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This paper reports a theoretical treatment of the line shape for two-photon transitions. The time-dependent
perturbation-theory treatment is equally appropriate for a fast atomic beam. interacting with a microwave
field in a waveguide, and for laser excitation of a thermal beam. Two important features of the physical
systems are successfully incorporated into the theory. First, the amplitude of the external field to which the
atoms are exposed varies in time; the envelope function affects the resonance linewidth and power shift.
Second, the theory includes the natural decay of the atomic states; the. decay amplitude produces a novel
"lifetime shift, " which displaces the two-photon resonance from its expected location, even in the limit of
weak external fields. This paper gives detailed predictions 'for shifts and otherdistortionscaUsed by
nonidealities of the experimental apparatus used for the measurement of the 3 S»,-3 D„, transition in atomic
hydrogen.

I. INTRODUCTION

The study of radio-frequency. transitions among
the fine-structure levels of hydrogen, begun with
thermal hydrogen beams by Lamb and co-workers
three decades ago, entered a new domain with the
introduction of the fast-atomic-beam method. ' The
fast-atomic-beam technique made it possible to
make beam measurements on atoms in the higher
excited states and to use Ramsey's separated
oscillatory field technique to obtain resonance
lines whose widths are less than the natural
linewidths. The recently reported measurements
of the Lamb shift in the n= 2 state of hydrogen
demonstrate the power of this technique. "

This paper and the succeeding paper report a
second method that uses multiple-quantum transi-

-tions for improved measurements of the fine-
structure intervals in atomic hydrogen which is
made possible through the use of fast atomic
beams. 4 This technique has been used to measure
the 'S», -'D, &, fine-structure interval in the n=3
state of atomic hydrogen through a two-photon
transition. This paper reports the theoretical
treatment of the line shape; the succeeding pyper
reports the details of the measurement of this
transition.

The motivation for the multiple-quantum techni-
que came from the empirical observation that the
precision of a spectroscopy experiment tends ulti-
mately to be limited to some fraction of the ex-
perimental linewidth, and this limit is due as much
to systematic errors as to statistical errors. The
separated oscillatory fields technique reduces the
linewidth at the cost of signal size; the multiple-
quantum technique makes available transitions with
a smaller natural linewidth.

As an example, consider the fine structure of the
n= 3 level of hydrogen. The conventi, onal 3'S, i,-

3'P, i, Lamb-shift resonance has a natural line-
width of 30 MHz, which is determined by the 5.4-
nsec lifetime of the 3P state. By contrast, the
3 'S,&,-3'D, &, double-quantum resonance has a
linewidth of 10 MHz, since the 3D state has a
lifetime 3 times longer than that of the 3P state.
Since both resonances indirectly measure the
energy of the 3S state (which contains most oi the
radiative corrections), an improvement in ac-
curacy by a factor of 3 would be expected for the
double-quantum measurement over the conven-
tional Lamb-shift transition.

Before the promise of this approach can be
realized, however, two obstacles must be over-
come. One must first arrange to observe a mul-
tiple-quantum transition under conditions of good
signal-to-noise ratio and in a "clean, " well-under-
stood environment, . The experiment by which this
goal was attained is outlined in Sec. II of this pa-
per, and described in detail in the following pa-
per. The second requirement is a sufficiently de-
tailed theoretical understanding of the multiple-
quantum line shape such that the line can be "split"
to a small fraction of its width. This is the subject
of this paper. The results of this analysis are
combined with the experimental data in the con-
cluding sections of the foQowing paper, where the
result for the 3'S,&,-3 D5(2 interval is presented.

In addition to its immediate usefulness in re-
ducing the data of the following paper, the theoreti-
cal results of this paper have general applicability
to multiphoton experiments. The formalism used
is especially suited to beam experiments wherein
state preparation, interrogation, and detection are
resolved in time, and it can be applied to laser
as well as microwave transitions.

Before embarking on the calculations, it is in-
structive to compare these techniques with other
theoretical approaches to multiphoton transitions.
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For a Hamiltonian periodic in time, one can apply
the techniques of Shirley' to multiple-quantum
transitions. In this approach, the 3'S, /, -3 D5/2
transition may be viewed as a level crossing, as
the microwave frequency is varied, between the
atom-field product states of 3$ plus one photon
and 3D minus one photon. Salwen' has developed
a useful variation of time- independent perturbation
theory which reduces the multiple-quantum transi-
tion to an effective two-level problem. When com-
bined with Shirley's techniques, many of the fea-
tures of multiple-quantum transitions, such as the
power shift, emerge in a simple manner. We
have not used these techniques, however, in
analyzing this experiment. The reason is that the
Hamiltonian is not purely periodic, since the am-
plitude of the oscillating microwave field is itself
varying in time. This envelope function has dis-
tinct and nontrivial consequences, and cannot be
handled by these theoretical treatments. Our
formalism is well suited to handle general en-
velope functions, such as the Gaussian envelope
characteristic of laser fields.

A second feature of the atomic system for which
the theory must account is the spontaneous decay
of the atomic states. We have incorporated this
by using the Bethe-Lamb prescription; this gives
a non-Hermitian Hamiltonian and a nonunitary
evolution operator.

The contents of this paper are as follows: Sec-
tion II presents a simplified picture of the experi-
ment in order to specify the requirements of the
theory; Sec. III outlines the general formalism;
.Sec. IV introduces the time-dependent perturba-
tion theory (TDPT) used for computation. In Sec.
V we present the effective potential approximation,
which greatly simplifies the calculation of multi-
ple-quantum processes. We discuss in Secs. VI
and VII the lifetime shift and power shift for the
two-photon resonance. In Sec. VIII, the saturation
behavior of the two-photon resonance is considered,
and in Sec. IX we consider the small corrections
required by nonidealities in the experimental situ-
ation. Section X summarizes our findings with a
view toward analysis of the 3'S,/, -O'D, /, transi-
tion in atomic hydrogen.

II. REQUIREMENTS FOR THE THEORY

One of the goals of this paper is to provide the
theoretical machinery necessary to analyze and
understand the fast-beam measurements of the
3 'S, /, -3 'D, /, transition. Consequently we review
here those features of the experimental apparatus
which are relevant to the theory. The apparatus
is outlined schematically in Fig. 1.

The study of the 3'Sz/2 3 D5/g transition starts

PRODUCTION = INTERROGATION = SELECTION = DETECTION

FIG. 1. Schematic diagram of the experimental appa-
ratus used to investigate two-photon transitions.

in the region labeled "production, " where a beam
of atoms in the 3S state is formed by charge-ex-
change collisions with a fast ion beam. In the
"interrogation" region, the atoms in the 3S state
pass through a waveguide, which conducts micro-
waves perpendicular to the direction of the atomic
beam, and undergo the two-photon transitions of
interest. Subsequently, the beam passes through
a "selection" region, which, through transitions
to the 3P state, eliminates atoms in the F= 1 hy-
perfine level of the 3S state, but which has little
effect on the atoms in the E=O state. Finally, in
the "detection" region a photomultiplier monitors
the 3'S,t,(F=O) population by the detection of Bal-
mer o-'photons emitted in the spontaneous decay
of 3S states. The 3P and 3D states formed in the
charge-exchange process decay before they can
travel to the photomultiplier tube, so that the pho-
tomultiplier signal is due primarily to the
3'S», (F=,O) states. Thus what is needed is a de-
tailed theory of the probability for atoms in
3'S, t, (F=0) states to pass through the waveguide
region.

To a good approximation, the waveguide can be
characterized as a region of electric field,

E(t) =zE sin(wt/T) cos(~t+ 6),

where an individual atom is inside the waveguide
for O &t & T. Refinements having to do with mag-
netic fields, stray polarizations of the microwave
field, etc. , are discussed in Sec. IX. Since the
atomic beam is nearly monoenergetic, the use of
a single transit time T for all the atoms is justi-
fied. However, atoms enter the waveguide at ran-
dom times, so the transmission probabilities must
eventually be averaged over 5, the phase of the
field when the atom enters.

We expect a resonant decrease in the 3'S, t,(F=0)
transmission probability as & is scanned through
the region

M(o=E(3'D, t,(F=2))- E(3'S»,(F=0)).
The center of the resonance is located by sampling
the signal at six points on the resonance line
shape, which are symmetrically spaced about the
center of the resonance.

Hereafter we use units ir- which 0 = 1, but leave
0's in place on occasion for mnemonic purposes.
We also choose for quantization axis the z direc-
tion, the direction of polarization of the electric
field in the waveguide.



THE 3 SI(2 -3 D~i2 INTERVAL IN ATOMIC. . . . I. 789

III. THEORETICAL FORMALISM

To calculate the transmission probability for a
hydrogen atom in the 3~S,/, (E='0) state to pass
through the region of electric field described by
Eq. (l), we need the matrix elements of the evolu-
tion operator corresponding to the Hamiltonian

X=X,—e E(t) r, (3)

where K, denotes the Hamiltonian of the field-free
atom, and -e E(t} ~ r represents the interaction of
the atomic dipole moment -e r with the external
electric field. The use of this form of interaction,
rather than the more familiar -e A ' p term, has
been fully justified in the literature. ' Even the
effects of the diamagnetic A ~ A term are included
(in higher order) in the -eE ~ r interaction. The
use of a classical, rather than a quantized, form
for the electric field E(t) has been considered
elsewhere, ' and is justified basically because of
the large photon number density of the microwave
field. The effects of the magnetic dipole interac-
tion are considered in Sec. IX.

With these assumptions about the form of the
electric field and the interaction, only &nz~ = 0
transitions are induced, and the only states con-
nected to the 3'S, /, (E= 0) state by X are those
listed in Table I. There we also assign mnemonic
labels to the states. Table II lists the matrix ele-
ments of z among these states, and Fig. 2 shows
their values in an energy-level diagram. The
diagram shows that the S state is connected to
the D state by a two-photon transition via the in-
termediate P state. The S state will be power
shifted by its coupling to the P and P' states, and
similarly the D state by its coupling to the P state.
The D' state is only peripherally involved.

TABLE II. Matrix elements of ~ (in units of ao) among
the states.

Matrix
element

Value
Analytic Numerical

Value
squared

&vis /D&

&s)zfz'&

&z )~(D &

&s fz)n &

+&3P)t/2

3(2) 1/2

q (go)i/2

-+I)"'

6.000

4.930

-4.423

4.743

-0.671

36.00

24.30

18.00,

22.50

0,45

The calculation of transition probabilities, line
centers, etc. , requires input values for the ener-
gies of the states in question. We adopt for these
purposes Er ickson's calculations" of the n = 3 en-
ergy levels (hyperfine structure neglected}, with
uncertainties on the order of a few kHz. The object
of the experiment is to measure the S-D interval;
the exact values adopted for the positions of the
rest of the energy levels are not critical. We have
calculated the hyperfine energies by the methods
of Brodsky and Parsons, " again to 1-kHz ac-
curacy, taking the precaution of including the
Breit correction for the 3S state, ' ' and the ef-
fects of terms off diagonal in J in the 3P and 3D
hyperfine structure.

The spontaneous decay of the atomic states is
accounted for via the Bethe-Lamb prescription,
which assigns to a level N the complex energy
&„=co„- 2i I „, where v„ is the Bohr frequency
and l"~ the decay rate. The validity of this ap-
proximation has been studied for hydrogen'4; it
introduces no appreciable error, chiefly because

TABLE. I. Energy levels involved in the S'&~& D&~2 two-photon transition in the
+ =3 state of hydrogen. In the third column labeled Energy, the location of the 3 $~~2 state
with the assumption there is no hyperfine splitting is taken as the origin and none of the hyper-
fine spl. itt ings for the other states have been included; column 4 gives the hyper fine energies that
must be added to column 3 to obtain the energy levels when the hyperfine structure is
included. Column 5 gives the energy of the states when the hyperfine structure is included
with the location of the 3 2S &i2(F = 0) state as origin.

Mnemonic
Energy
(MHz)

hfs
(MIIz) (109 sec"~)

1"

(10 sec" )

3'S,i, (F = 0)

32P,i, (F = 1)

32Pg(2(F = 1)

32D5i2(F = 2)

3'D,g, (F = 2)

PI

0.0
2935.191

—314.898

4013.197

2929.859

-39.457

—4.380

0.0
18.66274

—.1 577

+ 1.577

25.45367

18.66668

+ 4.382 —1.70311

0.0063

0.1897

0.1897

0.0647

0.0647
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F=3
5/2

21r

r(~, E)=(2~}-' d6 ~A(~, E, 6) ~'.
0

(4)

F=2
P5/2 1

4.9
-O.7~

DW2
S(&,E) = [P(~, 0) a(+, E)]/S'(&o, 0) (5)

We define the signal to be the fractional decrease
of this probability upon turning on the microwave
field:

IV. TDPT EXPANSION

6.0
4.7

For reasons delineated in the introduction, we
make a TDPT expansion of the S to S amplitude A
in powers of E, the peak electric field, defining

1/2

F=l

P1/2

FIG. 2. Schematic level diagram for the n= 3 states
of atomic hydrogen (not to scale), showing allowed elec-
tric dipole transitions connected to the 3 S& &2(E= 0) state
by an electric field parallel. to the z axis.

the separation of the states in question is very
small compared to the optical energies released in
their decays. (Whether the same assumption can
be made in considering laser-driven transitions
among decaying states requires further study. )
The values of I"„appropriate to the states involved
are included in Table I. They are calculated ignor-
ing radiative and relativistic corrections, which
should be much less than 1%. Any additional colli-
sion-induced decay of the states is also negligible,
for background pressures typical of the experiment.
The complex energy levels produced by the Bethe-
Lamb prescription are taken to be the diagonal
matrix elements of K0.

The total Hamiltonian describes the time evolu-
tion of a five-state Hilbert space. We define the
diagonal matrix element for the S state of this
evolution operator to be A(v, E, 6). Since this
represents the amplitude for transmission of the
S state through the interaction region, the experi-
mentally observed transmission probability is

(6)
n=0

where A '"' is of order E". It is easily seen that
only terms of even n appear. It can be shown that
this series converges; the series is useful be-
cause for moderate values of the electric field the
low-order terms are dominant. Since the Hamil-
tonian is periodic in 6, the amplitude A and its
TDPT expansion coefficients A '"' must be ex-
pressible as Fourier series in 5. The highest
frequency component present in A'"' is e""', so
we can write

n

A= g g A'"'e'"'.
k= -n

With this expansion, the signal S(ur, E) defined by
Eq. (5) can be 'calculated. After averaging over 6,
we obtain

S (&o, E}= —~A,
'"

I

'
~
2 Re(A,'"*A '")+2Re(A,'"*A,' ")(

2

+ Q ~A'"~'+2Re(AO"*A'")
k=-2

2

+ Q 2Re(A'"*A'"}+0(E) ~.
k=-2 )

The amplitudes A„'"' can now be calculated from
TDPT, which we use in the following form. For
a Hamiltonian 3C=K, + V(t), X, having eigenstates
~A), ~B), .. . with energies E„, Ee, . . . and for
V(t) vanishing outside of 0&t&T, the evolution
operator U(T, O) has matrix elements"

T
(A

~
U(T, 0) ~B)—(A ]B)e 'e&r+ (ttt) ' dt e 'e& ' "(A

~
V(t) ~B)e 'e& "~'

0

T t2
+(jk) ' dt, dt»e ' ' '2'(A ~V(t, ) ~N) e ' ~"2 '~'(%~V(t, ) ~B)e ea'i "+O(V }--

0 0
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In our application the initial @nd final states A and
B are both S; the sums over complete sets of
states include only S, P, P', D, and D', and the
operator V(t) is

V(t) = eE-z sin(st/T) cos(vt+ 5) . (10)

Expanding the cosine in exponentials, and then
putting V(t) into the above expansion, one can
easily separate the complete amplitude A into com-
ponents of order E" and 8'~', i.e., the terms
A~"'. The leading term A0" of the TDPT expan-
sion is just (S IS)e 'zsr = e 'ssr. This term de-
scribes the unperturbed evolution of the S state for
time T. All terms A„'"' with n or k odd vanish be-

cause of the dipole selection rules.
To obtain the signal to order E' we require the

amplitude A,'", which upon expansion becomes the
sum of four terms, which may be represented as

S(+ ~)P(-(u)S, S(-(u)P(+ (g)S,

S(+ (g)P'( ~}S, S( (o)P—'(+ (u)S,

where the capital letters denote the "path" of
states by which the transition occurs (in Feyn-
man's sense), time increases to the left, and the
(+ &u) and (-ro) denote the use of the positive or
negative frequency parts of the cosine in V(t).
More explicitly, the first of these terms, as
shown in Fig. 3, is

(ik) ' dt, J~ dt, e ' s' '2'(S
I

eEz/2 IP—) sin(st, /T)e"". '2
0 0

x e ' s"s "'(P I-eEz/2 IS) sin(vt, /T)e-'"'xe-' s "~- '

eE i' T g2

I
&SI IP)(PI IS&e ' dt ~ dt sin(vt/ T)sin( vt/T)e'2 s' ~s"e"i'~i- s (-12).

i2iA ) 2
g 1 2 1

ENERGY

~-tEp(t2-t))
--P STATE

-iE, (t, -O)
--S STATE

t2

FIG. 3. Graphical. representation of the "path" S(+in)
P( u)S in the amp-litude AP~.

It is clear that for E~+ ~ —8~=0, or more pre-
cisely, for v= Re(E~ —Es}, this integral "reso-
nates, " and in fact describes the ordinary one-
photon S-P transition used in Lamb-shift measure-
ments. In our application, however, u&/2v=2025
MHz, while Re(E~ —Es)/2v=2970 MHz, so this
term is far from resonant. If we denote the above
integral by J(&u, P), then we have

Ao~ '=Z(g, P)+J(-e,P)+Z(e, P')+ J(-(o,P') . (l3)

The same integral serves in the computation of
the amplitudes A,',", which are needed in calculat-
ing the signal to order E'. A,',"can be represented
as the sum of two terms,

S(+ (o)P(+ (u)S and S(+ (o)P'(+ (o}S.
Both terms are insignificantly small, since they
are "energy-nonconserving" transitions, aQowed
only by the finite interaction time. Since they are
on the order of 10 ' relative to the energy-con-
serving amplitudes, these terms can be safely
dropped.

The other amplitude needed to complete the cal-
culation of the signal to order E' is A,'". It is the
sum of many "paths, " the most important of which
ls

S(+ ~)P(+ ~)D(- co)P(-(o)S .
This term may be thought of as describing a tran-
sition from S to D via the intermediate state P,
and then a transition from D back to S via the
same intermediate state. '

The term is resonant
for 2+= Re(En —Es), even though the intermediate
S-P and P-D transitions are far from resonant.
Again the quadruple integral can be evaluated
analytically; the same general fourfold integral
serves to calculate all 53 other terms of A0 of
which the most important are those such as
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S(+ ~)P(-d))S(+ &e)P(-~)S, i.e. , having sequence
SXSYS, where X and Y are P or P'.

Included among the many paths are those with
state sequence SXD'YS, which mark the first ap-
pearance of the D' state into the problem. Such
terms describe two photon S-D' transitions, which
resonate at's, /2)T= 1500 MHz. With the typical ex-
perimental linewidths of 10-15 MHz (in e/2w),
this transition is well resolved from the S-D reso-
nance of interest at ur/2m=2025 MHz, and the ef-
fects of its overlap are negligible. Further con-
sideration of the effects of the D' state is left to
Sec. IX.

This suffices to give an expression for the signal
complete through order E, from which the line
shape and line centers can be calculated, although
the form of the analytical results is sufficiently

complicated that a computer evaluation is re-
quired. Before discussing any of the results, we
introduce an approximation technique by which all
these results can be obtained with negligible er-
ror, with much less effort, and with more physi-
cal insight.

V. EFFECTIVE POTENTIAL APPROXIMATION

The basic idea of the "effective potential" ap-
proximation is to describe two-step processes
such as S to P to D as a single step process, S
to D, with an effective potential. To derive the
form of the effective potential, we consider the
amplitude of order E and e + for a transition
by time t from S to D, which has the form

t t2
(ih) ' dt, dt, e 'zD'' '2'(D ~- eEz/2 ~P) sin(wt, /T)

0 0

x e '"'~e+zI' s~) (P j-eEz/2 ~S) e '""sin(wt, /T)e 'zs "'

t t2
(D ~z IP)(P ~z ~S)e 'z&' dt dt, sin(rt, /T) is(nt),)/ )T"e'2ozzJ'e")'&J " zs'. (16)2' ) 0 0

We change to new integration variables o = —,'(t,
+t, ), 7 =t, —t, so that r represents the time spent
in the intermediate P state. The region of inte-
gration is that labeled A in Fig. 4. We now make
the approximation of adding the region labeled 8
to the integration region; that is, we extend the
upper limit of the v integration from the boundary
of region A to & =. The error incurred by doing

so should be small for two reasons. First, the
integrand is exponentially damped in the large 7

region by the decay rate of the iritermediate P
state; second, the integrand is rapidly oscillating
in 7 because of the large "energy defect" of the
intermediate state. The integral now takes the
form

OO

(eE/2iIi)'(D[)z[ P) (P[ z[ S)e 'z&' dv e"s dec"" , [cos(no/T) ——cos(2m~/T)],
0 0

(17)

where a = 2 (Es +En) —Ez measures the energy de-
fect of the intermediate state, and P=ED —2tu
—F~ measures the detuning from the two-photon
resonance. The substitution of v = as the upper
limit of the inner integral now allows the integral 40

IJtg) (0 d)y (o)e fz (d Q)

to be performed trivially, and one finds that the
amplitude is given by

(18}
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(a)

magnitude =18x10 ', which is negligible com-
pared to unity. We write the final form of the ef-
fective potential as

V„, (D-S)(t) =(kn) '(eE/2)'&D(z(P) &P[ z( S)

xe " 'sin'(«t/T) . (20)

(b)

Similarly the effective potential for the D to S
transition is

V„(S-D)(t) = (S~)-'(eE/2)'&S)z (P)&P)z [D)

x e"'~'sin'(«t/T) . (21)

Just as these potentials are appropriate for the
paths D(- v)P( &u)S a-nd S(+ &u)P(+ ur)D, respective
ly, we can by the same procedure find an effective
potential corresponding to the sum of the four
paths S (+ ru)P(+&@)S and S(+u&)P'(+~)S:

FIG. 4. t~t2 plane for the integral in Eq. (16),
showing the O.v' coordinate axes and the regions A and 8
of integration.

Veff (S-S)(t ) =g (gO) ~ (eE /2 )s~& S lz I N)

x&N[z) S) sin'(«t/T},

where

V,ff(«) =(kn) '(eE/2)'&Dl zlP) &Plzl S)e " ' where & =E~+a —E„, and for the sum of the two
paths D(a &u)P(+~)D

sin'(««/T) +—
2 Q —7P/T

The important point is that the single integral
which remains has exactly the form of a first-
order TDPT amplitude for a transition from 8 to
D, via the "effective potential" V«(«). One fur-
ther approximation can be made for convenience;
one finds, for values of o. and T of interest, that
the term added in brackets to sin' (v«/T) has

off (D D)(t ) =g (ke) '(eE/2)' (D[ z~ P)

x &PI z I D) sin'(zt/T),

(23)

where & =ED+a-&~.
The utility of these approximate results remains

to be tested. To do so we write the approximate
results

A"'=(iit) ' ' 'dt e 'ss&' " (S-S)(t)e ' s" ".
Veff

dp
(24a)

r p C2
A"'=(its) '

J dt ~ dt e 'ss' ' 'V«(S-D)(t )e ' s" '~'V„, (D-S)(t )e 'ss"
0 ' 0

T
+(ik) s dt dt e * 'V,«(S-S)(t )e ss

g V,ff(S S)(t )e ~ss
0 0

(24b)

and evaluate these integrals analytically as be-
fore. Using these approximate amplitudes in
place of the exact TDPT ones calculated earlier
we can again evaluate the signal defined by Eq.

(8). This procedure gives a second way of cal-
culating the signal complete through order E',
but with the advantages that the dimensionality of
the integrals required is reduced from 4 to 2, and
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that fewer terms need to be considered.
Results for the signal in order E4 are shown in

Fig. 5. (Not included is the nonresonant back-
ground of order E' and E', which may be thought
of as the far wing of the S-P resonance at 2970
MHz. } A discussion of the detailed form of the
two-photon resonance is postponed to Sec. VI;
of immediate interest is the difference between
the "exact" and "effective potential" TDPT re-
sults. The magnitude of the difference is & 10 '
of the signal; variations in the difference with
frequency are &10 4 of the signal; the symmetry
of the difference about the line center is high
enough that symmetric poi.nt line centers calcu-
lated from the two different expressions agree
everywhere to & 0.3 kHz, where the linewidth is
=12 MHz and the center frequency 2025 MHz.
This very impressive agreement vindicates a
posIerion the approximations made in deriving
the effective potentials, and strongly stimulates
their further use in applications to follow. In
summary, even in a high-precision experiment,
where a description of a line shape to & 10 ' of
its width is crucial, the effective potential gives
a very accurate description of the dynamics of
the two-photon transition process.

A very useful property of this method is that
it is not limited to monochromatic excitations,
but accommodates the envelope function sin(vt/T).
The derivation can be repeated for a Gaussian en-
velope exp(-t', /1 ), and results in an effective po-
tential with the factor exp(-2t'/T'). Any general
envelope function f(t) will give an effective poten-
tial with f '(t), subject to the qualification that
small correction terms of order (o. T) ' will ap-
pear, where Tmeasures the scale of time variation
of the envelope function. [The term of order (nT) '
we dropped above was just such a term. J Physically,
this requires that the product of the energy defect and
the transit time be large compared to Planck's
constant. In our application n = ,'(Ez +E~) —EJ, —

and Re(o.)/h-1 6Hz, or Re(o:)-6x10' sec ' in
units where I =1. With characteristic T's on the
order of 80 nsec, we have eT =480, which is
satisfactorily large, since it will enter only as
an inverse square. In most optical experiments
the energy defect will be of optical, rather than
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FIG. 5. Two-photon resonance signal to order E4,
showing the "exact" result fEq. (15)], and 103 times the
difference between this and the "effective potential" re-
sult [Eq. (24)], evaluated for T=82 nsec.

microwave, scale; and T will be larger for
thermal than for fast beams. Thus the effective
potential technique should be just as useful in
laser studies as it is here.

The main limitation of this technique is that it
requires a sufficiently large energy defect; as a
result it is not applicable to situations with a near-
resonant intermediate state.

A',"=-ie ' z g „~~, , (eE/2h)'& '(SlzlN)

X (XlzlS) (T/2). (26)

To order E' the signal is

VI. TWO-PHOTON LINE SHAPE AND THE LIFETIME
SHIFT

We now consider in detail the line shape predict-
ed in the effective potential approximation, ' since
it agrees with the corresponding "exact" TDPT
result to high accuracy.

The signal Eq. (8}to order E' requires only
A"' =e 'z&r and A," of Eq. (24a), which is

S(+,E)= lA,' l '2Re(A-,' *A,') =(eE/M)'(T/2)g „,. . . l(Slzl/)['i " ', , (26)
((dz +0 —QJg + I z Fpr /'4

This form of the signal shows a superposition
of four Lorentzian resonances centered at
+= a(&uz —+~(. For the problemathand, &u is near

none of these resonances, so theaignal in this order
is a nearly constant background. This represents the
quenching of the S state by an admixture of the
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shorter-lived P and P' states. Because e is far
from any one of these single-photon resonances,
both the "rotating" and "counter-rotating" terms
of the field contribute importantly to the signal.

To compute the signal to order Z4 we require
A,", which from Eq. (24b) is seen to be the sum
of two paths which may be represented as S(+2&@)
D(- 2&v)S and S(+0&v)S(+0~)S. The latter term,
together with IA 0"I' in Eq. (8), represent a higher
order of nonresonant S state quenching due to P
and P' admixture, and slightly modifies the slop-
ing background that underlies the two-photon res-
onance. Guided by earlier results, we now drop
the "energy-nonconserving" terms IA",,' I'.

The first line of A',"of Eq. (24b), representing
the two-photon S —D transition of interest, re-
quires only a double integration, and has the value

A' (s —D) =- (ez/2~')'I &sl zl&&I'

xl &&I zlD&l n 'e ' ~ K(P), (27)

the states involved, will further broaden the
resonance.

The other point of interest is that the resonance
line is symmetric, since it is an even function of
P. We can easily show that this symmetryper-
sists for complex P, provided n is real. Since
p = ((d —2QJ —4& ) —2i(I —I ) —p+ = —(MD —2(d
—&uz) ——,'i (I'n —I'~), so the replacement P- —P*
is equivalent to moving from one side of the res-
onance's center u& =-,'(&uD — &uz) to the sym-
metric point on the other side. Under the re-
placement P- - P*, K(P)-K(- P*), and by explicit
computation one finds K(- p*) =K (p)*. Since fo'
n real the signal depends only on Re K(P), we
see that the signal is unchanged under p- —p+

and hence is symmetric about &u =z(&u~ —&us).

This symmetry disappears, however, when e
is complex. Since

n =-,'(z, +zn) -z~

=-'(cu +e —2&@ ) ——,'i(1' +I' —2I' ), (30)

where it is convenient to define a= —noe '~, where 0.0
and Q are real and positive, and where Q =6.5
mrad. With $«1, we can write

x [8i (2w/T)4e'8 ' sin(pT/2)

' x p-1(p2 4z2/T2)-1

—2i T(3P' - 2(2s/T)')]. (28)

Re[n 'K(p)] = n, ' [ReK(p) —2$ ImK(p)] . (31)

Since under P- —P*, K(P)-K(P)* we see that
Im K(P) ——ImK(P); hence the coefficient of 2Q in
Eq. (31) changes sign upon moving from one side
of the resonance to the other, showing that the

The meaning of this result can be seen much
more clearly if we treat n and P as real numbers,
i.e., we temporarily neglect the lifetimes of the
S, P, and D states. Then the resonant part of
the fourth-order signal is

s(cu, z) =(ez/2e)'I &slzl»l'I&&l zlD&l'

x n '(2s/T)'

x z [sin(pT/2)p '(l3' —4v'/T') ']' (29)

where the two-photon line shape is given by the
last factor in this expression. It describes a
resonant shape peaked at p =Z~ —2&v —Zz which
has its first zeros at P = +4m/T or at v=~(vD —vz)
+1/T. This predicts a full width at zero height
of 2/T, or a FWHM of the order of 1/T (in the
v energy scale, where v = &u/2n:=2025 MHz is the
location of the resonance). Since T is about 80
nsec, we expect 12 MHz or so of the experimental
linewidths to result from the transit time and the
field envelope. Actually the parameter P is com-
plex, and this effect, representing the decay of

line is not symmetric about the assumed center
w=z(vn —(uz). In fact, ImK(P) has a dispersive
shape about resonance, and has a magnitude com-
parable to ReK(P), so that the effect of the term
in 2P in Eq. (31) is to shift the center of the res-
onance by about 2$ =I.+ of its width. Some
asymmetry about the new shifted center is also
introduced, since ImK(P) differs from the deriva-
tive with respect to p of ReK(p).

Let us step back a moment from the details of
the computation and briefly summarize the im-
plications of this result. We have found that the
S to S transmission probability shows an S —D
two-photon resonance centered not at the expect-
ed Bohr frequency &u =2(u&n —~s), but shifted from
it by a fraction of the resonance's linewidth.
Since this effect appears in the same order of
TDPT as does the two-photon resonance, it does
not disappear at low power levels; it is intrinsic
to the transition process, We choose to call this
novel effect the "lifetime shift, " since it is of
magnitude 2$xlinewidth, where Q is the lifetime
related phase of the energy defect. This energy
defect makes its appearance as an energy denom-
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inator in both effective potentials Vff(S-D) and
V ff (D -S) (though we must emphasize that the
lifetime shift is not an artifact of the effective
potential approximation, since it is reproduced
both in the "exact" TDPT computation and in a
calculation of Shirley's type)." The fourth-order
S to S amplitude, containing the product of these
effective potentials, thus contains a phase of 2$.
Because the fourth-order signal arises from the
interference of this and the zero-order S to S
amplitude, the phase is physically observable.

It follows that the S to D transition probability,
which is proportional to the absolute square of
Vff (D-S), will show no lifetime shift, since
~e

' ~' =1. Thus the signal corresponding to the
creation of D states will (in fourth order} be cen-
tered at the expected Bohr frequency. There is
no paradox in having the S to S and S to 8 signals
centered at different frequencies, since the usual
unitarity arguments to the contrary fail to apply,
given a non-Hermitian Hamiltonian.

These observations also suggest that the lifetime
shift will rarely be important in optical two-pho-
ton transitions. Such transitions are usually ob-
served by monitoring the upper-state fluorescence,
where the argument of the previous paragraph
shows that the shift will be absent. Furthermore,
we can see that the phase Q will be proportional
to the quotient of the "decay rate defect" and the
"energy defect, " i.e., P~ (I"s + I'~ —21'~}/(~s + &o~

—2u&~). In the optical case, the energy defects
are in general very much larger, while the decay
rate defects are about the same size as those en-
countered here. Therefore, it is not surprising
that the effects of the lifetime shift have not been
observed in the optical regime.

VII. POWER SHIFT

Having completed the calculation of the signal
[Eq. (5)] to the lowest order in which the two-

photon resonance appears, we now treat the next
order in E, which yields the linear power shift of
the resonance. Referring to Eq. (8), we need the
S to S amplitude A',". The other sixth-order term
in Eq. (8), which depends on Q»», A'»"* A. '»4', can
be approximated by Ao"*Ao", since we drop the
"energy-nonconserving" parts; thus this term re-
quires no new computation.

The new amplitude Ao'we calculate only in the
effective potential approximation, our confidence
bolstered by the success of this technique in sec-
ond and fourth order. The amplitude can be re-
presented as the sum. of four paths,

S(+0(u)S(+0(o)S(+0(u)S, S(+0(u)S(+2a))D(-2(u}S,
(32)

S(+2(u)D(+0(u)D(- 2(u)S, S(+2(a))D(- 2(u)S(+0(o)S.

The first of these does not involve the D state,
and is another contribution to the nonresonant
background, similag to the second- and fourth-
order contributions. The remaining three paths
represent S to D to S transitions, with the S or D
state affected by coupling to the P or P' state.
One may think of these as rf Stark shifts of the

S and D states. The last path, more explicitly,
contributes to A 0" the term

T . t3 t
(fif)-' dt df

'
dt e-'&s&'-& &

0 0 0

x V,ff(S D)(t )e p"

x V (D S)(t )e-its (t t)-

x V...(S -S)(t, )e 'ss "i 0'.

Calculating the signal through sixth order, one
finds that the center of the resonance moves to
higher frequency with increasing electric field
strength. In Sec. VIII we discuss in more detail
the size of this power shift. The magnitude of the
linear power shift can be derived from the be-
havior of the line center in the region of small E,
where TDPT is certainly a good approximation,
and the shift rates thus obtained are firmly tied
to first principles, including in their computation
the effects of both the envelope function of the
microwave field and the decay rates of the states
involved.

One discouraging result is that for values of E
used in the experiment E =15-25 V/cm, the
sixth-order contributions to the signal dominate
the fourth-order terms, suggesting that even
higher-order terms are important in this regime.

VIII. EFFECTIVE POTENTIAL TWO-LEVEL PROBLEM

The behavior of the sixth-order terms in the
signal for values of E of experimental interest
motivates us to consider yet higher-order terms
in the TDPT expansion. In addition to yielding the
quadratic and higher-order power shifts of the
resonance, such studies can be used to find the
saturation behavior of the two-photon resonance,
i.e., how its size grows with increasing E. Since
the depletion of the S states in the interaction
region can be no more than 100%, it is clear that
the signal defined by Eq. (5) cannot exceed 1 for
any value of E. But any finite order of perturba-
tion theory, truncated at order E", will eventually
show the signal growing as E", which will exceed
1 for some value of E.
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These considerations motivate a nonperturbative
treatment of the problem. A direct numerical
solution of the multilevel Schrodinger equation is
possible in principle, but infeasible in practice,
since the physical importance of rapidly oscilla-
ting, nonresonant terms cannot be neglected. We
have instead developed a nonperturbative use of the
effective potential approximation which. avoids
these numerical problems and provides a very
economical solution to the problem.

The point of departure for this solution is the
observation that the TDPT expansion using the
effective potentials of Secs. V-VG is a perturba-
tive treatment of a two-level problem specified
by an "effective Hamiltonian"

Ez 0 "
Vff(S S)(t) Vff(S D)(t)

0 E. V«(D- S)()tVAfD- D)()t

More specifically, the perturbative treatment of
this +,«will result in exactly the expansion al-
ready made (through order Ee) in the effective po-
tential approach. The new idea of this section is
to use this Hamiltonian nonperturbatively.

This approach cannot claim to be an exact solu-
tion of the original problem, since the effective
potentials themselves were derived from pertur-
bation theory. In particular, the P and I" states
are not dynamically included in the two-level
prob1em specified above. Nevertheless, their
influence is incorporated in the form of the ef-
fective potentials.

An appropriate transformation can be applied to
the above Hamiltonian to remove the time depend-
ence of its off-diagonal elements, without any
effect on the S to S transition amplitude of. interest.
The transformed Hamiltonian is

C

jeff
0 E&, I ~„,.5-'l(Sixie)l' ~ '(Sl~l Z)(alslD)

z, —'~ '&2"
&

""(I') ~ '&alziz&&zlzis& z.~-'i&vials'&I' (35a)

The remarkable thing about this Hamiltonian is
that it has the form

3C ff C +IVsin' (mt/T) (35b)

where C and 8"are constant complex matrices,
and C is diagonal. The only time dependence is
sin' (mt/T), which is very "slow, "going through
only one cyc1e during the interaction time. The
result is a system which can be integrated numer-
ically with no computational difficulties and no
great numerical effort. The quantity of interest
is the complex 2 x2 evolution operator U(t) which
satisfies the conditions U(0) =I, tdU/dt =X.'ffU(t).
The S -state transmission probability is given by

i U(T)„~', and the experimental signal defined by
Eq. (5) can be calculated as before.

The results agree, in the appropriate regime,
with the results of the effective potential TDPT
discussed above, which in turn agree, where
appropriate, with the original first-principles
TDPT expansion. The agreement is perfect, in
the sense that line centers obtained by the TDPT
and nonperturbative methods agree to better than
1 kHz, and power shift rates agree to three digits

* or hetter. This provides a valuable procedural
test, since the computational tasks are very much Eg Eg+ (eE/25) Ag, (36a)

different for the two theoretical approaches. The
numerical integration of a matrix differential
equation is neeckd for the matrix treatment, and

the numerical evaluation of analytically computed
integrals is used for the TDPT method. The
matrix approach differs from the TDPT results
in the large-E region, where it provides (in some
sense) a nonperturbative solution.

The form of the above two-level Hamiltonian can
also be used to shed some physical insight on the
power shift. For our present purposes we can
neglect the lifetime shift, which is due to the
pha, se of the off-diagonal elements of 3C,'«, and
for conceptual simplicity we can imagine that
the magnitude of these elements is very small.
Then to lowest order, the two-photon resonance
occurs at the crossing of the diagonal elements
of C, i.e. , when Re[(E~ —co) —(E~ + (o)] = 0, which
gives as line center the Bohr condition
2(d = v~ —co~. The power shift first appears when
the effects of the on-diagonal terms of W are
considered. At the center of the interaction re-
gion these terms have the effect of shifting the
S- and D-state energies according to



798 D. A. VAN BAAK, B. 0. CLARK, AND F. M. PIPKIN 19

( ~ +'-E~) 'l&S

En -En+ (eE/25)2',

A, = Z....(E, + a E,)-&
l
&a x l~&

l
.

(36b)

(36c)

(36d)

To incorporate the effects of the shape of the
field envelope, we can take a simple time
average of the local shift, averaged over the
total interaction time. This produces an average
shift of & the size of that obtained at the center
of the interaction region, so that the resonance
condition is

Re[(En —(o+ ,'(eE—/2h)'An)

—(E~ + (u + ~ (eE/2h)' A~ )]= 0, (37)

or

2(o = (ov —or~+-,'(eE/2h)' Re (Av —A~) . (38)

IX. REFINEMENTS OF THE LINE SHAPE CALCULATION

We return now to some effects postponed in the
earlier analysis of the two-photon line shape, in
the process demonstrating the flexibility of the
TDPT and effective potential approximations.

We first consider further effects of the D' state
than the negligible ones discussed in Sec. IV. In
higher orders of 'TDPT, the presence of the D'
state makes possible many new "paths" which
have the physical effect of modifying the power
shift of the S-D resonance. To investigate these

'This predicts that the power shift is quadratic in
E, i.e., linear in power, . that it is independent of
the interaction time T, and that it has & the steady-
state value that would apply for an atom at rest in
the center of the interaction region. One can also
perform a somewhat more sophisticated time
average by weighting the size of the local shift
in each part of the interaction region by the
local probability for inducing a. two-photon transi-
tion, which probability also has the shape of the
square of the field envelope. Such an average,
performed for the sin'(vt/T) envelope appropriate
for the Hamiltonian above, changes the power
shift from 2 to —,

' of the steady-state or peak value.
This result is within a few percent of the values
obtained by the more involved methods described
above. Similarly, for a field with Gaussian
envelope, this sort of transition probability
weighted average yields a net power shift of 2 ' '
of the peak shift appropriate to the center of the
interaction region.

Naturally, the above calculations are no sub-
stitute for obtaining the actual power-shifted line
shape, but they do serve to illuminate the physical
processes that occur.

effects, we have generalized the effective poten-
tial matrix approach to a 3 ~ 3 matrix in which
S, D, and D' states are treated on an equal
footing. Results obtained from this analysis show
changes in the size of the power shift of the S-D
resonance well below the 0.1% level.

An important class of effects arises from a
more complete description of the microwave
electromagnetic field than Eq. (1) provides. ff
we set up a coordinate system in the waveguide

A,

with the atoms moving in the y direction, the
microwaves propagating along the x axis, and
with the electric field still having a z polarization,
then the electromagnetic fields appropriate to
the propagating 'TE„mode are given by the real
parts of"
E,= E sin (vy/a) exp (ikx —i&et),

B„=—(kc/v)E sin (vy/a) exp (ikx -ivt),

B,= (vc/i+a)E cos (vy/a) exp (ikx —iaaf),

(39a)

(39b)

(39c)

where a is the width of the waveguide in the y
direction, and 0 is given by

k =. ((o/c) [1—(vc/(oa)' ] '~ '. (40)

The most important new effects arise from a
Lorentz transformation to the atoms' rest frame,
which has lab velocity v = vy, according to the
usual formulas

ii =f(1 —v /c ) (41a)

+ (2N) ' cos (vt/T) sin ((et+ 6)], (42)

where N = &ua/2vv is simply the number of
microwave cycles occurring during the transit
time T.

'The effect of this new term is to shift the
location of the observed resonance, as can most
easily be seen by writing the above as

E(t) = E{(1—1/2N) sin (vt/T) cos (~t+ 5)

+ (1/2N) sin [((o+ v/T)t+ 5]}. (43)

This shows an upper sideband" of magnitude
1/2N separated from the fundamental by &(u= vT,
which is approximately the resonance linewidth.

E,'= (1 —v'/c') 'i'(E, —vB,/c). (41b)

The first transformation represents time dilation,
and expresses the ordinary second-order Doppler
shift, for which the data have to be corrected. The
second yields here a novel effect, peculiar to the
presence of longitudinal field components in wave-
guides, but not restricted to multiple-quantum
processes. To order v/c, the electric field re-
placing Eq. (1) is

E(f) =E[ sin (vt/T) cos (&et+ 5)
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The result is a shift of order FWHM/2N, and
since the linewidth and 1/2N both scale as the
speed v, this shift is proportional to v'.

The importance of this shift arises from the
fact that it does not change sign under reversal
of either the atomic beam or the microwave
propagation direction. In this respect it differs
from the ordinary first-order Doppler shift,
which is easily shown to have magnitude

kv sin8 (44)

for an alignment error e from exact perpendicu-
larity between the atomic beam and the direction
of microwave propagation.

The size of the shift entailed by the modified
electric field [Eq. (42)] can be calculated by sub-
stituting the new form of E(f) into the integral
[Eq. (15)]for Ao" of Sec. IV and isolating the
term of order 1/N. It proves to be dispersive in
shape, shifting the resonance as expected. Al-
ternatively, one may repeat the derivation of the
effective potentials with the modified form of the
electric field to find

V„,(D S)(t)= (hn) '(eE/2)'(D~z] P)
x(P(z~S) e '"'
x [sin'(wt/T)

+ (i/2N) sin(2mt/T)+ O(N~)] (45)

with V,«(S-D} showing an O(N~) correction of
opposite sign, and the S-S and D-D effective
potentials showing no O(N ') corr-ection, to a con-
sistent approximation. With these results, the
effective potential matrix approach confirms the
size of the shift at low power, and also shows
that the shift has negligible power dependence.

Another feature present in the real experiment
and not considered heretofore in the theory is the
presence of holes in the side walls of the wave-
guide provided for the atomic beam's passage.
The holes used had radius R = 0.40 cm, compared
with the waveguide sidewall height of b = —,'a= 6.46
cm. The modifications to the electric field in the
region of the holes can be calculated using the
theory of Bethe." His solution is applicable for
kR«1; in the experiment here kR=0.17. We
can also make the "near-field" approximation,
which corresponds to neglecting retardation of
the electric field, again because kr «1 for dis-
tances x from the hole of interest to us. The re-
sult relevant here is not the detailed shape of the
electric field modifications near the hole, but
rather their size and scale. One finds that the
electric field in the hole is of O(ER/a), and that
along the beam trajectory modifications to the
no-hole solution fall off quadratically with distance

on a scale of size R. Furthermore, the modifica-
tions are identical at the beam's entrance and exit
holes.

The result is a microwave field retaining its
symmetry about t = —,T, with minor modifications
in the t = 0 and t= T regions. 'The effective poten-
tials then have modifications of order (ER/a)'
over regions of scale R, compared to the pre-
vious result of order E' over scale a. The net
factor of (R/a)' is about 4x 10~, and since the
symmetry of the field distribution about t = —,

' is
preserved, the changes introduced into the line
shape will be at worst modifications to the power
shift and lifetime shift of this order. Consequent-
ly the effects of the holes are negligible.

In addition to the modifications of the electric
fieM mentioned so far, there are present in the
experiment microwave electric fields of polar-
izations in other directions than z. These have
the potentially serious effect of inducing 4m~
=+ 1 transitions and coupling the O'S, &,(F = 0} state
of interest to the undesired O'S», (F= 1) states.
Such stray polarizations can arise in two ways.
For atoms moving through the holes in the wave-
guide's side walls, but off the axis of the holes,
electric fields of various polarizations are pres-
ent. These have the approximate size and scale
discussed above, and again have negligible effect
on the resonance's center, since the factor of
(R/a)'= 4 x 10~ derived above is to be applied to
the maximum imaginable shift that could arise
from this mechanism, namely, the O'S, &, hyper-
fine splitting, itself only 1%% of the S-D interval.
Similarly, stray polarizations present within the
waveguide proper, which arise from Lorentz
transforming the microwave magnetic fields,
have negligible effects.

The microwave magnetic fields do not induce
magnetic dipole transitions to any appreciable
extent, since their frequency is far from reso-
nance with the hyperfine intervals, and since mag-
netic dipole transitions require much larger field
strengths than do electric dipole transitions. A
more subtle effect is the rf Zeeman shift of sec-
ond order in the microwave magnetic field, an-
alogous to the rf Stark shift of second order in the
microwave electric field; this, however, only
introduces corrections of order 5 x 10~ in the
size of the power shift.

Finally one may consider the effects of dc elec-
tric and magnetic fields. The experiment is per-
formed in a field-free region, with the earth' s
magnetic field canceled by three orthogonal
Helmholtz coils, so that the dc magnetic and
motional electric fields are very small. Other elec-
tric fields may arise from space-charge effects
due to the unneutralized component of the atomic
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beam, or charge accumulation on insulating films
deposited on metal surfaces in the interaction re-
gion. One can easily compute the dc Stark shift
of the two-photon resonance to be

&v = 26E' kHz cm'/V' (46)

out of a frequency of v -—2025 MHz, for dc elec-
tric field E. For field strengths appropriate to
the experiment, this produces at&most a shift of
5 kHz.

There is a very subtle shift, peculiar to the
two-photon process, that may also be considered
in this connection. The 8 -D transition of interest
proceeds by way of the 3'P,~,(F= 1) state, which is
nea, rly degenerate with the 3'D,~, (F= 2) state, the
hyperfine structure of the two levels fortuitously
bringing them to within 0.4 MHz of each other.
An electric field will mix these two states, causing
an unimportant shift of the P-state energy, as
well as increasing the lifetime of the P state by
admixing the longer-lived D' state. This will
change the lifetime shift of the two-photon re-
sonance, but the size of the shift is negligible for
typical field strengths.

X. CONCLUSIONS

We have developed in this paper a theory for the
line shape of two-photon transitions, of sufficient
detail to be useful in splitting to a small fraction
of its width a resonance obtained in a realistic
experimental situation. We now briefly review
some of the capabilities, predictions, and limita-
tions of the theory.

The spectrum of states incorporated by the
theory consists of an initial state (S), an inter-
mediate state (P), and a final state (D), together
with other states (P' and D') coupled to them.
We have chosen to calculate the transmission
amplitude for the S state, though nothing in the
formalism prevents calculating the creation ampli-
tude for the D state. One could also incorporate
the presence of more than one intermediate state.
Both the intermediate-state P, and the state P'
coupled to S but not to D, have been shown to
influence the power shift of the resonance. In
short, the TDI'T approach can readily incorporate
a rich and complicated spectrum of states.

We have in the theory accounted for an actual
time envelope of the external (microwave) field
with which the transitions are driven. This pro-
file is all important in determining the shape,
and particularly the width, of the resonance ob-
tained. While the profile used had a sinusoidal
shape, nothing in the formalism prevents applica-

tion of the theory to a Gaussian or even a nu-
merically tabulated function.

The fact that the atomic states involved here
have natural decay rates has been shown to pro-
duce a very interesting "lifetime shift. " In ad-
dition to causing this shift, the lifetimes influence
materially the linewidth to be expected in cases
where the transit time is long compared to the
lifetimes.

The development of the effective potential ap-
proximation has greatly simplified the TDPT
calculations required, and also made physically
transparent the similarities of two-. to one-photon
transitions, while still preserving all the. spec-
troscopic accuracy of the theory. The further use
of the effective potential matrix approximation has
in large measure circumvented the pert'urbative
features of the original TDPT expansion and pro-
duces, for instance, a saturation curve which could
not be obtained in any finite order of perturbation
theory.

Finally, the theory is sufficiently flexible that
the small corrections required by any real ex-
perimental situation can readily be included. For
example, the effect of motional microwave electric
fields has been calculated in detail.

There remain, of course, some limitations to
the theory. One restriction, the use of a single
transit time for all the atoms, can be easily cir-
cumvented; a thermal beam experiment would

simply require an appropriate velocity average
over the several transit times of individual atoms.
A more serious limitation is that the theory was
developed for "beam" type experiments, in which
interrogation and detection of the atoms are re-
solved in space or time, and it is perhaps unsuited
to "bottle" or steady-state situations in which the
separation cannot be made.

We have incorporated only a single polarization
of radiation in the theory, because we have been
able to achieve this desirable condition experi-
mentally. The addition of other space components
of the external field would entail more complexity,
but not a fundamental change in the theory. We
have also assumed a monochromatic external
field, i.e., with sidebands generated only by the
field envelope and finite transit time, and have
not considered a case of some interest in laser
physics, in which the intrinsic laser linewidth
can be a dominant factor in the experimental line-
width.

In the companion paper we compare with ex-
periment the many predictions of this theory for
the 3 Sg/2 3 D5/2 two-photon transition in hydro-
gen, and use it to reduce the data obtained there
and derive a value for this hydrogenic fine-struc-
ture interval.
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