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Correlation function near the critical mixing point of a binary liquid
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We have determined the order-parameter correlation function near the critical mixing point of 3-
methylpentane-nitroethane by measuring the intensity of scattered light as a function of temperature. The
data cover a range 10 & t & 2.7 && 10 '.

, in the reduced temperature t = t(,T —T,)/T„which corresponds
to a range 0.18 & k(& 25, where k is the wave number and ( is the correlation length. The critical
exponents deduced from the experimental data agree within combined. errors with the values calculated

theoretically for the Landau-Ginzburg-Wilson model. However, the data cannot be reconciled with the
exponent values deduced from high-temperature series expansions for the three-dimensional Ising model.

I. INTRODUCTION

According to the hypothesis of universality of
critical phenomena, systems exhibiting critical-
point phase transitions can be grouped into uni-
versality classes. Systems within a universality
class are expected to have the same critical ex-
ponents and scaling functions that characterize
the asymptotic behavior of the equation of state
and the correlation function in the vicinity of the
critical point. It is widely assumed that univer-
sality classes for homogeneous isotropic systems
with short-range forces are determined by the
spatial dimensionality and the number of compon-
ents of the order parameter. This postulate im-
plies that fluids near the gas-liquid critical point
and binary liquids near the critical point of mixing
should belong to the same universality class as
three-dimensional Ising-like spin systems such
as the Ising model itself or its continuous gener-
alizations such as the I andau-Ginzburg-%ilson
model. The critical exponents for this universal-
ity class have been calculated using series expan-
sion techniques ' and renormalization-group tech-
niques. The various calculations yield numeric-
ally similar results, although some unresolved
discrepancies do exist.

Experimental evidence has been reported in
support of the uriiversality hypothesis as applied
to the asymptotic behavior of the equation of state
of fluids near the gas-liquid critical point ' and
the behavior of the coexistence curve of binary
liquids near the critical mixing point. ' ' Subse-
quent corroborating evidence has been obtained
from analyses of coexis tence curve" and equation-
of-state data~6 in larger ranges of temperatures
incorporating appropriate correc tion- to- scaling
terms.

This paper is concerned with the question of un-
iversality as applied to the correlation function of

fluids near a critical point. The correlation func-
tion or, more precisely, its Fourier transform,
the structure factor X, can be measured experi-
mentally by determining the intensity of light scat-
tered by the fluid relative to the intensity of the
incident light. At the critical density of fluids near
the gas-liquid critical point, or at the critical
concentration of binary liquids near the critical
point of mixing, one expects that sufficiently close
to the critical temperature T, the structure factor
has the form"

lt(h) =rt g(h[).

Here k is the wave number, t is a reduced tem-
perature difference t = (T —T,)/T„y is the critical
susceptibility exponent, g(x) is the correlation seal-
ing function, and $ is the correlation length which
dlvGrges as

$=$0t ". (1.2)

The amplitude I' is defined such that lim Og(x)
=1. For small values of the scaling variable,
g(x} assumes the Ornstein-Zernike form g (x}
=1+x, while for large values of x it becomes
asymptotically proportional to x" . The critical
exponent q. is a measure of the extent to which the
actual correlation function differs from the classi-
cal behavior predic ted by the Dms tein- Z ernike

, theory, and many experimental attempts have been
made to determine this exponent.

Most light scattering measurements in fluids
have been obtained under conditions that h$ is
small. From such measurements one can deter-
mine the exponents y and v, and then deduce a
value for q by using the Fisher relation y
=(2 —ri)v. For fluids, the most precise value
g =0.03+0.03 was thus obtained by Cannell for
sulfurhexafluoride. In view of the small value
of q, obtaining it from v and y' through the Fisher

866 1979 The American Physical Society



CORRELATION FUNCTION NEAR THK CRITICAL MIXING. . . 867

relation does not give very accurate results. '~

For a more direct determination of g from scat-
tering data it is desirable to probe the region of
large k$ with substantial accuracy. 20 This region
is entered by making either k or $ large. Given
the small values of k accessible in light scatter-
ing, one must approach the critical point very
closely so as to make $ sufficiently large. Under
these conditions, however, most fluids become so
strongly opalescent that the data are distorted by
multiple scattering and turbidity. Much larger k
values are accessible with x-ray and neutron scat-
tering. Neutron scattering studies conducted by
Mozer et a/. ' in neon and helium yielded a sur-
prisingly high value of g =0.11+0.03. This value
was to some extent supported by x-ray scattering
studies conducted by Lin and Schmidt in argon.
It also fell in line with the earlier effective ther-
modynamic critical exponents found for fluids.
However, the result was in definite disagreement
with the hypothesis of Ising-like behavior of the
critical correlation function of fluids. For the
true asymptotic form of the structure factor to be
visible, not only should k$ be large, but also k
should be small enough so that the short-range
structure of the fluid is not seen. It is doubtful
whether the latter condition has been met in the
x-ray and neutron scattering studies thus far con-
ducted in fluids. 4

The question raised by these experiments made
it desirable to return to the longer wavelengths
accessible with light scattering. In fluids near
the gas-liquid critical point, it is difficult to mea-
sure the scattering intensities at large kg because
of the multiple scattering problem. In binary
liquids, however, multiple scattering can be great-
ly reduced by selecting a mixture in whi. ch the re-

fractivee

indices of the two liquid components are
,

matched. Therefore, following a suggestion of Mc-
Intyre" we chose a mixture of 3-methylpentane and
nitroethane. At the wavelength X = 6328 A corre-
sponding to that of a He-Ne laser, the refractive in-
dices of the two pure liquid components at 25 'C are
1.3V53 and 1.3882, respectively. ""As a conse-
quence, this mixture has a low cross section for light
scattering, and the critical point can be approached
very closely with only minor corrections for multiple
scattering effects. In addition, a sustained effort was
made to substantially increase the accuracy of the
scattering intensity measurements as compared to
our earlier measurements for the same mixture.
In a previous letter we have summarized the prin-
cipal conclusions deduced from this work. 3 It is
the purpose of the present paper to provide the
information on how the experimental data were ob-
tained and to present the results of a more com-
plete analysis of these data.

II. EXPERIMENT

A. Binary liquid sample

The experiments were conducted with the same
binary liquid sample used in our earlier measure-
ments of the decay rate of the concentration fluc-
tuations. 2~ This mixture was prepared from re-
search grade (99.99 mole%) 3-methylpentane ob-
tained commercially and nitroethane obtained from
a sample earlier prepared by Wims and co-work-
ers. ' To reduce any residual traces of water the
nitroethane was further dried with a silica gel
dessicant. Both liquids were filtered through mill-
ipore filters to minimize any amount of dust parti-
cles.

The sample cell consists of a 6-cm long pyrex
tube with internal and external diameters of 1.0
and 1.3 cm, respectively. It was filled with an
equimolar mixture of the two liquids under a ni-
trogen atmosphere; the cell was then frozen and
sealed in vacuo. Further details are documented
in a separate technical report. 33

The critical concentration of 3-methylpentane-
nitroethane is 0.500 in mole fraction units, as de-
termined earlier by Wims et al. from an analysis
of coexistence curve data. ' An analysis of the
position of the meniscus of our sample below the
critical temperature as a function of temperature
confirmed that the actual concentration of our li-
quid mixture was within 0.3% of the critical con-
centration. The critical temperature of our sam-
ple is (299.545+0.002) K.34

B. Optical arrangement arid data acquisition

The light source is a 5-rgW He-Ne laser whose
output polarization is perpendicular to the plane
determined by the incident beam, and the direc-
tion in which the scattered light is observed. Spec-
ial precautions were taken to enhance the stability
of the laser light intensity. As shown in the
simplified schematic representation in Fig.
1, the laser light, after passing a variable atten-
uator, is monitored by a photodiode whose output
is compared with a reference voltage. The ampli-
fied and integrated error signal drives a motor
which adjusts the optical density of the attenuator.

The optical arrangement for measuring the light
scattering intensities is shown schematically in
Fig. 2. The incident light, after passing through
the intensity stabilizer, is focused at the center
of the sample cell by a lens with a focal length of
16 cm. The waist size of the beam at the focus
is about 0.2 mm. The scattered light is detected
by a Channeltron (Bendix BXV54-A). All scatter-
ing measurements were conducted with a scatter-
ing angle of 90 to facilitate the evaluation of mul-
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FIG. 2. Schematic representation of optical arrange-
ment.

tiple scattering corrections. 35

In order to improve the accuracy substantially,
a provision was made to measure each scattered
intensity with respect to the incident light inten-
sity as detected by the same photodetection sys-
tem, thus eliminating any errors due to small
drifts in gain and sensitivity of the photomultiplier.
For this purpose a few percent of the incident light
is reflected at 45' by a beam splitter. Interference
of the beams reflected from the first and the sec-
ond surface of the beam splitter could lead to in-
stabilities in the reference light intensity. In or--
der to avoid this effect, the surfaces of the beam
.splitter were sufficiently separated spatially so
that the beam reflected from the second surface
could be eliminated by a diaphragm. The refer-
ence beam is subsequently reflected by the surface
of a prism into a diffuser cavity in front of the
photocathode of the Channeltron. The purpose of
the diffuser cavity is to reduce the intensity of
the reference light to a level comparable with that
of the scattered light intensity; it is a cylindrical

cavity whose inner surface was sprayed with flat
gray paint. Shutters were installed in both the
path of the incident beam and the reference beam.

The scattering volume of the binary liquid sam-
ple as seen by the detector is about 0.95 mm3; it
is determined by a 300- p. m square aperture ad-
jacent to the cell and a circular cathode of the
Channeltron with a diameter of 1 mm located 26
cm from the center of the sample cell. The square
aperture, the photocathode, and the illuminated
portion of the fluid must be colinear so as to opti-
mize the detected scattering intensity and to ac-
count accurately for double scattering effects.
Therefore, fine tuning of the alignment was nec-
essary. For this purpose a small glass plate (not
shown in Fig. 2), approximately 5 mm thick and
20 mm in diameter, was placed after the focusing
lens. By adjusting the tilt of the glass plate, the
incident beam could be positioned at the center of
the scattering volume seen by the photocathode.

The resolution of our previous light scattering
intensity measurements was limited by leakage
current effects in the photomultiplier tube. To
improve the resolution we adopted photon counting
techniques in the present experiment. For this
purpose a standard pulse with a width of 42 ns was
generated from every photoelectric pulse received
by the Channeltron. Each standard pulse was fol-
lowed by a dead time of the same duration. The
Channeltron has a very low dark current yielding
approximately 0.1 counts/sec. This level is to
be compared with a reference intensity of about
6400 counts/sec and a scattered intensity of ap-
proximately 300 counts/sec at T —T, =1 K and of
8500 counts/sec near T,.

During the actual experiments, after the sample
has reached thermal equilibrium at a desired tem-
perature, the intensities of the reference light and
the scattered light were alternatingly registered
at 100-sec intervals. The ratio of the intensity of
the scattered light to that of the reference light was
defined as the normalized scattering intensity. At
each temperature the average of 20 consecutive
normalized scattering intensities thus obtained
was taken as one datum point. A test run of 45 h
yielded 41 consecutive data points. The standard
deviation of these 41 data points around their aver-
age value was 0.17%, indicating the precision with
which the normalized scattering intensities could
be determined. The data acquisition was auto-
mated using a real time operating computer sys-
tem interfaced with all electronic equipment. The
system not only controls the optical shutters and
records the readings of the electronic counters,
but it also performs the desired calculations of
ratios, means, and standard deviations. In addi-
tion, by monitoring the normalized scattering in-
tensities continuously after changing the tempera-
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ture, one can also determine whether thermal
equilibrium has been reached. At temperatures
more than 10 mK above T„ the scattered intensity
would become constant within 1o min after the de-
sired temperature was reached. At temperatures
closer to T„ the apparent equilibration time still
did not exceed 1 h, although in practice we waited
3 h before taking the data. As we shall discuss in
Sec. IVB, this equilibration time refers to the ap-
proach to local thermodynamic equilibrium, but
not total equilibrium.

C. Temperature control and measurement

In order to obtain a high degree of temperature
stability, the temperature is controlled in two
stages. The sample cell and its surrounding ther-
mostat, the laser, the photodetectors, and some
additional electronic instruments are located in an
air bath. The temperature of the air bath is reg-
ulated using a combination of a refrigerator and an
electric heater whose switches are controlled by a
thermistor-resistor bridge. The arrangement en-
abled us to stabilize the air bath temperature,
averaged over short term fluctuations, to within
0.01 K. In practice the temperature of the air
bath was maintained at approximately 1 oC below the
critical temperature to provide a favorable am-
bient temperature for the second stage. The con-
stant ambient temperature also provides a more
stable operation of the electronic instruments and
the light source. The air bath is enclosed in a
styrofoam box covered with black cloth so as to
prevent any extraneous light from reaching the
photodetec tors.

The sample cell and its surrounding thermostat
are shown in Fig. 3. The thermostat consists of a
copper cylinder and a copper tubing. The tubing
has a wall approximately 0.3 cm thick and a diam-
eter of 9 cm. The cylinder, which is located in-
side the tubing, has a diameter of 3.8 cm and a
height of 15 cm. Its center is bored just large
enough. to accommodate the sample cell. The space
between the tubing and the cylinder is filled with
styrofoam.

A heating wire is tigh. ly wound noninductively
around the inner cylinder with a thermistor at-
tached to its surface. The thermistor is part of a
temperature control system that can maintain the
temperature of the inner cylinder to within 0.3 mK
over a period of 7 h. The temperature gradient
along the vertical axis was found to be within 0.2
mK/cm.

The actual temperature of the sample is mea-
sured with the aid of a quartz thermometer probe
embedded in the inner cylinder at; a location close
to where the laser beam passes through the sample
cell. The probe is connected to a sensor oscilla-
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FIG. 3. Sample cell and surrounding thermostat.

6T = DUll . (2.1}

The intensity measurements were obtained with a
focusing length l =16 cm. The sample was illum-

tor. The oscillation frequency is about 28 MHz
when the probe is at room temperature, and it
varies linearly with the temperature with a rate
of 0.98688 kHz/'C. The oscillating frequency is
measured with an electronic counter with a reso-
lution of 0.1 Hz, corresponding to a temperature
resolution of 0.1 mK, The temperature of each
datum point relative to the critical temperature is
determined by the frequency f relative to the fre-
quency f, when the probe is at 7,. The electronic
counter needs a time-base stability. of better than
3 &&10 9 oveq the period of one experimental run
(7-14 days). This goal was accomplished by using
a rubidium frequency standard whose long- term
stability is better than 1X10 ' per month. To
eliminate any small hysteresis effects in the quartz
thermometer, the frequency f, was redetermined
for every experimental run; by monitoring the
characteristics of the transmitted beam, the tem-
perature was noted at which the sample passed
from the one-phase region into the two-phase re-
gion.

In principle, the temperature at which the light
scattering intensity is measured may differ from
the temperature of the fluid in the optical cell due
to local heating by the incident light intensity. We
assume that the temperature rise 6T is propor-
tional to the incident power per unit area, that is,
proportional to the power U of the laser light and
inversely proportional to the square of the focus-
ing length E:
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inated at a 50% duty cycle using laser powers be-
tween 1.16 and 1.72 mW, translating into effective
average incident power levels U between 0.58 and

0.86 mW. In our earlier analysis of the data we
assumed local heating to be negligibly small under
these conditions. Subsequently, we measured the
Rayleigh linewidth of the scattered light as a func-
tion of the incident intensity by raising the laser
power to 10 mW and using stronger focusing (l
=7.5 cm). These measurements revealed that the
temperature rise established af ter illuminating
the fluid for 1 h, corresponded to D =0.0056 K m2/

W in (2.1). For l =16 cm, used in the intensity
measurements, we thus applied a temperature cor-
rection of 0.22 mK/mW. A similar local heating
effect in 3-methylpentane-nitroethane was recently
found by Sorensen et al.'

III. LIGHT SCATTERING INTENSITY AND CRITICAL

. CORRELATION FUNCTION

Here X is the mole fraction of either component
and 4 is a new variable which is a linear combina-
tion of temperature T and pressure P such that

(3.4)

and

as , =
as

where C~x is the heat capacity at constant pres-
sure and composition.

In order to estimate the effects of the tempera-
ture and pressure fluctuations relative to the con-
centration fluctuations, we note that in the ther-
modynamic limit k$ —0,

A. Dielectric constant and concentration fluctuations

The intensity I of the scattered light is related
to the fluctuations of the dielectric constant of the
medium by

I =ID(5e«6t «). (3 1)

In this relation Io I~k, 4V sin g—/16v L, where I, is
the intensity and k, is the wave number of the incident
light in the medium, V is the scattering volume,

g is the angle between the polarization of the inci-
dent light and the observed scattered light direc-
tion ()=90' in our experiment), and I. is the dis-
tance from the scattering volume to the point of
observation. For our purpose Io can be treated as
a constant independent of temperature. The Four-
ier transform of the dielectric constant correla-
tion function is defined by

(5e«5e «) =— dr, dr2eJt -0 V

&& (5«(r, ) 5«(r, )), (3.2)

(3.3)

where 5c(r} is the deviation of the local value of the
dielectric constant at position r from its average
equilibr ium value.

The fluctuations in the dielectric constant can be
related to the fluctuations in the thermodynamic
variables of the mixture as indicated by Mountain
and Deutch ~'

((5&) ) =
sx

(3.6)

Here k& is Boltzmann's constant, N is the number
of moles of the mixture in the volume V, p, is the
difference of the chemical potentials of the two
components of the mixture, and K~x is the adiab-
atic compressibility. s ''8 Many of the required
thermodynamic properties are known either for
the mixture or for the individual components. The
density and thermal expansion coefficient of the
mixture has been measured by Greer and Hock-
en~ and the excess volume by Reeder et al. ,
while the adiabatic compressibility can be deduced
from the sound-velocity measurements of Kruer
and Gammon. 4' We estimated the nonsingular part
of the heat capacity from the heat capacity of the
individual components ' and the amplitude of the
singular part from the correlation length using the
hypothesis of two-scale-factor universality. «The
dielectric constant of the mixtur'e was related to
the known dielectric constants q& of the individual
components 6 2 using the Clausius-Mossoti for-
mula

E'+2 6g +2 pg 62+2 p2
(3.7)

where pj are the densities of the components in the
mixture and p& is the densities of the pure compon-
ents at the same temperature and pressure. We
find that the second and third terms in (3.3} con-
tribute approximately 7% and 3% to the total
scattered intensity at a temperature T —T, =1 K.
These contributions depend weakly on tempera-
ture, while the contributions from the concentra-
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tion fluctuations increase rapidly when the critical
temperature is approached more closely. Even
allowing for a possible singular behavior of e as: a
function of temperature, 6 our estimates indicate
that in the range 10 &t &2.7&&10 3 of our experi-
mental data, the temperature variatien of the con-
tributions from the temperature and pressure
fluctuations is well within the experimental pre-
cision of 0.25/o. Thus

(3.8)

BG = cx(1 + 6.4t),8X z, g
(3.8)

where cx represents the value of (Be/BX)2T, P at the
critical temperature.

The order parameter near the critical point of
mixing is to be identified with the concentration of
either component. However, it has been argued
that in practice the volume fraction Q = V, /(V, + V,),
where V, and V, are the volumes of the pure com-
ponents at the same temperature and pressure,
is a more appropriate choice than the mole frac-
tion. '3'48 Hence, instead of (3.8} we consider

where 4I may be treated as a constant independent
of temperature. In practice, the constant M will
also contain small extraneous contributions such
as those due to scattering from the walls of the
sample which depend on the optical alignment. For
each experimental run we therefore treat M as an
adjustable constant. From (3.7), using existing
literature data for the densities3~'4~ and the vol-
umes of mixing, we conclude that the prefactor
(Be/BX}2T P in (3.8} varies slightly with temperature
as

order parameter will lead to slightly different val-
ues of the temperature dependence of the prefactor
and thus amount to different estimates of the am-
plitude of a confluent singularity. %e shall return
to this point in Sec. IVB.

B. Turbidity and multiple scattering

The relationship between the scattered light in-
tensity and the structure factor X(k}, mentioned
above, is only valid if the effects of turbidity and
multiple scattering can be neglected. In the vicin-
ity of the critical point this approximation is no
longer adequate for a quantitative interpretation of
the experimental data. The effects have been con-
sidered by a number of author' s.3~'~ ' Here we use
the approach formulated by Bray and one of the
authors. 5 This approach is specifically designed
for our case where the scattering angle is 90',
and where the corrections are sufficiently small
to justify linearization of the turbidity correction
and incorporation of double scattering, but not
triple and higher-order scattering. In this ap-
proximation the scattered light intensity may be
represented by

(3.12)

where ~ is the turbidity per unit length, l is the
path length of the scattered beam in the medium,
and 8 is a double scattering correction. "

Since foi our sample both & and B turn out to be
small at any experimentally accessible tempera-
ture, it is sufficient to evaluate these corrections
using the Ornstein-Zernike approximation X(k)
= I't "/(1+k'('). In this approximation the turbidity
correction becomes'6

(3.10) « =At II(k) $), (3.13)

where (6$&6|t~) will be identified with the Fourier
transform y(k) of the order-parameter correla-
tion function. From the Clausius-Mossoti formu-
la (3.7) we obtain for the prefactor

(
Be t2

=c~(1+6.4t).
B

(3.11)

It should be noted that an analysis of coexistence
curve data for our mixture has yielded the same
results regardless of whether the concentration is
expressed in mole fractions or in volume frac-
tions. 0'4~ On comparing (3.9) with (3.11) we see
also that the analysis of the light scattering data
will be insensitive to these particular choices. If
we neglect the volume of mixing as is often done
in the literature, '3' ' ~ the coefficient of the tem-
perature dependence of the prefactor (3.11) changes
from 6.4 to 5.5. In principle, different choices of

where A is a constant and where the function
II(k~)} is given by

)
8y +4y'+1

11 (1 4,)
2

(3.14)

For our cylindrical sample cell the path length l
of the scattered beam is equal to the path length of
the transmitted beam. Hence the turbidity correc-
tion can be determined experimentally as a func-
tion of temperature by measuring the intensity I,
of the transmitted beam relative to the intensity
I, of the incident beam. In practice we measure a
fraction PI, of the incident beam intensity, and the
experimental data are to be compared with

I/II =(I/O) e p(-«). (3.16)

Using y=2v=1.232 and (0=2.56 A as determined
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earlier for our mixture in the Ornstein-Zernike
approximation, 29 we fitted (3.15) with (3.13) to the
experimental turbidity data, using p and A as ad-
justable parameters, and obtained

-6
IO IO

I I 1 I I I ill

T Tc /Tc
IO IO

I I I I I I II I I l I I i III

7l =12.3x10-'f-"»H(3.51xIO-'f-'«') (3.16)

This equation represents the experimental turbid-
ity data within their precision as shown in Fig. 4.

In the same approximation the double scattering
correction term 8 was calculated as a function of
k;$ from the equations presented in a previous pa-
per ' noting that in our experiment the parameter
2rp/k =32.5, where ro is the inner radius of the
cylindrical cell and h is the height of the scatter-
ing volume seen by the detector. After converting
k; $ into T —T„ the value of R as a function of tem-
perature is given in Fig. 5. From Figs. 4 and 5
we note that the combined correction due to turbid-
ity and double scattering amounts to 0.4% at
T —T, =0.1 K and increases up to 3.8% at T —T,
=0.3 mK.

O. I

ppl i s i «il
IO

i ilail I I t I I I III
IO

T-T, (K)
IO' I.P

FIG. 5. Double scattering correction term R as a
function of temperature.

scaling variable x. The correlation scaling func-
tion g(x) should satisfy the boundary condi-
tions' '

C. Correlation scaling function g (x) = 1/(1+x'), (x «1) (3.17)

The theory predicts that in the vicinity of the
critical point the structure factor X(k) will assume
the scaled form (1.1), where the correlation scal-
ing function g(x) is a universal function of the scal-
ing variable x =k$. The scale factor for the cor-
relation length may be normalized by requiring
either lim„odg '(x)/dx' = 1 or g '(i) = 0, where
i =v-1. The first option defines a scaling vari-
able x =k$ in terms of the "effective" or "second-
moment" correlation length; the second option
defines a scaling variable x=k$ in terms of the
"true" or "exact" correlation length. In this
paper we shall analyze the experimental data in
terms of the second-moment correlation length

g(x) = ~ „1+ (,~v„+—,/» (x»1), (3.18)C) C2 C~

The expansion (3.18) for large values of x is often
referred to as the Fisher-Langer expansion. Nu-
merical estimates for the coefficients C„C2, and

C3 for the universality class of Ising-like systems
have been obtained from a perturbation analysis in
terms of e =4 —d, where d is the dimensionality of
the system 61 62

In order to interpret experimental data at inter-
mediate values of x, one needs a scaling function
that interpolates between the small and the large
x behavior. Earlier light scattering data have
often been interpreted in terms of the Fisher ap-
proximan t"""'

C C g~(x) =1/(1+x')' "/'
~ (3.19)

-i IO

IP

IO
I I I i I I I II

Ip
I I I I I I I II

Ip
I I I I I I Ill However, this simple scattering function cannot

accommodate simultaneously the correct ampli-
tudes of the leading terms in the small and large x
expansions. Therefore, based on an analysis of
numerical data for the three-dimensional Ising
model, Fisher and Burford proposed the scaling
function

(1 + y2x2) I/2

1+(1+ th) q/2)x
(3.20)

Ip Ip R

TTc K

Ip I.O

FIG. 4. Turbidity correction 7'l, as a function of temp-
er'ature. The circles indicate experimental data and the
curve represents Eq. (3.16).

For large values of x the leading term in the asym-
ptotic expansion (3.18) is recovered with C&

—P"/
(1 + ('q/2).

The problem was also considered by Ferrell and
Scalapino. ' ' They rewrite the correlation scaling
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function as

g '(x) =1+x [f(+x )If(-—')],

where

2 . 777} &
"

duME(M)f(Z)= sin
2 ) „( 2

)
~

I

(3.21)

(3.22}
E (u) =[P—Q cot(-', 777})]/(P'+ Q'), (3.31)

determining the exponent g from experimental
scattering data. 20'69

To remedy this deficiency Bray"" proposed to
substitute into (3.22) or (3.29) a spectral function
derived from the Fisher-i. anger expansion (3.18),
but truncated so as to vanish for M &1:

Here E(u) is a spectral function defined as

E(s) =C, Img '(3iM)/sin( —,777/)(3u) (3.23)

where Im indicates the imaginary part. This spec-
tral function satisfies the conditions

with

C2 cos( P77/2 )vC~cos(77/2v)
(3 )P/v (3 )77v 7

E(M) & 0 for I & 1,

E(u) = 0 for u ~ 1 . (3.24)

In this approach the exact correlation length scal-
ing variable x is related to the second-moment
correlation scaling variable x by

(3.25)

where

C~sin(77P/2v) C, sin(77/2v}
(3M)

" (3M)' " (3.31b)

and where P =1—o. , which in practice may be ap-
proximated using the hyperscaling relation p =dv
—1. The coefficients C2 and C3 are the same as
those in the asymptotic expansion (3.18}, and the
coefficient C, is determined by

&' =f( -',)/f(o)-, (3.28) i f(o) 3"[I+ ns( )]
' (3.32)

so that

g '(x) =1+x' [f(-.'x'~')/f(0)]. (3.27)

For the sma1, l values of the exponents g to be
considered, neglecting terms of order q, the
scaling function (..27} can be linearized in 71 and

appr oximated by

g '(x) =1+x'(1+-,'x'} "/'[I +77s(x)],

where the function s(x) is related to the spectral
function E(u) by

(3.28)

" du[1-E(~)]9, u(u7+x /9)
(3.29}

The idea of this approach is to approximate the
spectral function E(u). In particular, Ferrell and
Scalapino proposed66

(I) I I-3/2 + 7~(M-12/ 7 ~-3/2) (3.30)

where co is a parameter restricted to the range
v &1. For co=i, this procedure yields a

scaling function similar to the scaling function of
Fisher-Burford over a substantial range of the
scaling variable x.

As pointed out by Tracy and McCoy, the Fisher-
Burford approximant (3.20} does not reproduce
accurately the exactly known correlation function
of the two-dimensional Ising model over an appre-
ciable range of the scaling variable x. . The corre-
lation scaling function of Ferrell and Scalapino
suffers from a similar defect. For this reason,
Tracy and McCoy have questioned the reliability
of any of the scaling functions mentioned above for

Bray" showed that this procedure yields a.scaling
function which reproduces the correlation scaling
function of the two-dimensional Ising model with-
in 0.03%%uo of any value of x and which also agrees
with the theoretical values near four dimensions
calculated using & expansion techniques. " We
shall therefore assume that the correlation scaling
function proposed by Bray also yields an adequate
representation of the corr'elation scaling function
for three-dimensional Ising- like sys tems.

IV. .RESULTS

A. Experimental data

The light scattering intensities were measured
as a function of temperature. In each experimen-
tal run we started at temperatures between 1 and
10 K above the critical temperature, and took data
at successive lower values of the temperature un-
til the sample would pass the critical tempera-
ture. Prior to each experimental run, the sample
cell was shaken and the arrangement reassembled
so as to guarantee that the fluid sp, mple would be
spatially homogeneous.

We obtained six experimental runs with the posi-
tion of the scattering volume at the level where the
meniscus would appear after passing through the
critical temperature. The measured scattering
intensities relative to the incident intensity are
presented in Table I as a function of the tempera-
ture difference 4T = T —T,. Each individual data
point was. obtained as the average of 20 consecu-
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tive readings. The relative standard deviations
M/I thus obtained are also included in Table I.
The precision is 0.2%-0.3% for b T ~ 0.2 K, grad-
ually increasing up to 0.5% at LET =0.8 K. Because
of the decrease in the light scattering intensity,
the error grows beyond 1% at temperatures sub-
stantially beyond &T =1 K. For the purpose of
interpreting the measurements we only consider
the data points corresponding to 4T & 0.8 K.

B. Determination of correlation function parameters

From Eqs. (1.1), (3.11), (3.12), and using the
Fisher relation

y=(2- q)v,

it follows that the asymptotic behavior of the light
scattering intensities I may be represented by

TABLE L Experimental light scattering intensities relative to the incident intensity as a
function of T —Tc.

Run 1
I T —Tc

Run 2
I T Tc

Run 3
I

0.0003
0.0006
0.0009
0.0012
0.0016
0.0021
0.0025
0.0032
0.0034
0.0041
0.0053
0.0063
0.0070
0.0087
0.0103
0.0127
0.0159
0.0200
0.0248
0.0252
0.0315
0.0400
0.0501
0.0631
0.0792
0.0977
0.0977
0.0985
0.1260
0.1583
0.1998
0.2510
0.3166
0.3981
0.3985
0.5010
0.6299
0.7954
1.0220

15.355
15.396
15.401
15.411
15.409
15.389
15.383
15.344
15.305
15.282
15.129
14.990
14.907
14.594
14.333
13.880
13.297
12.587
11.779
11.741
10.761
9.660
8.508
7.332
6.230
5.260
5.313
5.238
4.254
3.437
2.725
2.152
1.680
1.308
1.311
1.020
0.793
0.620
0.476

0.2%
0.1%
0.2%
0.1%
0.2%
0.3 /p

0.1%
0.3%
0.2%
0.2 /o

0.2 jo

0.1%
0.-2%
0.2%

0.2%
0.2%
0.2 /p

0.2%
0.2 /p

0.3%
0.2 jp

0.2%
0.1%
0.3%
0.2 /p

0.2%

0.3%
0.3%
0.3%
0.3 /p

0.3%
0.4 /p

0.4%
0.3%
0.3%
0.5%
0.7%

0.0004
0.0007
O. 0008
0.0011
0.0014
0.0016
0.0021
0,0025
0.0029
0.0035
0.0041
0,0047
0.0057
0.0062
0.0072
0.0091
0.0111
0.0135
0,0163
0.0203
0.0251
0.0323
0.0402
0.0502
0.0633
0.0802
0.1007
0.1263
0,1591
0.2002
0.2513
0.3171
O. 3987
0.5015
0,6316
0.7950
1.0223
1.2598
1.5853
1.9958
2.5125
3.1631
3.9819
5.0131
6.3107
7.0802

15.410
15.482
15.511
15.518
15.465
15.468
15.392
15.407
15.381
15.311
15.331
15.226
15.052
14.959
14.822
14.547
14.203
13.753
13.225
12.531
11.724
10.631
9.617
8.506
7.316
6.153
5.114
4.189
3 337
2.678
2.109
j..649
1.287
1.005
0.784
0.609
0.466
0.377
0.302
0.246
0.202
0.169
0.144
0.125
0.112
0.106

0.2 /o

0.2%
0.2%
0.2 jo

0.3%
0.2%
0.2%
0.2%
0.2%
0.2%
0.2%
0.2%
0.2%
0.2 /p

0.2 /o

0.2%
0.3 /p

0.1%
0.2%
O.2%
0.2%
0.2%
0.3%
0.2 /o

O.2%
0.2%

O.3 /o

0;3 /p

0.3%
0.4%
O.3%
0.4%
0.5%
0.5 jp

0.6 /o

O.3%
0.6 /p

0.9%
O. 9%

0.7%
1.2 /o

1.3%
1o2%
0.8%

0.0003
0.0006
0.0010
0.0014
0.0018
0.0024
0.0030
0.0036
0.0045
0.0052
0.0061
0.0080
0.0100
0.0125
0.0154
0.0188
0.0240
0.0316
0.0392
0.0487
0.0621
0,0792
0.0995
0.1250
0.1583
0.1989
0.2505
0.3152
0.3970
0.5005
0.6302
0.7942
1.0202
1.2588
1.5840
1.9934
2.5101
3.1617
3.9812
5.0118
6.3097
7.0797
7.8916

10.8385

15.247
15.270
15.240
15.195
15.262
15.262
15.175
15.131
15.004
14.879
14.793
14.484
14.080
13.613
13.083
12.519
11.697
10.563

9.530
8.469
7.255
6.088
5.043
4.131
3.312
2.647
2.083
1.632
1.274
0.988
0.770
0.600
0.461
0.373
0.297
0.241
0.198
0.166
0.141
0.124
0.110
0.104
0.101
0.092

0.3%
0.2%
0.2 /o

0.2%
0.2%
0.2%
O.2 jo

0.2 /p

0.2%
O.2%
0.2 jp

0.2%
O.3%
0.2 jo

0.3%
0.2%
0.2%
0.2%
0.2 /p

0.2 /p

0.3%
O.3 jo

0.4%
0.3 /p

0.2 /p

0.3%
0.3%
0.4%
0.5%
0.4%
0.5%
0.5%
0.6%
0.8%
O.7%
1.0%
1.0 /p

1.1 Vp

1.6 /o

1.3%
1.2%
1.8%
1.4%
1.7%



CORRELATION FUNCTION NEAR THE CRITICAL MIXING. . . 875

TABLE f. (Continuedl.

0.0003
0.0007
D.OD12

0.0012
0.0016
0.0023
0.0027
0.0035.
0.0043
0.0054
0.0052
0.0070
0.0089
0.0114
0.0144
0.0179
0.0230
0,0304
0.0384
0.0482
0.0614
0.0785
0.0991
0.1244
0,1574
0.1979
0.2495
0.3143
0.3965
0.3967
0.3966
0.4990
0.4989
0.6294
0.7929
0.7930
1.0206
1.2578
1.9939
3.1609
5.0106
7.0797
9.4059

Bun 4
I

15.120
15.200
15.207
15.224
15.176
15.158
15.157
15.038
14.938
14.785
14.863
14.531
14.164
13.710
13.206
12.577
11.736
10.574
9.530-
8.430
7.251
6.079
5.046
4.132
3.316
2.637
2.079
1.631
1.272
1.267
1.268
0.989
0.989
0.769
0.601
0.602
0.460
0.374
0.241
0.166
0.122
0.103
0.093

0.2%
0.2%
0.2%
0.2%
0.3 /p

0.2%
0.2%
0.2%
0.2%
0.3%
0.2%
0.2 /p

0.3 /p

0.2%
0.2%
0.2%
0.2 /p

0.2%
0.2 /p

0.3 /p

0.3%
0.2%
0.3%
0.2 /p

0.3%
0.3 /p

0.3 /p

0.4 /p

0.5%
0.5 Vo

0.4%
0.7%
Q.4%
0.5 fp

0.6%
0.6%
0.8%
0.8%

1.5%
2.0%
1.8%
1.4%

T Tc

0.0003
0.0007
0.0012
0.0017
0.0026
0.0033
0.0044
0.0077
0.0094
0.0107
0.0121
0.0136
0.0154
0.0182
0.0219
0.0239
0.0270
0.0315
0.0378
0.0467
0.0589
0.0703
0.0859
0.1066
0.1349
0.1617
0.2066
0.2614
0.3225
0.4Q45
0.5097
0.6399
0.7612
1.0292
1.2764
2.1203
4.2645

Bun 5
I

15.105
15.136
15.133
15.135
15.049
14.902
14.731
14.208
13.939
13.727
13.464
13,213
12.918
12.393
11.793
11.450
10.974
10.333
9.557
8.536
7.397
6.547
5.645
4.714
3.797
3.197
2.506
1.969
1.579
1.238
0.965
0.752
0.625
0.455
0.367
0.228
0.135

0.2%
0.3 /p

0.2%
0.3 /p

0.2%
0.3%
0.3%
0.2%
0.2%
0.1%
0.2%
0.2%
0.2%
0.3%
0.2 /o

0.2%
0.3%
0.3%
0.2%
0.3%
0.3%
0.3%
0.3%
0.2%
0.3%
0.3%
0.4%
0.2%
0.4%
0.4%
0.4%
0.7%
0.8 /p

0.8%
0.7%
1.1 /p

1.3 /p

T —Tc

0.0003
0.0006
0.0012
0.0019
0.0027
0.0032
0.0039
0.0048
0.0053
0.0058
0.0068
0.0072
0.0080
0.0085
0.0099
0.0113
0.0140
0;0158
0.0174
0.0205
0.0237
0.0301

. 0.0361
Q.0441
0.0565
0.0666
0.0727
0.0820
0.1020
0.1337
0.1562
0.2049
0,2521
0.3080
0.3953
0.4959
0.6273
0.7510
1,0184
1.2615
2,0557
4.1688
6.2469

13.434
13.466
13.468
13.423
13.356
13.309
13.250
13.149
13.117
13.044
12.908
12.831
12.718
12.659
12.472
12.270
11.836
11.518
11.294
10.836
10.378
9.549
8.812
7.965
6.878
6.170
5.817
5.312
4.447
3.491
3,012
2.300
1.858
1.501
1.144
0.893
0.695
0.571
0.414
0.332
0.209
0,122
0.098

0.2%
0.1%
0.2%
0.2 /p

0.2 /p

0.2 /p

0.3%
0.2 /p

0.2 /p

0.2%
0.2%
0.2 /p

0.2%
0.2%
0.2%
0.2%
0.1%
0.2 /p

0.2 /p

0.3%
0.2 /p

0.3%
0.3%
0.2%
0.2%
0.2 /p

0.2'/p

0.2%
0.2%
0.2%
0.3 /p

0.3%
D.4%
Q 4%
0.4%
p 4%
0 4%
0.6%
0.5%
0.7 /p

1.1%
1.1%
1.5%

I =10(1+6.4t)[1 —(1 R)rl]t ' "'"g(-k$)+M,
(4.2}

where the constants c~ and 1 have been incorpor-
ated in the proportionality constant Io.

Assuming that in the experimental temperature
range t «2.Vx10 3 corrections to scaling can be
neglected and that the correlation scaling function
g(x} may be represented in terms of the truncated
Fisher-Langer spectral function (3.31}as proposed
by Bray, we try to deduce from the experimental
data optimum values for the correlation function
exponent q and the parameters (0 and v determin-

C2+ C3 ——0.9

obtained from an e expansion to third order, ~' and
determine the individual values of C2 and C3 by
requiring that Fa(u} be non-negative for u & 1 and

(4.3}

ing the correlation length $. For this purpose we
consider the spectral function Ea(u} for various
values of the exponents g and v. The procedure
is slightly complicated by the fact that this spec-
tral function also depends on the coefficients C2
and C3 in the I"isher-Langer expansion, which are
known only with limited accuracy. 62 In practice we
adopt the sum rule
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as small as possible at the threshold u =1.. For
g & 0.028 this goal can be accomplished by simply
requiring Es(1)=0, as was done by Bray for the
three-dimensional Ising model. "

A preliminary analysis indicated that v and g are
close to 0.625 and 0.02, respectively. For these
exponent values, the spectral function Fs(u) has a
minimum at a value of u larger than unity, and the
condition Es(1) =0 would lead to negative values of
E(u} in a small range u & 1. Ln practice, we selec-
ted the spectral function E(u) corresponding to
@=8 and g =@—0.0185 with the values C& —1.733
and C, =-.2.745 derived from the e expansion to
second order. ' ' The behavior of the spectral
function E(u) thus obtained is analogous to that of
the truncated Fisher-Langer spectral function of
the two-dimensional Ising model. " It is possible
to fine-tune the spectral function by defining30'"

E(u) =Fs(u) for u&xo and E(u) =v for 1 &u&a,
where v is a constant between zero and Es(su).
However, the results of our analysis were insen-
sitive to these refinements, and the spectral func-

tion Fe(u) truncated at u =1 was therefore con-
sidered adequate for our purpose.

In order to facilitate the determination of the
exponent q with the methods of statistical analysis,
we substitute the linearized form (3.28) for g '(x)
into (4.2},

Io(l +6.4t)[1 —(1 —R)vf Jt '~~'"

1+x (1+x /9)" [1+ps(x)j

where x=k$. Ln the linearized form the depen-
dence of g '(x}, and hence I, on q through the func-
tion s(x) is of order vP and higher; such terms can
be neglected for the small values of q found in our
experiment.

The function s(x) and the corresponding correla-
tion scaling function g(x), deduced from the spec-
tral function Fs(u) defined above for q =

4
and

v= —,', are tabulated in Table G. Using this func-
tion s(x), Eq. (4.4) was fitted to the experimental
data with IO, bI, q, v, and $0 as adjustable para-
meters. The results thus obtained for the free pa-
rameters iL, v, and g„and the derived parameters

TABLE II. Correlation scaling function for various values of g and ~.

5V=
B

5
p 8

g= 0.0315

v = 0.6300

g= 0.0410

v = 0.6380

s(x) g(x) g(x)

0.1000
0.1259
0.1585
0.1995
0.2512
0.3162 '

0.3981
0.5012
0.6310
0.7943
0.1000 xao
0.1259 x 10
0.1585 x 10
0.1995x10
0.2512 x 10
0.3162 x 10
0.3981 x 10
0.5012 x 10

. 0.6310xlo
0.7943 x 10
O. 1OOO x aO'

O.1259x 1O'

0.1585 x ap~

O.1995x 1O'

0.2512 x 102

O.3162 x 1O'

0.4715 x10
0.7469 x 10
0.1183xlp ~

0.1874 xlo ~

0.2965 x 10
0.4689 x 10
0.7406 x10
0.1167xlo i

0.1834xlo '
0.2868 xlo '
0 4453 xlo ~

0.6837 x 10
0.1034
0.1529
0.2198
0.3054
0.4082
0.5239
0.6465
0.7695
0.8871
0.9954
0.1092 x 10
0.1175x 10
0.1246 x 10
0.1305x 10

0.9901
P.9844

' 0.9755
0.9617
0.9407
0.9091
0.8632
0.7993
0.7153
0.6132
0.5000
O.3869
0.2848
0.2009
0.1369
0„9102x10 &

0.5946xlo &

p.3839xlo '
0.2459 x 10
0.1568 xlo &

O.996S x 1O-'
0.6325 x 10
0.4010 x 10
0.2540 x 10
0.1609x 10
0.1019xao ~

0.9901
0.9844
0.9755
0.9617
P.9407
0.9091
0.8632
0.7993
0.7153
0.6132
0.5001
0.3870
0.2849
0.2010
0.1370
0.9114xlp '
0.5958 x 10
p.385p x 10 &

O.2469 xlO '
O.1577xaO '
0 1004xao 1

0.6383 xlo
0.4055 x 10
0.2575 x 10-2
0.1635xap
0.1038 x 10

0.9901
0.9844
0.9755
0.9617
0.9407
0.9091
0.8632
0.7993
0.7153
0.6132
0.5001
0.3870
0.2850
0.2011
0.1371
O. 9124 x 10

~ 0.5968 xlo '
0.3859 x 10
0.2478 x 10
0.1584 xlO '
O.1O1O x 1O-'
O.642e x 1O-'
0'4091 x 10
0.2602 x 10
0.1655x 10
0.1053x 1P

Ci —— 0.9529
C~ —— 1.733
C& = -2.745

C~ —— 0.9268
C) = 2.403
C3 = -3.303

O. 9OS9

C~ —— 3.591
C3 =-4.491
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TABLE IH. Results of analysis in terms of simple scaling.

Run

1
2
3

5
6

g = 0.028 + 0.002
g= 0,021 + 0.002
g= 0.018 + 0.002
g= 0.017 + 0.001
g = 0.006 + 0.002
q =. 0.012 + 0.001

Free parameter s
v=0.622+0.001 $0=(2.33+0.02) A.

v = 0.630 + 0.001 $0-—(2.20 + 0.02) A,

v = 0.625 + 0.001 $0 = (2.28 + 0.02) A
v = 0.622 + 0.001 $0 = (2.33 + 0.01) A
v=0.625+0.001 $0

——(2.33+0.02) A,

v=0.629+0.001 $0
-—(2.27+0.01) g

'y = 1.227
y = 1.246
p = 1.239
y =1,234
'y = 1.246
7 = 1.250

Cg = 0.93
Ci = 0.95
C, =0.95
C( = 0.96
C& = 0.98
Ci ——0,97

Derived
parameters

0.25%
0.23%
0.22 jp

0.12%
0.20%
0.15Vp

Average 0= 0.017+0.002 v = 0.625 + 0.001 $0 =(2.29+ 0.02) A y =1.240 &~ = 0.96 0.19%

q =0.017 + 0.015, v =0.625 + 0.006,

(0 = (2.29 + 0.10) A, y = 1.240 + 0.017,

C& ——0.96 + 0.04, ct, q
——0.4%. (4.5)

One possible source of error, causing differences
between the results deduced from the various ex-
perimental runs, is the frequency f, of the quartz
thermometer attributed to the critical tempera-
ture T,. The measurements were conducted by
lowering the temperature of the thermostat, the
step size being approximately —,'p decade on a lo-
garithmic scale. %hen the temperature was close
to T„ the step size was typically about 0.3 mK.
In our previous analysis, sP T, was identified with
the step value at which the fluid separated. How-

ever, strictly speaking, this temperature must be
below T„whereas the previous step value of the
temperature must be above T,. For our present

y = (2 —q)v and C, = 3 "j[1+ps(~)]for the six ex-
perimental runs are presented in Table III. It
turns out that Eq. (4.4) fits the data of each experi
mental run with a standard deviation rrz —0.2%.
The fact that the average values @=0.017 and
v =0.625 are close to the exponent values used in
the evaluation of the spectral function confirms
a posteriori the consistency of the analysis. More-
over, the values found for the extraneous scatter-
ing contribution M were of the same order of mag-
nitude as the theoretical estimates for the contri-
butions from temperature and pressure fluctuations
discussed in Sec. IIIA.

The standard deviations o„=0.002, c„=0.001,
and, vqo

—0.02 A obtained by fitting (4.4) to the in-
dividual experimental runs do not yield realistic
error estimates, as can be seen from the varia-
tions in the parameter values obtained from differ-
ent runs. In order to take into account effects of
systematic errors between different experimental
runs, we adopt in this paper the convention of
quoting as error two standard devations when the
parameter values are averaged over the six ex-
perimental runs. %e thus obtain

C) ——0.96 +0.04, 0'„,=0.4%. (4.6)

On comparing (4.6) with (4.5), we conclude that the
results are insensitive to small changes in the
definition of the order parameter. The results al-
so indicate that contributions from a confluent sin-

analysis, T, was defined as the midpoint between
these two temperatures. This procedure deter-
mines T, with an accuracy of about 0.15 mK. Lo-
cal heating may cause an additional uncertainty
of 0.1 mK in temperature. Repeating our analysis
we concluded that a shift of 0.25 mK in T, changes
q by 0.006, v by 0.0003, and $, by 0.02 A. These
errors are well within the error estimates quoted
in (4.5).

The constants Ip and M depend to some extent on
the detailed geometry of the optical arrangement.
Since between each run the cell with the sample
fluid had to be removed to mix the phases, we
must allow for small differences in Ip and M for
different experimental runs. However, the criti-
cal exponents and the correlation length amplitude
are physical properties of the fluid and they must
be the same in all runs. Therefore, as a second
step we fixed these physical parameters at the
average values quoted in (4.5) and fitted (4.4) to the
data points of all six runs simultaneously, leaving
Ip and 4I of each run as adjustable parameters.
We thus obtained a standard deviation o„,= 0.4%;
this standard deviation doch include the effect of
systematic differences between data points of dif-
ferent runs. A deviation plot of the experimental
and calculated data points is presented in Fig.
6(a). The data points cover a range 1 &&10 ~ & t
& 2.V ~10 in temperature which corresponds to a
range 0.18 &k$ & 25 in'the scaling variable x =kg.

The factor 1 +6.4t in (4.4) represents a correc-
tion due to the temperature variation of- the deri-
vative of the dielectric constant with respect to
the order parameter Q. We also repeated the an-
alysis replacing this factor by unity, and obtained

q =0.018 + 0.015, v =0.625 + 0.006,

$0
—(2.30 + 0.10)A, y =1.239 a 0.018,
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FIG. 6. Plot of the deviations (f,„v Itc)/folic in -per-
cent as a function of the scaling variable x =kf pt

(a) g= 0.017, v=0.625, $p= 2.29 A simple scaling;
(b) g=0.0315, v=0.630, t'p=2. 16 A, simple scaling;
(c) g=0.041, v=0.638, t'p=2. 00 A, simPle scaling;
(d) &= 0, v = 0.633, t p

= 2.22 A, simple scaling;
(e) p)=0.0315, v=0.630, fp=2.13 ~, 1'& —-3,4.

gularity proportional to t~' are negligibly small
within the temperature range of our experiment.

Near the critical point the earth's gravitat'ional
field will induce a concentration gradient in the
fluid. For our mixture of 3-methylpentane-
nitroethane the effect was studied experimentally
by Greer et al. '4 They observed the formation of
gravitationally induced concentration profiles for
a period of 15 days, which is comparable to the
time scale of our experimental runs. It was found
that gradients are formed rapidly at the bottom

and top of the cell, but the concentration remained
constant near the center of the cell during the en-
tire period, Since the six experimental runs dis-
cussed earlier were all obtained with the scatter-
ing volume located at the position where the menis-
cus would appear, we may thus assume that the
data were indeed obtained at the critical concentra-
tion.

In order to investigate the validity of this assump-
tion we studied the scattered light intensities with
the scattering volume located at different heights.
Defining the height z = Oat the position where the me-
niscus would appear, the heightz was+2, -5, and
-11mm, respectively. These experimental data
were subjected to the same analysis described earli-
er and the results are presentedin TableIV. These
results should be compared with the results pre-
sented in Table III for the data taken at z =0. The
parameter values deduced from the runs at z =
+2 mm and z =- 5 mm are in good agreement with
the values obtained earlier from the runs at z =0,
and no sys. tematic dependence on the height is
found. The run at z =- 11 mm yields slightly
smaller values for g and v, indicating the possible
influence of a concentration gradient at 1 cm from
the center. This is precisely what one would ex-
pect from the work of Greer et al. , and we con-
clude that data taken within 5 mm from the level
of meniscus appearance are unaffected by gravi-
tationally induced concentration changes.

Tracy and McCoy have emphasized that a con-
vincing determination of the exponent q requires
the use of a correlation scaling function that does
reproduce the exactly known correlation function
of the two-dimensional Ising model. 0'6~ Although
the Fisher-Burford approximant (3.20) fails to
satisfy this criterion, it does not necessarily fol-
low that this approximant yields also an inadequate
representation of the critical correlation function
of three-dimensional systems. To investigate this
question we substituted the Fisher-Burford corre-
lation scaling function (3.20) into (4.2) and fitted
the resulting equation to the six experimental runs
taken at z =0. We used as adjustable parameters
Ip AI, I), v, $p, and ((i, but required that I), v,
and g be the same in all experimental runs. We
thus obtained

TABLE EV. Results of analysis of runs at different heights.

Free parameters Derived parameters

+2 mm
-5 mm

-ll mm

g= 0.009
7/= 0.016
YJ

= 0.002

v = 0.625
~ =0.625
v = 0.621

g, =2.32 A
tp=2. 30 A
pp=2. 45 L

y = 1.245
y = 1.240
y = 1.241

Cg = 0.98 0.17%
Cg = 0.96 0.19%
C& = 1.00 0.16%
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g =0.024+0.022, v =0.625 +0.006,

$0
—(2.28 +0.12) A, @=1.235 +0.016, (4.7)

q =0.020+ 0.017, v =0.625 + 0.006,

$0
—(2.28 + 0.10)A, y =1.238 +0.018,

C i
—0.95 + 0.04, e«g ——0.4%.

(4.8)

Repeating the analysis using v =0 in the correla-
tion scaling function of Ferrell and Scalapino, we
obtain

q =0.030 a 0.025, v =0.626 + 0.006,

$0
—(2.26+0.10)A, y=1.232+0.020,

C( ——0.95 +0.04, c~„=0.4%.

(4.9)

On comparing (4.7), (4.8}, and (4.9}with (4.5),
we conclude that the correlation scaling functions,
proposed by Bray, Fisher and Burford, and Fer-
rell and Scalapino, give equally satisfactory rep-
resentations of the experimental scattering data;
they all lead to values for the critical exponents
and the correlation-length amplitude that are the
same within experimental error.

C. Comparison with theoretical predictions

The critical exponents for the universality class
of Ising-like systems have been calculated quite
accurately by Le Quillou and Zinn- Justin and by
Baker, Nickel, and Meiron from an asymptotic
analysis of the Callan-Symanzik equation for the
Landau-Ginzburg-Wilson model. They found

g =0.0315 + 0.0025, v =0.630 +0.001,

y =1.240 +0.001 . (4.10)

On comparing with (4.5) we conclude that the criti-
cal exponent valves found experimentally for our
binary liquid mixture agree within combined error
with the exponent values predicted theoretically
for the universality class of Ising-like systems.
In fact, agreement is found using any proposed
correlation scaling function approximant that ac-
commodates the Ornstein-Zernike behavior for
small kg and the leading term in the Fisher-Langer
expansion for large A, g. The value 0.96 +0.04 found

experimentally for the coefficient C& may be com-

C, =0.95+0.04, /=0. 14+0.11' o«&=o 4%%uo

As a third alternative we considered the corre-
lation scaling function proposed by Ferrell and
Scalapino. For this purpose we adopted the spec-
tral function (3.30}for &o =1, evaluated the func-
tion s(x} defined in (3.29), and then fitted the ex-
perimental data to (4.4). Using as adjustable para-
meters ID, hl, q, v, and $0 and again requiring
q, v, and $0 to be the same in all six experimental
runs, we find

pared with the values C& —0.962 and C, =0.922
calculated theoretically 2 in second and third or-
der, respectively, from an expansion in terms of
e =4- d.

To investigate further the comparison with the
theoretical predictions we also fitted the experi-
mental data to (4.2) fixing the critical exponents
at the theoretical values quoted in (4.10}and using
again Bray's procedure for calculating the corre-
lation function. For these exponent values the sum
rule (4.3) and the condition Es(l) =0 implies
C& —0.9268, C2 ——2.403, and C, =- 3.303. Numeri-
cal values for the resulting correlation scaling
functions are included in Table II. Using Io, M,
and $0 as adjustable parameters, but requiring
$0 to be the same for all six experimental runs,
we obtained $0

—(2.16 +0.03) A, and c~„=0.6%. A

plot of the deviations of the experimental data from
the calculated values is presented in Fig. 6(b).

The critical exponents for the three-dimensional
Ising model have been estimated theoretically from
numerical analyses of high-temperature series
expansions "5

q =0 041 +o oo3 v =0 638 +o oos

y=1 250~o.'oov ~
o.003 (4.11)

We have also fitted the data to (4.2} with the criti-
cal exponents fixed at the series expansion values
quoted in (4.11). The corresponding correlation
scaling function g(x) was earlier evaluated by
Bray," and, it is reproduced in the last column of
Table II in terms of the second-moment correla-
tion scaling variable. Using as adjustable para-
meters Io, M, and 4 and again requiring $0 to be
the same for different experimental runs, we find
4=(2.00+0.03) A, and a„,=1.0%. A deviation
plot is shown in Fig. 6(c}. The deviations are quite
systematic and the standard deviation of o„,
=1.0% seems well beyond the error of the experi-
mental data. We conclude that the critical expon-
ent values (4.11) are not in good agreement with
the experimental data.

While our data are consistent with the predic-
tions from the renormalization-group theory which
imply a finite value of the exponent g, one could
also ask the question whether the experimental data
exclude the possibility q =0. To investigate this
question we also fitted the experimental data to
(4.2) using the Ornstein-Zernike form g '(x) =
1+&' for the corrections scaling function, and ob-
tained v =0.633+0.008, y=2v =1.266 +0.017, and

$0
—(2.22 +0.13) A. The total standard deviation

cr&„ is still only 0.5% and the deviation plot is
shown in Fig. 6(d}. Without theoretical guidance,
we cannot prove on the basis of the experimental
data alone that g must be finite.
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D. Corrections to scaling

So far we have represented the experimental
scattering data in terms of the asymptotic behavior
predicted by the theory. The question arises
whether correction-to-scaling terms can be ne.-
glected in the range covered by our experimental
data. Including the first correction term the func-
tion g(x} in (4.2) is predicted to become'6

g(x) =go(x) + r, t &g,(x}, (4.12)

where the scaling variable x is now defined as

x =k)ot ". (4.13)

The function gp(x) is the correlation scaling func-
tion discussed earlier, I"& is a system-dependent
correction-to-scaling amplitude, 4, is a universal
correction-to-scaling exponent, and g&(x) is a new
universal function subject to the boundary condi-
tions

g, (x) = 1/[1+D,x'], (x«1} (4.14)

g)(x) = ~/, (/„1+ u~)/p + $/p, (x))1).(4.15)Dg
'

D2 D~

In the absence of theoretical information concern-
ing the values of the universal coefficients D», we
approximate g, (x) by an approximant analogous to
(3.19),

g (x) ]/(I+x2)~2 "+1/" /2 (4.16)

This choice is motivated by the following consider-
ations. First, the effect of the correction term
turns out to be very small and therefore will not
be sensitive to the choice of approximant. Second,
the Fisher-like approximant (4.16) is the simplest
function that reproduces qualitatively the correct
analytic behavior in the limit of small and large x
without introducing new unknown constants.

In order to investigate the effect of the correc-
tion-to-scaling term on the determination of the
critical exponents, we take &, =0.5 as predicted
theoretically, 8'7 substitute (4.12) into (4.2), and
approximate go(x) by the linearized expression
(3.26), using again the function s(x) with q = —,

' and
and v =—,'. When the data are then fitted to (4.2),
using Io, M, q, v, $0, and F, as adjustable para-
meters, one obtains

g =0.016 + 0.016, v =0.628 + 0.013,

$0
—(2.23 + 0.25) A, r( —1.1 + 3.5, (4.17)

y =1.246 +0.033, C, =0.96+0.04, v&, &
——0.4%,

to be compared with the values obtained earlier in
(4.5). We conclude that inclusion of a correction-
to-scaling term does not change the critical ex-
ponent values deduced experimentally, while the

1 )
—3.4 +3.0, v...=0.5% . (4.16)

The corresponding deviation plot is shown in Fig.
6(e). This equation represents the experimental
data almost equally well as when the critical ex-
ponents are treated as unknown parameters. We
conclude that the experimental data are consistent
with the predictions from the renormalization-
group theory for Ising-like systems and thus con-
sistent with the hypothesis of critical-point uni-
versality.

Finally, we repeated the analysis fixing the criti-
cal exponents at the values (4.11}calculated from
series expansions for the three-dimensional Ising
model. In all our previous fits we obtained values
for the extraneous scattering contribution M of an
acceptable order of magnitude; that is, compatible
with the limited accuracy we were able to estimate
the contributions from temperature and pressure
fluctuations. However, when we fit the data using
the critical exponent values (4.11) and including
the correction-to-scaling term, we obtain a nega-
tive value for M which is physically unacceptable.
Thus we are -not able to reduce the systematic
deviations shown in Fig. 6(c}using series expan-
sions results by introducing a correction-to-scal-
ing term of a form consistent with theory. We con-
clude that our experimental data are consistent
with the critical exponent values predicted from
the renormalization-group, theory, but not with
the values predicted from series expansions for
the three-dimensional Ising model.
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