larger value of N= 192 with
N&

—111. The range of rea, sonably accurate 7', is
found to be greatly extended. Thus the deviation
from &0= -2 is due to the boundary effect of finite
N. More accurate values of T, can be obtained
with smaller values of 4w.

We conclude from this test that the program is
useful in giving indications of the possible validity



NUMERICAL ASPECTS OF THE APPROACH TO A MAX%ELLIAN. . .

10-

0 4 O

N =128,Nf =110,ht =.1
N=128,Nf= 92,ha=. 1

N =128,Nf= 74, hx =.1
N=128,Nf= 74, h~ =.025
N=192,Nf=111,ht =.1

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

10-
N =128,Nf =110,ht =.1

—.—N =128,Nf= 92,ht=. 1—N =128,Nf= 74,ht=.1
o o o N -192 Nf-111 h~-

N =128,Nf= 74, hT, =.025

I
I

/

/
/

/
/

/
/

/
/

/

10 20 30 40 50 60
-5

0 10 20 30
I I I I I I a.

40 50 60

FIG. 1. Least-squares-fitted to as a function of time
v' in the case that the initial distribution is taken to be
the special solution for various choices of N, N&, and

FIG. 2. Same as in Fig. 1 but the initial distribution
is givenby F„=O except for n=3, 4.

of the conjecture. A similar test with

E„(0)=E„"'(8)

gives the same conclusion.

(5.8)

VI. NUMERICAL RESULTS

The numerical code has been used to study a
number of initial conditions. In all cases,
N = 128, N&

—74 a,re used, in some cases, other
para. meters are also used. In addition to the test
cases (5.8) and (5.9), the other initial conditions
are

(A) Maxwellian distribution with tail cutoff;
(B) A simple peak with E„(0)= 0 except n = 3 and

'4 ~

(Cl) E„(0)= 0 except n = 0 and 2;
(C2) E„(0)=0 except n=0 and 4;
(C3) E„(0)= 0 except n = 0 and 8;
(C4) F„(0)= 0 except n = 0 and 7; and
(C 5) E„(0)= 0 except n = 0 and 8.

Note that (Cl) is anomalous because in this case
F,(0) is negative. We describe in this section
some of the numerical results, with emphasis on
the function r, (&). The least-squares fit to deter-
mine. ~, gives a very good fit in all cases except
for small values of v'.

For case (A), v, is virtually independent of w,

indicating that the conjecture applies well in this
case. We therefore concentrate on initial condi-
tion that are more peaked and hence less similar
to the special solution or the maxwellian distribu-
tion. It is on the basis of this criticism that the
other ca.ses are chosen. In Fig. 2, we show for
case (B) the same plot as for the case (4. 8).
There is no qualitative and very little quantitative
difference between Fig. 1 and Fig. 2, even though
the initial conditions are quite different.

We next turn our attention to case (C). Consider
first case (C2), where E,(0)»F,(0). To get an

1.8-'
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c 08
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8 16-
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t =15
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x =10
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FIG. 3. Normalized distribution F„/F„" as a function
of n for various v'. The initial distribution is given by
F„=O except for n= 0, 4. The parameters are %=128,
4m=0. 025. The plot on the right shows a blow up view
of the double peak near n= 5 for v =3 and 5.

idea about the approach to Maxwellian distribution. ,
we plot. in Figs. 3 and 4 the normalized distribu-
tion function E(r)/F„", where

F„'-'= l(l r)A-]'r" '

is the distribution function for 7- ~ and N —~.
Figure 3 shows clea, rly the nonuniform approach to
equilibrium of the distribution function where the
higher velocity particles take longer times to reach
equilibrium. From Fig. 4 we see that the relative
changes in time of I"„for a fixed n are much larger
in the initial times than when I'„ is close to its
stationary value. This is in accordance with the
findings of Bobylev. ' The decay time wheri I"„is
nea. r equilibrium is of the order of three which is
consistent with the slowest decay time found for
the moments. ' The effect of finite N is also clear-
ly seen in Fig. 4, since F„(r)jE„" fails to reach
1 for n= 125. For both case (8) and case (C) be-
low, «=0.025 is used.

In Fig. 5 we plot v, (v) for all five cases of (C).
For (Cl) and (C2), v, is nearly independent of 7

for 7's 45. For (C3), there is also some variation
for small &, indicating a rather rapid approach to
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