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We study the statistical mechanics of a one-dimensional classical system with the purely repulsive
interaction v(x) = Cexp(— y}x|). Emphasis is laid upon an exact treatment of the lofig-range character
of the interaction. We give explicit analytical expressions for the equation of state as well as for the
correlation function. The almost crystalline nature of the system shows up in the low-temperature region.

PACS numbers: 05.70.Ce, 61.20.Ne, 64.70.Dv

I. INTRODUCTION

In any real fluid the interparticle interaction
consists of a short-range repulsive part and a
long-range attractive part such as; for example,
the Lennard-Jones 6-12 potential. Usually one
first considers the system with purely repulsive
interaction as a reference system! and then in-
cludes the attractive part of the potential in some
perturbative scheme.

In this work we will treat a one-dimensional
classical system with a purely repulsive inter-
action of the exponential type

v(x)=Ce"'*!, (1.1)

where C and y are positive parameters and x de-
notes the interparticle distance. (The inclusion of
an attractive interaction will be discussed in a
subsequent paper.) The particular form of this
potential has been dictated by mathematical sim-
plicity.

The exponential interaction (1.1) has been
studied in the literature before: the dynamics of
a linear chain with exponential forces between
next neighbors has been constructed by Toda,?
especially because of the existence of soliton so-
lutions. Toda also gives the thermodynamics of
this system, which can be obtained as a special
case of our results.

A preliminary investigation of the thermody-
namics of a system with the exponential interac-
tion (1.1) is contained in Feynman’s book on
statistical mechanics.®* However, Feynman’s
treatment of the problem is technically incom-
plete and the equations given by him do not lead
to an explicit solution.

The work which is most closely connected to
ours is a series of papers by Baxter.*”5 Baxter
derives the basic equations for the thermodynam-
ics and the correlation function using a functional
technique. However, no solution is constructed.
In Sec. II we rederive these equations using the
elementary mathematics of the harmonic oscilla-
tor to avoid the rather complicated functional

methods. Thus the treatment becomes very
transparent and helps to formulate the perturba-
tive solutions in the high- and in the low-temper-
ature region (Secs. MI-V).

In the high-temperature region (Sec. IV) we
find that the system behaves like an ideal gas in
the dilute regime and like a plasma in the dense
regime. In the dilute regime we essentially re-
cover the virial expansion. In the high-density
regime the particles are subject only to the
short-range part of the potential (1.1), which is
proportional to |x|. This is just the one-dimen-
sional Coulombic interaction. We thus recover
essentially the high-temperature equation of state
of a one-dimensional electron gas immersed in a
positive uniform background.® The correlation
function in the high-temperature region is also
given at the end of Sec. IV.

The low-temperature region is discussed in Sec.
V. We give analytical expressions for the equa-
tion of state as well as for the correlation func-
tion. These equations show that—for low temper-
atures—the system transforms almost into the
crystalline state. As usual in a one-dimensional
system a sharp phase transition occurs only in
the zero-temperature limit.

The almost crystalline nature for finite but very
small temperatures may be seen somewhat indi-
rectly from the equation of state by the appearance
of a Griineisen correction to the zero-point pres-
sure. For high densities the Griineisen correction
is due to plasma oscillations. For low densities
the system essentially behaves like a lattice with
next-neighbor interaction only.

The correlation function of course gives more
direct information about the structure. We show
that the correlation function is given by a sum of
exponentials. These exponentials oscillate in
space and have a damping proportional to the .
isothermal compressibility. The wavelength of
the oscillations is equal to a multiple of the “lat-
tice” constant p (p being the particle density).
This sum may be rewritten in terms of almost
Gaussian functions, which are located at the “lat-
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tice” sites. For zero temperature the width of the
Gaussian functions vanishes and the crystal
structure appears.

Finally the potential (1.1) contains the hard-core
interaction as a particular limit of the parameters
C and y: To this end we set C=C,e™ (b>0) and
consider the limit y - «; that is, we pin the inter-
action at the hard-core radius x =b and then use
the limit of an infinitely fast decrease of the po-
tential over a width 1/y. In this limit we recover
‘very easily the known results of a one-dimensional
hard-core system, the equation of state® as well
as the correlation function™?® (Sec. VI).

II. BASIC EQUATIONS
A. Partition function

In this section we will derive an expression

" which is equivalent to the partition function of the
classical system with the long-range interaction
(1.1).

If the range of the potential is restricted to the
next neighbor, the partition function as well as
the correlation function are easily calculated by
means of a Laplace transform.*® Here our main
interest lies in an exact treatment of the long-
range character of the interaction potential. To
this end we first show that the grand partition
function Z ; of this system may be related to the
exponential of a Hamiltonian operator 3C (this
method is usually called transfer-matrix method
in the literature).

We first recall, that for a one-dimensional sys-
tem confined to a segment of length L and inter-
acting through the two-body potential (1.1) the
grand partition function is given by

«© N L XN
Z,=1+ z f dx f axy ...
G % . ¥ ) N-1

X foxzdx1 exp (—BC i e""‘i"‘f‘) , (2.1)

i>j=1
where z is the activity
z =(2mm/Bh2)/2 gr
of a system of particles of mass m and at a
chemical potential p. [B denotes the inverse
temperature 7,8 =(k;T)™"; ky, Boltzmann’s con-

stant; %, Planck’s constant.]
Consider now the following Hamiltonian

se=yct c = zetr it

Here ¢, c' are two Bose operators, defined by the
commutators [c,c']=1, [c,c]=[ct,c']=0, and  is

defined by
A = (Bc)l /2 .

Note that 3C is a non-Hermitian operator.
Splitting 3¢ into a free part 3¢, and an interaction
part 3¢,
3, =ycte,
iact

(2.2a)
30 ==zt gire (2.2b)
one may introduce an interaction picture through
0(x) = e3%%0 ¢ FCo*
for any operator O. The “time” evolution of the
Bose operators is thus
c(x)=ce""™, ct(x)=cter™,

[Note that c!(x) is not the Hermitian adjoint of c(x)
unless for x =0.] The commutator

[e@), ct(x?)]=e 1D

is essentially the interaction potential (1.1).
We now expand the operator exp(-L3C) in
the interaction picture representation

N=a

© L X
e LI =e-LIo <1+ Z(-—l)”f def Nde_l,_,
(1] o

X f;z d’fl ZCI(xN)JéI(xN-l)' . ‘?‘Cr(xx)) s

(2.3)

where
ch(x)____zenc (x)euc(x).

Formula (2.3) is already similar in structure to
the basic expression (2.1). Using the identity

eiretay) ginetzy ) pidetay ), o, @idet(xp) pidexp) piret ()

=eirt iy oty o), o oidet () gidetin) | L pidetay)

® exp (_xz L\!j [e(x,), c*(xj)]) for N=2,3,...

i>§=1

one may convert the time order in (2.3) into a
normal order in (c¢', ¢). If one finally takes the
expectation value in the unperturbed vacuum
state |vac) (c|vac)=0, (vac|vac)=1) one arrives
at the identity

(vac|eT¥vac)=2, (2.4)

which is the basic connection between the grand
partition function Z ; and the Hamiltonian 3¢. A
formula like (2.4) may also be given for higher
dimensions, the definition of 3¢ of course being
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modified. This is shown in the Appendix A.

We assume that there exists a complete set of
(discrete) eigenstates of 3¢. This assumption may
be difficult to justify rigorously, but the results
of the calculations presented in this work seem to
substantiate this hypothesis. We may then expand
the vacuum |vac) in this basis. In the thermody-
namic limit L -« we get the proportionality

Z e, (2.5)

where ¢, is the ground-state eigenvalue. (As 3¢
is a non-Hermitian operator, in general, com-
plex eigenvalues will occur, which ones may order
with increasing real part.)

Recalling the identities Z, =exp(-pQ) and Q=
-pL where Q(T, L, ) is the thermodynamic po-
tential and p the pressure we get from (2.5)

Bp==-¢€4- (2.63)
The particle density p is then obtained from

9
p=—2—¢,, (2.6b)

9z

where use has been made of the thermodynamic
relation p=Bz9p/8z. The elimination of z between
(2.6a) and (2.6b) yields the equation of state.

From Eq. (2.6a) we see that, for thermodynamic
reasons, the ground-state eigenvalue has to be
real and negative.

B. Correlation function

The two-particle correlation function g(x,, x,) is

defined by
N
Z NZ: Wi 2)'f dxjdx

X fol‘deexp (—B i v(x, -x,)) .

i>j=l

glx,,x,) ==

Applying the same procedure that yields the rela-
tion (2.4) one may show that g(x,,x,) can be ex-
pressed as

1
R (vac el X vac)

x (vac| e F-2 X0 g2 3050 01 K yac) |

where x,>x; is assumed.

Expanding again the vacuum state in terms of a
complete set of eigenstates of 3 one gets in the
limit L -« (thermodynamic limit) and x, =,

L - x, -~ (exclusion of boundary effects) the fol-
lowing formula:

1 1
800, %) =7 (T (Bolte |,

X e¥2=%1)%0 - 2.7)

|/,) and | g,) denote the “right” and “left” eigen-
states with ground-state eigenvalue €,. The dis-
tinction between left and right eigenstates is
necessary as ¥C is a non-Hermitian operator®;

We call a “right” eigenstate | f,) an eigenstate with
the property

sl =e,lf) (2.82)
whereas for a “left” eigenstate we have
(g,|3¢=¢€,(g,]| . (2.8b)

Inserting a complete set of states into the matrix
element of (2.7) we get

_l <g0I3(1|f )(g,,[JC, Ifo (ep=€g)r

5= ; EATAICATA R (2.9)
where 7 =x,—x,. This formula becomes particu-
larly useful for large distances » since one may
then truncate the series after the first excited
states.

The first term in (2.9) is equal to unity as one

may see from the identity

_ 0 (g 1517
P==Z 5z €, W (2.10)

which follows from (2.8a).

III. FORMULATION OF THE EIGENVALUE PROBLEM

In the preceding section we established the con-
nection between the grand partition function Z,,
and the Hamiltonian operator 3¢, which was ex-
pressed by two Bose operators ¢ and ¢'. In the
usual harmonic-oscillator representation the op-
erators ¢ and c' are represented as

=t (vl Cr_i( d )
ﬁ(y dy)’ —ﬁy_dy 3
and the vacuum state is
|vac)=n11; ez,
The eigenvalue problem (2.8a) is then written as .
dz? . ‘
[‘ ( a7ty —1) !exp[Z(ZBC)”Z]y] o) =€f(),

(3.1)
!
where ¢ is a rescaled activity
¢= zeBC/z .

Equation (3.1) is the eigenvalue equation for a har-
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monic oscillator with an exponential perturbation.
As the perturbation is bounded we impose on f(y)
the usual boundary conditions as for the harmonic
oscillator: f(y) must go to zero sufficiently fast
as y =+,

The equivalence between the solution of the
eigenvalue problem (3.1) and the evaluation of the
grand partition function for a classical system
with the interaction (1.1) has already been pointed
out by Baxter.* Baxter used a functional derivative
technique, which is particularly well suited for a
one-dimensional system. However, his method
may not be generalized to higher dimensions,
whereas our approach to the problem may also be
used in higher dimensions as is discussed in
Appendix A. :

The harmonic-oscillator representation (3.1)
of the eigenvalue problem is most easily solved by
perturbative methods in the high-temperature re-
gion (8-~ 0), because then the coupling constant ¢
of the perturbation —¢ exp[i(28C)/2y] is not too
large and the exponential oscillates slowly (Sec.
v).

In the physically more interesting low-tempera-
ture region (8- «) the situation is reversed (large
coupling constant and rapid oscillations) and per-
turbative methods fail to give satisfactory results.
In this temperature region the eigenvalue problem
may be solved by transforming (3.1) into a linear
differential-difference equation. This can be ac-
complished by a similarity transformation. De-
fine a transformed wave function ¢(y) by

p()=ee¥2 [ dtexpli(260) /2yt]e¥2(0) (3.22)

or formally

ley=T|f). (3.2b)

The operators ¢ and ¢’ are then transformed into

1 d

C— W a’- s (3 .33.)
& ~i(BC)1 2y, (3.3b)

and Eq. (3.1) becomes
d -BCy, -
vy@«J(y)—ze p(y+1)=€p(y). (3.4)

The eigenvalue condition is now that ¢(y) is a
Taylor-expandable function at the origin.* This
can be seen easily from (3.2), since all deriva-
tives of ¢(y) are finite because of the boundary
conditions on f(¢).

IV. HIGH-TEMPERATURE REGION

For the solution of the eigenvalue problem in the
high-temperature region we adapt a method which
was first applied by Gotze'° to the anharmonic-
oscillator problem. In this method one expands
the resolvent of the Hamiltonian 3 in a continued
fraction [where we use the harmonic-oscillator
representation for 3¢, see Eq. (3.1)]. The only
serious work to be done is the calculation of the
moments Cy = (vac |5 |vac) W=0,1,2,...), which
determine the coefficients of the continued frac-
tion. We calculated up to 30 moments, this is
equivalent to a [14, 15]-Padé-approximant for the
resolvent. The details of the numerical calcula-
tions are described in Ref. 11. Satisfactory con-
vergence is obtained in a temperature region down
to 7=(8C)*=0.5. The ground-state eigenvalue €
as a function of the activity z for different tem-
peratures is shown in Fig. 1 (solid curves). For
very high temperatures the isotherms approach
smoothly the ideal gas limit: €,=-z.

In order to get analytical insight into the struc-
ture of the solution in the high-temperature region
it is suggestive to expand the exponential in (3.1)
up to terms of second order in y (harmonic ap-
proximation). The eigenvalue equation then be-
comes

€ 1 N
0, N
% Me
\\\\\ o
o5l \\\\::\\<T\=005 |
T~ T
F=01 ———
/T=05
_10 -
T=1
_T=10
-15} &
-20 — : .
0o 1 2 3 __ 4
Z/?

FIG. 1. Ground-state eigenvalue € as a function of the
activity z for different temperatures T = (8C)"!. The
broken curves are obtained by numerical integration of
the low-temperature formula (5.4). The solid curves

" were calculated by numerical solution of the eigenvalue

equation (3.1) (high-temperature region).
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L(-Z (1+2BCE/7) ¥
EY(—W'*‘ + 7)Yy

_iz(zsc>”2;/y-9 —¢ fy)=€A().

After a shift and scaling transformation one read-
ily reads off the harmonic-oscillator spectrum

€, =ywln+ z)—z7’+7w(§/ﬂ -&
n=0,1,2,...

where the frequency w is given by

w=(1+2BC¢/7)*/2.

In particular for the ground-state energy we get

. c
€ =371 +2BCEL/ V2 -5y +y -I—;Z'TQW;(UY)Z -Z.

(4.1)

Equation (4.1) is for 7=10 and z/y =3 up to 10~ in
agreement with the numerical result.

We will now discuss the equation of state in the
high- and low-density regime, still keeping the
temperature at some fixed but high value.

Low densities correspond to small ¢ and we
thus expand (4.1) up to terms of second order in ¢

€, ~-£(1 -3BC)+BC(1 - $8C)¢*/y for ¢ small

which by the use of (2.6) gives the approximate
equation of state

LBC1- BC/4
B Pt wrsc/oR” 2

In the limit of a very long range but very weak in-
teraction (y -0,C=qay, a>0) Eq. (4.2) reduces to

Bp = p+Bap?

which is identical to the virial expansion in this
limit.'213

If one increases the density of the system, one
expects that the particles “experience” mainly
the short-range part of the interaction potential

v(x-x")=Cexp(-y|x=x"|)=C=Cy|x—x*|£+e-

which is up to a constant just the interaction poten-
tial of a one-dimensional system of particles with

_ charges of equal—say negative—sign. The one-
dimensional electron gas immersed in a positively
charged uniform background has been treated by
Baxter® and it is interesting to compare his re-
sults with ours in the high-density limit (i.e.,
large values of ¢). For {—<« the ground-state
eigenvalue (4.1) behaves as

€, ~3y(2BCL/Y)/2 -4 for ¢ large

which by the use of (2.6) yields

Bp ~p—3(yBC)/3p/2, (4.3)

where constant terms and terms of the order of
p™/2 have been neglected.

The term linear in p reflects, as in (4.2), the
ideal-gas behavior, typical for the high-tempera-
ture region. Equation (4.3) is essentially Baxter’s
high-temperature result for the electron gas with
uniform background.’ There is a difference by a
factor of 2, which is a consequence of the absence
of the positive background in our system.

For the correlation function we have to evaluate
the matrix element in (2.7). All quantities (ground-
state eigenvalue and wave function) are known ex-
plicitly within the high-temperature or harmonic-~
oscillator approximation. In calculating the
matrix element one has to take care of the fact
that the “left” eigenfunction |g,) is just the com-
plex conjugate of the “right” eigenfunction | M)

lg.)=1F.0* . (4.4)

A straightforward calculation then yields the
following expression for the correlation function

g(r)=1-(2%/p*)BCe"" (4.5)

where v =x, - x;. Only terms up to linear order in
B have been kept.

The relation (4.4) is a consequence of the special
symmetry

et =5e*

[see Eq. (3.1)]. A further symmetry of 3¢ under
parity transformations P is

Jex =P3CPt .

Equation (4.5) gives the correct asymptotic
behavior g(r) -1 for » —«. For very high tem-
peratures g(v) approaches the ideal-gas limit
g(r)=1 for all . By lowering the temperature
the effect of the repulsive potential shows up with
a finite dip of the correlation function at » ~0.
The spatial extent of this dip is given by the range

-1 of the potential as it is physically expected.

V. LOW-TEMPERATURE REGION

As already pointed out in Sec. II, in the low-
temperature region one has to use the differen-
tial-difference equation (3.4) as the starting point
of the calculation.

For y -« the exponential perturbation in (3.4) is
negligible and one easily reads off the asymptotic
solution as

@(y)=y¢’" for y—o (5.1)

After a simple algebraic manipulation (3.4) may
be written as
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d
vy e(9) =@ /r)et (v +1).

Integrating this equation from some finite (posi-
tive) value of y up to infinity one gets

@() =ye”(1—sj-dte'“‘t'e’“(p(n 1)) ,  (5.2)
y

where the asymptotic form of ¢(y) has been used.

Thus ¢(y) is determined by the values of ¢(¢) in
the interval [y+1, «]. Asthe asymptotic form of
¢(t) is known, Eq. (5.2) yields a unique wave func-
tion ¢(¥),"* which depends on the parameters ¢,
z, and B. In general, for € <0, the function ¢(y)
thus determined will not be a Taylor-expandable
function at the origin since the factor y¢/? in front
of (5.2) produces a divergence. This divergence
will be suppressed if we demand that the expres-
sion in the large parentheses vanishes as y - 0.
Hence the eigenvalue condition that ¢(y) is a
Taylor-expandable function at the origin may be
expressed as

1"-§fwdte-scft"”'lcp(t+ 1)=0. (5.3)
o

Thus for a given z and 8 one has to find an € such
that the wave function ¢(y), given uniquely by
(5.2), satisfies the eigenvalue condition (5.3).

So far no use has been made of the fact that we
are considering the low-temperature region
B—. Equations (5.2) and (5.3) are just an alter-
native way of expressing the eigenvalue problem
(3.1). But the eigenvalue condition (5.3) becomes
extremely simplified for large values of 8.

For very low temperatures (8 —«) the exponen-
tial factor in (3.4) decreases very fast, thus the
region around y =1 already belongs to the asymp-
totic regime and one may replace ¢(f+1) in the
integrand of (5.3) by its asymptotic form. The
eigenvalue condition is then

ﬁ;=f dt e-BCtt-e/r-l.(l +t)e/7_ (5.4)
0

The definite integral may be expressed by a con-
fluent hypergeometric function—usually denoted by
U(a, b,x)—which is closely related to Whittaker’s
function [see Ref. 15, Eq. (13.2.5)]

1/(z/y)=T(-€/y)U(-€/y,1,BC), (5.5)

where I'(a) is the gamma function.

Although the integral representation that leads
from (5.4) to (5.5) holds only for € <0, Eq. (5.5)
may be analytically continued such that it holds
for all €. Equation (5.5) is then a simple trans-

cendental equation, which determines the whole
spectrum of the Hamiltonian 3C.

The ground-state eigenvalue €, as a function of
z calculated from (5.4) by numerical integration
is shown in Fig. 1 (broken curves).

By means of (2.6) one gets from (5.5) the equa-
tion of state

p/y ==(#(a) + 5= Inl(a, 1, O™

where P(a) is the digamma function and a=-¢,/y.

In order to get an idea of the dependence of the
right-hand side of (5.5) on € we use the asymp-
totic form of U(a,b,x) for large argument

U(a,b,x)=~x" (5.6)
[see Ref. 15, Eq. (13.1.8)] which gives
1/(z/y) =T(-€/y)(BC)*' . (5.7

Equation (5.7) is valid for C large and € /y finite.
As will be seen later, in this approximation only
next-neighbor interactions are taken into account.
The right-hand side of (5.7) is shown in Fig. 2.
As z-0, the roots of (5.7) are essentially deter-
mined by the poles of the gamma function and one
recovers the harmonic-oscillator spectrum:
€,=ny (n=0,1,2,...). Further one sees that
there is always one negative real solution €5,
whereas the excited states eventually go into the
complex plane, if one increases 2. If we remem-
ber that large values of z correspond to high den-
sities this gives the physically reasonable picture

]
|
|
1
1
170 _ !
: T=005| |
|
| %
I
[}
i
165 1 i u
i 1
| |
I 1
* * 4
I i
! I L
! I /2/7
1 T
| |
: I
l |
! !
¥ z ¥
] I
| |
| |
| |
! |
[ |
! 1
] ]
B 0 -
5/1

FIG. 2. Function I'(-€/7)(8C)¢/* for T = (8C)1=0.05.
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that for high densities there occur complex eigen-
values giving rise to oscillations in the correla-
tion function, which are typical for a fluid [see
Eq. (2.9)].

A. Crystal limit of the equation of state

For T -0 we expect on physical grounds the
system-to be close to the crystalline state. It is
interesting to see whether this limit is contained
in our formulas.

Recalling that for the ground state € =¢,=~fp
we see that we have to consider the asymptotic
form of (5.5), where both BC and € are large (of
the order B), We thus go back to the integral re-
presentation (5.4) and put it into the form

1/(3/7) =I(a) )
where
a=pp/ly=—€,/y

and the integral I(a) is written as
=dt
Ka)= [ "G expl-F(t,a)] (5.8)
V]

with
F(t,a)=BCt - alnft/(1+1)].
The equation of state is obtained by taking the
logarithmatic derivative of I(a) [see Eq. (2.6)],
1 3
=——Inl(a). 5.9
575 =50 1(@ (5.9)

Applying the saddle-point method to I(a) as well
as to 8I(a)/9a and keeping all terms up to 1/8 we
get

1 1 28, +41,+1
-57)7—]1[[(1 +t0)/to]+'mj —to(l +t0)(2t0+1)2 s (5.10)

where £, is a function of the pressure and to be
determined by the positive root of the saddle-point
condition F’(t,,a)=0,

a/BC=ty(1+1,). (5.11)

Equations (5.10) and (5.11) give a parametric re-
presentation of the equation of state, #, being the
parameter.

In a zero order approximation we neglect the
second term in (5.10) which gives

1 =/ /(1 e?/?). (5.12)

Inserting the zero-order value of #, in (5.11) one
obtains the equation of state

p(b)/.y =Ce~ /p/(l —e/e)2

This is juSt the zero-temperature pressure of a

linear chain of particles separated by the lattice
constant 1/p and interacting via the exponential
repulsion (1.1)

In a first approximation—for given density p—
we linearize (5.10).and (5.11) at the value £{’
found in the zeroth approximation. We then find

er/e 1 2807444041
1) = 20 0
POy =Ca—rpt T

The second term in (5.13) is just the Griineisen

correction'® to the zero-temperature equation of

state. This correction arises as a consequence of

the vibrations of the particles about their equi-

librium positions in the chain. '
For high densities £{>’~p/y, we thus get

Py ~C(p/y?+(1/2B)p/y for plarge. (5.14)

The second term coincides with the leading term
in Baxter’s low-temperature equation of state for
the one-dimensional electron gas with a positive
uniform background.’ This is reasonable since
for high densities the particles are subject only
to the short-range part of the interaction which is
like the one-dimensional Coulombic interaction
considered by Baxter (see Sec. IV). Thus the
second term in (5.14) is due to plasma oscilla-
tions. The first term is absent in Baxter’s equa-
tion because of the uniform background which
compensates the pressure due to the repulsion of
the electron gas.

For low densities essentially only the next-
neighbor interaction is relevant. From (5.12) we
have #{*’~e~"/® and we get

(5.13)

pWfy=Ce?°+1/28 for p small. . (5.15)

The first term is the zero-point pressure of a
linear chain with the interaction (1.1) restricted
to next neighbors. The second term is the ap-
propriate Griineisen correction.

Equation (5.15) could have been obtained directly
from (5.7) by using Stirling’s formula for the
gamma function. This shows that the approxima-
tion (5.6) essentially takes only next-neighbor
interaction into account.

B. Correlation function

In the preceding paragraph we concluded from a
discussion of the equation of state that the system
behaves almost like a crystal in the limit 7'~ 0.
More detailed information about the structure of
the system is of course obtained from the correla-
tion function g(»). The Laplace transform of g(r)
is defined by

g(s)= J: dte=g(v).
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Then Z(s) may be calculated using the same methods already described in this section, The details of the

calculation are given in Appendix B. The result is

1z T(-€,/y+s/y)U(-€,/y +s/y, 1+s/y,BC) U(—€,/y,1=5s/y,BC) )

&(s)=

Although (5.16) looks a little bit complicated it may

be easily discussed for small s. We note that for
s =0 the denominator vanishes as a consequence
of the eigenvalue condition (5.5). We write —€,/y
=a and expand the denominator up to first order
ins

1-(z/¥)T(a+s/y)U(a+s/y,1,8C)
z d
2_7—: %I(a)s/y —es

with
Ka)=T(a)U(a,1,BC).
We then get
Z(s)=~1/s for s—0, (5.17)

where use has been made of (5.9). This shows
that g(v)~1 for large », hence Eq. (5.16) yields
the correct asymptotic behavior for g(7).
Equation (5.17) is the first term of a power
series expansion of g(s) at s =0. Let us see,
whether also the constant term after the 1/s sin-
gularity is given correctly by (5.16). To this
end we recall the general relation between the
structure factor S(k) and the isothermal compres-
sibility x, (see, for example, Ref. 17)

S(k=0)=(o/B)Xr- (5.18)
S(k) is defined by

S(k) =p f Tar e g(r) - 1]+1 (5.19)

and x , is given by

. 8
i =o(32),

From (5.19) it follows that
S(k)=pl 2(ik +n) +2(—ik+n) - 276(k) ] +1;
n-0*. (5.20)

The 1/s singularity in Z(s) is just compensated by
the delta function in (5.20). Expanding g(s) up to
the constant term and using (5.9) we get

S(k=0) =($)z-;-;§ln1(a) )

07 1=z W)X (=€,/y +s ¥ )U(=€,/y +s /v, 1, BC)

U(-¢€,/v,1,BC) (5.16)

r

On the other hand, by differentiating (5.9) with
respect to p, thereby using a=pp/y and the de-
finition of x, we get

Xr =(t3p/~/"‘):—;ln1(a), (5.21)

which shows that the general relation (5.18) is
satisfied.

The isothermal compressibility may also be
calculated explicitly by means of the saddle-point
method described above. From (5.21) one gets

A S
X1=Y2C 3 A+ 1)@, + 1)’

where Z, is determined by (5.11).

Finally we want to give an expression for g(»).
By applying the inverse Laplace transform on
(5.16) we have to calculate the poles and the resi-
dues of e%"z(s). The poles are given by the roots
of :

1 =(z/7)r("€o/7 +S/Y)U(—€o/7 +S/Y, I’BC)9
(5.22)

which is essentially the eigenvalue condition (5.5).
Thus the poles s, are related to the eigenvalues
€, by

Sp=i=(€, =€) «

Therefore one recovers the general structure of
the correlation function as given in (2.9):

gr) = Z e-(n-¢0)TRes| 2(s),s,]. (5.23)

Let us discuss the eigenvalue spectrum deter-
mined by the roots.of (5.22) in more detail. By

- taking the logarithm we get

~In(z /y) +2min
=In[[(~€, /v +s/v)U(~€,/y +s/v,1,B8C)]
(n=0,+1,+2,...). (5.24)

Expansion of the right-hand side with respect to
s yields

2min==(1/p)s +(1/2Bp)x 752 .

In the zero-temperature limit the poles are purely
imaginary: s,=2wipn. For finite but very small
values of T the line of poles bends into the nega-
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FIG. 3. Eigenvalue spectrum in the low-temperature
region.

tive halfplane (see Fig. 3) and the spectrum is ap-
proximately given by

2 2
s,=2mipn - 2T X182 . for n=0,41,42, ... . (5.25)
Since €,=-Bp becomes large as f—~~ whereas s,
is to zero order independent of B, the expansion
of (5.24) in powers of s is justified.

The real part of s, gives rise to a damping in the
correlation function whereas the imaginary part
produces oscillations of wavelength 1/p [see Eq.
(5.23)]. As x, is independent of the temperature,
the damping becomes negligibly small as g,
which shows that the system behaves almost like a
crystal in this limit.

The residues of &(s) are in zero-order approxi-
mation in 1/8 all equal to unity, independent of s,.
Hence -

= Tes .

Using the approximate Eq. (5.25) for the s, we
get

~

g()= i €, cos(2mnpr)(e -2r%6oryn? (5.26)

n=0

where a dimensionless damping constant

6=(1/B)xrp

has been introduced (€, are Neuman’s symbols
=1, €,=2 for n=1,2,...). Equation (5.26) may
be expressed by an elliptic theta function'®

&(r)="9,(p7, 2widpr). (5.27)

Using the identity!®

1 T\1/2
33(_7:__.,_7) = (z—) e"‘2/783(§,7)

we may write (5.27) in the more convenient form
—- 1 -or /28 i i
8= @nopry 7z © % (— 216 ’ 21r6p7)
or explicitly

g("’)=—-——7—(2115;r)1 ze /N €, cosh(n/5)e™"" /207,

n=0
The nth term in this sum is an almost Gaussian
function, which has a maximum approximately at
the “lattice” sites 7,=n1/p and a width proportion-
alto om (n=1,2,...). A similar expression has
been obtained by Unger'® who considered a para-
bolic interaction restricted to next neighbors.

VI. TONKS-GAS LIMIT

Although we are mainly interested in the effect
of the long-range character of the interparticle in-
teraction, it is interesting to see whether we can
reproduce known results for a one-dimensional
next-neighbor gas within a particular limiting
form of the interaction (1.1). To this end we set

C=Cge™, >0

and consider the limit y - «, that is we fix the in-
teraction potential at x=b and then use the limit of
an infinitely fast decrease of the exponential func-
tion over a width 1/y. In this limit the interaction
behaves like a hard-core interaction

© for |x|<b

v(x)={
0 for |x|>b

and we should recover the hard-core equation of
state, first derived by Tonks in 1936.5 (We. call
this Tonks-gas limit.)

We first note that the parameter C always ap-
peared in the combination SC in our equations.
Thus the limit C - « is formally similar to the
limit BC -« and we may use the low-temperature
formula (5.7) as a starting point of our discussion.
As v becomes large, whereas € remains finite, we
may replace I'(-€/y) by (-€/¥)"*. Finally taking
the limit y - < we get

1/z=~(1/€)expeb,
which by means of (2.6) yields the Tonks equation
of state

Bp=p/(1 - bp). (6.1)

For the calculation of the correlation function
we start with Eq. (5.16) for the Laplace trans-
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"form £(s). The functions U(a, b, x) appearing in
(5.16) may be replaced by the simple power de-
pendence (5.6), since BC becomes large

s(s)= L 2 __(BOYe/sI"T(~ eo/y+5/7)
T ¥ T (/) BCYTT ST (=€, fy+5/7)

(6.2)

We note that
H(s)=(1/7)(BC)%0/7"/"T(=¢,/v + 5 /7)
is just the Laplace transform of
g (r) =e‘o" exp(~pCe™"") ;

By expanding (6.2) into a geometric series we re-
cover the exact expression for the correlation
function of a one-dimensional gas, where the in-
teraction »(¥)=Ce""" is restricted to next neigh-
bors.”? g(r) may then be written as a sum of
convolutions

g(r)=% {g‘°’(r)+ z fo " g (r=r)g O )+ }
(6.3)
Finally taking the Tonks-limit we get
2O #)=9(r — b)eto” for y— o

[€,=-Bp is given for the Tonks gas in (6.1), 9(x)
is the step function.] Equation (6.3) then yields
the well-known result for the correlation function
of a ohe-dimensional hard-core system.”

VII. CONCLUSION

In this work we give a complete discussion of
the equation of state and the correlation function
for a one-dimensional classical system with a
long-range interaction. The mathematics is es-
sentially reduced to the solution of a non-Hermi-
tian eigenvalue problem, which we solve analyti-
cally in the high- and low-temperature region, re-
spectively. Although the non-Hermiticity of the
problem causes some mathematical difficulties the
discussion of the correlation function becomes
very transparent with the occurrence of complex
eigenvalues: the imaginary part of the excited
eigenvalues give rise to typical oscillations in the
correlation function which are difficult to obtain
otherwise.

We show that in the limit of large densities the
short distance Coulombic nature of the potential
(1.1) essentially determines the thermodynamic
behavior of the system. By an appropriate choice
of the parameters C and y contained in the poten-
~ tial (1.1) we are able to recover all known results
for a one-dimensional hard-core gas (Tonks gas).
Thus physically quite different systems can be

described by our equations.

In the zero-temperature limit we can study ex-
plicitly the appearance of an almost crystalline
structure.
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APPENDIX A

In order to calculate the grand partition function
of a two-dimensional classical system one con-
siders the Hamiltonian

50 = E w,CIC, - Z dey exp[iVBC y)]
% o]
x exp [%/BC(Y)],
where
w, = (B2 + 212

and C(y) is given by

C(y)= 2—77)1/2 1 et
M\T) Laeyree™

Ct(y)=[C(]".
Periodic boundary conditions are assumed such
that

k=Q2n/L)n, n=0,%1,£2 ...

The operators ¢, and ¢, satisfy the usual commu-
tation relation

[Ck, CL]= Op, pes [Ck, Ck'] = [Cz, C;r] =0,

where 6, ,, is the Kronecker symbol.

Introducing a “time” variable x via the interac-
tion picture and using the same procedure as in
Sec. II one gets

(vac|e-t®’ [vac)=Z2,,

where
w N AL L L
zG=me def dyN'“f dx,
N=0 o (o] (4]
L N oL
xj dy, exp (—B Ev(x;—x,))
o

>J=1
is the grand partition function of a two-dimension-
al system confined to a square of area L? and in-
teracting via the repulsive potential

'U(Ii l) =Ko(')/(x2 +y2)1 /2).
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[Ko(g) is the modified Bessel function of zero or-
der.]

The generalization to three dimensions gives the
partition function with a Yukawa interaction poten-
tial.

The above stated connections serve as specific
examples of the well-known fact?!:22 that an n-di-
mensional system in classical statistical mechan-
ics is equivalent to a z-dimensional Euclidean
quantum field theory.

APPENDIX B

For the calculation of g(7) we take the Laplace
transform of (2.9)

sy L 1 (gl 1 f)(8, 15,1 o)
£6)=z ;s+ €, - € JL(g,,tlf,)(golfcj - B

In order to perform the sum over intermediate
states we use a trick originally due to Dalgarno
and Lewis.?®?* To this end we consider the inho-
mogeneous equation

(s+3C—€,) | F =% | fo) (B2)

to be solved, where |f,) denotes the ground-state
eigenfunction of . By formally solving for |F)

1
s, ulfo

we then easily derive form (B1), L

|E)

S

S(s)e L 1
£5)=3 (gol3e,|F ) CATAR - (B3)

Thus, if one knows the solution |F) of the inho-
mogeneous equation (B2), one has only to calculate
the matrix element (g, |¥,|F,) in order to obtain
£(s). ' ‘

In the low-temperature region Eq. (B2) is most
easily solved after applying the similarity trans-
formation (3.2). Equation (B2) then reads

(swy% - eo) $o(9) —2675%% (y+1)
=—ze 8% (y+1), (B4)

where

lo)=T|FY, |o=T|fy.

For y -« the asymptotic solution of (B4) is given
by

¢s(3’) ocy(eo-s) /1.

Therefore ¢( ) is proportional to some power of y
which is essentially the same dependence as in

Eq. (5.1) for the asymptotic solution of the homo-
geneous equation. But as we are dealing here with

the inhomogeneous equation (B2) we may not take
the constant of proportionality to be 1 as in (5.1),
rather we have to put

P(¥)=A(s)ytcoms)/7 (B5)

and determine the amplitude A(s) self-consistently.
Applying the same procedure which leads to
(5.3) we get

bs(y)=y o=/ (A(s) -—i— Jw dte~BCty=(eg=s) /=1

¥

X[ps(t+ 1) = @q(t+ 1)]).

(B6)

Again—in the low-temperature region—we may
replace ¢ (t+1) and ¢ (¢+ 1) by their asymptotic
forms (B5) and (5.1). Analogous to the argument
in Sec. V, A(s) is then determined by the require-
ment that the large parentheses in (B6) vanishes
for y=0. This condition yields

T(-€/v+s/7)U(=€/v+5/v,1+5s/y,BC)
1 - (2/7)T(=€,/v+s/7)U(-€,/v+5s/v, 1, BC)’

A(s)=%

where all definite integrals have been expressed
by the confluent hypergeometric function U(a, b, x)
[see Ref. 15, Eq. (13.2.5)]. Thus the asymptotic
solution (B5) is known explicitly.

In order to calculate the matrix element
(golffC, |Fs) we use only the asymptotic expressions
for the wave function. This may, at first sight,
look like a crude approximation. But we must re-
member that the operator 3C; shifts the arguments
of the left and the right wave function by 1 [see
Egs. (2.2b) and (3.3a)]. Hence, as the argument 1
already belongs to the asymptotic regime, it is
sufficient to use the asymptotic form of the wave
functions.

By means of (3.2) and (3.3b) we get from (B5),

t e /r=sly ’
c > ° |vac)  (B7)

1
|F3>= 771/4A(s) (i(BC)”z

and from (5.1) taking into account the relation
(4.4),

(8ol =17 (vac|[c/i(BOI 2], (88)

Equations (B7).and (B8) are not well defined as
they stand. This difficulty could have been avoid-
ed if we would have used polynomial expressions
for the wave functions instead of the asymptotic
formulas. For the time being (B7) and (B8) may
be looked upon as formal equations, which simpli-
fy the calculation. The final result, of course,
will be well defined. The matrix element is then
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€lr
(g,OIGCIlF.Q: ‘{—A (s)(vacl (Z(Bc)l/z)

x exp [#(BC)'/2ct] exp[i(BC)! /2]
ct eg/r=sly
“(ggyr) b

(Y2
=_FA(S)(vacI<W+ 1)
t eg/r=s/y
x(z(—‘;é)—”5+l) ° | vac).

By formally expanding into a binomial series one
gets

(gol9¢; | F = - fi A(s) i (— 515)"-7;1,— (=€o/7)n
X (~€,/v+8/V)n,

(B9)

where (a),=a(@+1)+++(a+n~-1) is Pochhamer’s
symbol. Equation (B9) represents a divergent
series. The series is Borel summable and may
again be expressed by the hypergeometric function
U(a, b, x). One finally gets

(20|37 |F )= — (e /N JASNBCY to/ 17

X U(—€,/v+s/v,1+5s/v,BC).

[This is most easily seen, if one expands the inte-
gral representation for U(a, b, x),

U(a,b,x)=—f%a?) fo dte~*t =114 f)pmat

in a formal series in £.]

The calculation of the normalization (g,|f,) in
(B3) is achieved by the same methods with the use
of (2.10). The resulting expression for £(s) is
then

T(—€o/y+s/y)U(-€/v+s/v,1+s/y,BC) U(-€y/y,1~s/v,BC)

-,y 12z
g(s)_; ; 1 (Z/V)T (=€, /7 + s/‘)/)U(—EO/'Y+S/'Yy1, BC)

U(-¢,/7,1,BC) :
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