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The short-time behavior of atomic multiphoton-ionization profiles is investigated using simplified models of
the field and the atom. The importance of including many levels in the model atom, of spontaneous emission,
and of pulse shape are studied in detail. It is shown that the first two. of these have little influence on the
qualitative behavior of the short-time behavior of the resonance profile, but that the third, the pulse shape,
is critical in determining the time evolution of the resonance profile.

I. INTRODUCTION

In a recent article, Beers and Armstrong' (to
be referred to as BA) introduced a simplified mod-
el of resonant two-photon ionization which could
be solved exactly. One of the more interesting re-
sults obtained from this model had to do with the
time development of resonance profiles, that is,
dependence of the profile on the pulse length of the
ionizing radiation. It was found that under certain
conditions, the prominent aspects of the ioniza-
tion profile —the pronounced maximum and the in-
terference minimum —will not be observed.

However, there are a large number of effects
which are not included in this relatively simple
model of BA which might well affect its predic-
tions. In this paper, we investigate more accur-
ate models of multiphoton ionization incorporating
three improvements to the BA model which seem-
ed most likely to change the time evolution of the
resonant profile as predicted by BA. Specifically
(a) we treat explicitly an atom with more than one
intermediate state; (b) we examine the effects of
spontaneous emission from the intermediate reso-
nant state; (c) we study the effects of laser-light
pulse shape.

Since the predictions of the BA model usually
qualitatively meet and will be used as a reference
point in our study and discussion, we briefly re-
view that model's main features and its predictions
concerning the time development of the resonance
profile.

The model of BA explicitly involved only two
bound states of the atom —a ground state )g) and a
"resonant" excited state ~a). The effects of the
other "nonresonant" bound states of the atom were
introduced through an effective two-photon term
II ff in the atom-field Hamiltonian. The field itself
was assumed to be initially composed of n photons

and

y, = B i(g, n&u[ff', „)E, (n -2)(o) P=2m[H, xi'; (4)

q =H~, /mH x Hx, .

Using this model, it was found that for short
pulses the predicted resonance profile was quite
flat, with no sharp maximum at the resonance
position, and no deep minimum produced by inter-
ference between the ionization path ~g)-~a)-~E)
and all other paths whose effects were described
by H,«. For longer pulses, the maximum began to
grow, and the interference minimum began to
deepen. The development of maximum and mini-
mum did not, however, generally proceed on the
same time scale. , Both maximum and minimum
were seen to shift their position as they developed,

of energy &u(@=1). The atom-field interaction was
abruptly turned on at t= 0 and off at t=T; this cor-
responds classically to a rectangular pulse of ra-
diation of length T. The solutions to this model
were found to be characterized by five parameters:
the detuning from resonance

5= (E~+nur) [E,+ (n 1)c—u]=E~—+ &u E„—
the matrix element of the atom-field interaction
HA„between ground and intermediate states

H~, =(g, n+IH„Fla, (n-l)&u),

where ~g, n&u) is an atom-field state in which the
atom is in the state ~g), andn photons of energy &u

are present, etc.; the rate of the ionization of the
intermediate state

~.=2~I@, (n-l)~IH, F)E (n-2)~)l'=2'. , I'

where ~E) is a state of the ionized atom plus a
photoelectron having total energy E; the rate of
two-photon ionization of the ground state through
all intermediate levels other than ~a)
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with the minimum undergoing a quite substantial
displacement in the direction of the "resonant"
state )a).

The "characteristic time" for development of
the maximum was found to be 7',„=I/)H„); and
for the development of the minimum, to be &,„
=1/y, . In most cases, it was found that ionization
rates could be defined in the region of the profile
near the minimum, but that one rate

p, =-,'y, [1+(qy, + P)'/(5' +4)H, [')]

having only a very broad and shallow minimum
held for T«7, and another rate

///////////////

E,(n-2)fa

, ionization ~

limit

HA.

)a,(n-l)(u)

)a„,(n-l)~)

(a, ,(n-()~)

AF

)9,na])

FIG. 1. Two-photon ion-
ization involving several
intermediate levels ta&,
(n-1) &o). The effects of all
other levels in the atom are
introduced through the ef-
fective operator H,ff.

having a sharp and deep minimum held for T»7
If H~~ is evaluated using the lowest nonvanishing
order of perturbation theory, the cross section a,
is identical to that obtained using perturbation the-
ory. 02 had also previously been obtained by Arm-
strong et al.2 using an analogy with autoionization
which was valid for y,» ~H~, ~, y~ The rate. o, had
previously been obtained by Feneuille and Arm-
strong3 for the case (H~, ~»y„y~ using a type of
perturbation approach. If y,»)H„~»y~, or )H~, )»y,
»y~, then the region of the maximum could be de-
scribed by an ionization rate for times T»7,„.

In the following sections, we shall introduce the
more accurate models of photoionization, and in-
vestigate the effects on the time evolution of the
resonance profile brought about by the new effects.
incorporated into the models. In Sec. II, we con-
sider a model atom having several bound states
instead of only two; in Sec. III, the effects of
spontaneous emission from the intermediate reso-
nant state are investigated, . and in Sec. IV, we
study the effect of pulse shape on the time evolu-
tion. We shall discuss our results in Sec. V, and
show that they can easily be understood in terms
of a competition between the "two-step". and "two-
photon" modes of ionization. In Sec. VI, we state
our conclusions, and the Appendix outlines an effi-
cient approach to numerically evaluating the time
evolution of the resonance profile.

II. MANY-LEVEL ATOM

In order to ascertain whether or not the results
of BA were produced by incorrect handling of the
"nonresonant" states, i.e., by introducing them
only through an effective two-photon Hamiltonian
H ff we have introduced a model in which several
of the nonresonant levels are treated on an equal
mathematical footing with the resonant level. The
situation is as indicated in Fig. I: the model now
contains several intermediate states which can be
reached from the ground state by absorption of one

photon, with ionization being produced by absorp-
tion of a second photon. The effects of all other
levels in the atom are still introduced through a
new two-photon operator H,«. We will discuss re-
sults obtained using three intermediate states
)a„(n-l)&o), i =1-8. However, calculations have
also been made using four and five intermediate
states, with no significant changes being observed
in the results.

Although for present purposes it is not absolute-
ly necessary to discuss the exact form of II,«, it is
convenient to do so in order tg indicate how the
many-level model could be applied to calculations
involving real atoms, especiaQy since the relevant
question usually arises when referring to the BA
model.

The complete Green's function equation for this
problem can be written quite generally as

(g Ho H„F)G= 1,—- (8)

where II, is the sum of the atomic and field Ham-
iltonians. Let us define the projector operators:

q=l-Ig, n&c)(g, n(d~ — )aq, (n-l)(o)(a), (n-1)(o)
=l

— '~ dz)z, (n-2)~)(E, (n-2)~[

and

P=&— (10)

Q(s Ho HA„)(P+Q)G~g,-na)-)=0

which follow directly from (8)-(10). Solving the
second e(luation for QG one finds

QG)g, n&u)=Q QH~„PGIg, n(d). (13)
I

0 AF

Vfe wish to consider the Green's function equations
on the space left invariant by P.4 In order to find
these equations, consider

P(Z Ho HAF )(P+Q)G ig n—(d)=—ig n(d)
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Inserting this in the first equation gives

P (z -H() -HAP -HAF

ICHOR

F )PG Ig) n~ }=
Ig) n~ })

where

H«=(g n(())H«)a;, (n-l)&()),

%«=(a& (n 1)(()IHAFIE, (n-2)(()),

Hgz (g) n(() IHe«l E {n 2)(())

W =E +n ur.

(20)

K=Q Q.z Ho Q-HA-F Q
(15)

The effects of all the states of the atom not con-
tained in the space which is invariant under I' are
then contained in the term II„„KHAF,' we identify
this as

p +()o

n„(t)=- . G„(z)e '"'«g" dz2ri- (21)

All other matrix elements of II are equal to zero.
The 6 functions in (19) reflect that the atom is in
the state ~g, n(()) at t =0.

The coefficients in (19) are then Fourier trans-
formed using

H, ff (z) ~H«KH« . (16) leading to the algebraic equations

If the states left invariant by Q are truly nonreso-
nant, then H,«(z) will have only a slight dependence
one in the regions of the poles of I'G. Thus one .

can approximate H,«(z) by its value near to one of
the poles, e.g., atz=E~+n~. %'e can then define
this as the effective Hamiltonian for our problem

H ff—H ff (z=-E~+ n &@ )=H«K(z =E~+n co)HAF

(z -&~)G~(z)= H~;G, (z)+ dEH~«Gz(z)+1,
=1

(z -&;)G;(z)=H)gG, (z)+ dEH;zGz(z),

(z-t) )G (z)=H G (z)+ H~G;(z},
=I

where

(22a)

(22b)

(22c)

To make the many-level model completely mathe-
matically correct, one should further replace H„„
by

HAF +H, ff

in the matrix elements used below, Eqs. (20). We
shall not bother to do this, however, since in the
model problem we are considering these matrix
elements are simply parameters to be varied and
their explicit forms are unimportant.

Consider now the time-dependent Schrodinger
equation for this system.

(23)

Inserting (22c} into (22a,) and (22b), one obtains

~

z —)v'(z)+( ' G (z) = H';(g)-(~ '
)G, (g)+(

(24)

z-W ( )+', G;(z) = H,,(z)-i'" G,(.)(
.y (z) . z

+II,, z -4 '
G, z.

(H,:+H„„+H,«)g(t) =H g(t) =i —g(t),
BI'

where

g(t)=()( (t)~g, n(u)+ n;(t)~ag, (n —1)(())
=1

(17)
where

W, (z)=b, , +6' IdE ' '-',

r,(z)=2«la„l~, =.,

H, „(z)-H,„+6', dE

(25)

(26)

(27)

+ „dEnz(t)IE, {n—2)w) (18)

Inserting (18} into (17), one obtains the equations'

in„(t) W„n„(t)= H-„.n„(t)+i6(t)6{n,g), (19)
m e

wheren, m=g, (i},(E), with(i) being the seti
=1, 2, 3, etc. When m={E) the sum above becomes
an integral. Th remaining quantities in (19) are
defined by

(28)

w;(z)=w, (z =~,)= w, (w, -w, ). (29)

It should be noted that the parameters so defined
are still functions of photon energy ~. We shall,

r&.(z)=2«H(, H~I~, »
for I, m =g, 1, 2, 3. If H,z (all l) is a slowly varying
function of E, then all of the parameters defined
in Eqs. (25)-(28) can be approximated well by re-
placing z by a value close to one of the poles of
G(z), e.g.,



769

maxima have c ear times ~/li r.l' . .
have not yetdeveloped

that fpr tlIQes Ted. It iy cle~~ "
and for times T

Vjy

est minimume posl 1'tion of the low

g easuredfrpmto~=-1P m4O (fpr Z'( l/I& ll) '
f l/ The mi»-pf the Prder o) over a time pe»o

t the posit&on whlc
]

T)) 1 p]isam observed for
der pe rturbatlpnd b second Prder Ppuld be Predicte

quite sim
hepry.

50 these results Rrthe region (d 6 ~

been obtain~d fro~ t thpse whlc
In

-
h puld have

1t- a asthe Pny
ilar

pdel by treatingt e»h simple»A m
b. the effects oand absor 1 gxclted bound s

e given
e

as noted ~bove, y& . s of the
anda, intoy, .

1 -- other regionsdepe„dence). '

d b the pA mo«
Sjmgar y~

lbe reproduce ypfile could be
t d bound stater a as the exci e

se results
taking a

d ussipn of theWe will ret rn
simple physi

tp a
V where we wwjll use Rj.n Sec.

& .
h the BA mp ed 1 and the many-Plc
h simi].ar re

~ t re tp explain w y
suits fpr the time1 pdel give s« .

1 . We shall also
level IIlo . t. .prof Qe.

t
evo u

rpxlmatipn- P

l tjpn oi the ion . formula &or +( )t R simple app o
file of the many-

presen R
'

nlzatlonpro1ewhich «' „,„.m, s r»&/I&. I.
scribes the ion'

leve] atom well a

Foe furthedel calculations,
rs are also

for our mp . th paramete
fp

p1ifying as sump
jnvpl vl ng R

tlon that e . rea]. atom~ R calculation 1
- depen- mtake in p a

independent
t ccount this &hould, of co

-

t
dence- 8

the sy~t~m f qe uat, ions1 ke the case ln B '
1~ed analytically'

Unll e
llcated tp be resp

lcally a
(24) is tpp comp j .l splved numerjcawever& be easi y o

. One then
They can, howe

(29) are made. 0g approxlmatlon
f G and G; ln eq,

' ns such as
uR-

t
value~ oinserts the res W

2]) to obtain the coetions uch g . l8) The result&~ p

as iven by
robabilitycl . . nb

' nts appearing in
of loni

(SO)

lg,ation» give

~(t)= l -I o.,(t)I . I a g(t) I'.

} transform Eq.s. (24),Alternative y&

bt n
pne CRn

according to (2i) tp pbta111

gT g~ uj( )z~(g — Wg +

(
. ~i.

) +;&(t) (,z ) (9&)

~ s can then beese equatio ng, 1, 2, 3 . . . This latter ap-ed j.n time.numerically lntegr
to be conslderab yund, howev r

~ f the
roach was «un ~

b alc solution o
i

less e 1fficient than
. f large detunlngequationsFourier -trans fprm

e the Appen@ ) . b the gprmer app opbtajned byt pical rsuit o
in arbitrary unF . 2. The values ln

.-0.01,
is show

d ere II )=Hg»=of the parame e "
0 001 The leve»g01 ~. =0, Rn y

800 and 850, re-t dat0
the

a» 3 .
1 for im

anda, are pc '
t.mes y«&/l&s~tlvely. Obvl«s»

distinct feature .s.
pec lve

1 flat with no spro 1fle is relative y

III. SPONTANEOUS EMEMISSION

tionThe effect of spontan epus em, ls Sion on loniza
'm 1 to broa en od ut any sharp

intermediate reso-

ht affect the devel P

nance
lsslon mlgh

1as ' . ' section, we in ro
p

of1 ate the influence o
th de 1spon a

IIllsS1pn from Rn R 0
diff lt to t t
h of BA dth

m is very ic
pp

f h o b tud tg
evo lution o ef the atomic densl y m

Fr neuille~ (to be re e
hoto-ha introduced a two-level mo
lpthe semic as1 sical field ana gtion wh1cll 1s

f BA. The predlc-ld od 1 o
ct-F model were s own

hen r c-
tlons of the C

p

-.~l .'--t.
ly wl

s were use .
dlflcatlon of the CF mo

effects of ps ontaneous

1

f lonlZatlon Pro 1dence 0

t d t tthis model to se uone can use i

tO

tO

to'

to

900
I

800

.05
I

700
I

600
I

4J

c for theb 1 vs frequency,ionization proba x x c
8 fsystem 0 g, o

Th levels g, a=a&,
are located at the pos i
sp ective'.

Z A T I 0MUI. TIPHOBEHAVIOR8 T TIhfE

««/r~ '"'



THEODOSIOU, ARMSTRONG, Jr. , CRANCE, AND FENEUILLE

for the atomic states only. Rewriting Eqs. (9) of
CF using the notation of this article one finds

in~= E~-i ~2 eg+e' II~, -i ~2 n, +i& t, (32) to '-

Z, -'2, '' II, —

Pnm = O-'n™m (34)

where e is now the angular frequency of the ap-
plied classical field.

Density matrix equations can be derived using
the definition

-2
to

-3
Io

I I

-40
I

-20
I

20

Spontaneous emission can be introduced into the
resulting equations in a straightforward way fol-
lowing the approach of Mollow and Miller. " The
resulting equations are

p..= (r.+-I'} .. ~&. W 2t H-;.

p„= -y, p„+rp„-(py„+2p, H„+5(t},

q = -cp(y, +y, + I')/2+ p, 5-(p„+p„)y,./2,

i = V5 p-(r. +-~,+ I'}/2 H,.(p-„p..), -
(35)

where ~g) is the ground state of the atom, ~a) the
intermediate state, and the off-diagonal density
matrix element p~, has been written in terms of
its real and imaginary parts:

e ' pra=@+~V" (35)

The quantities y„y~, and I' are as defined above,
that is, the inverse lifetime of the excited state
~a) due to ionization, the inverse lifetime of the
ground state ~g) due to ionization through all states
other than ~a), and the inverse of the spontaneous
lifetime of ~a} due to decays back to ~g), respec-
tively. The detuning is defined in Eq. (1}, and

+g dE gF Fa
ta sa g E +2+

(33)

II~, is the matrix element of p. A between atomic
states )g) and )a), etc.

Equations (35) cannot be solved analytically;
they were therefore solved numerically using tech-
niques similar to those used to solve the equations
of the previous section. That is, p„, p«, (I(), and
p. were Fourier transformed, and the resulting
algebraic equations were solved for each value of
the parameters. An inverse Fourier transform
then gave immediately the values of p„(t) and

p«(t) (see Appendix).
A number of calculations were made for differ-

ent values of the parameters appearing in (35). In
particular, values of I' ranging from 10 P, to 10y,
were considered. A typical result is shown in Fig.

FIG. 3. Probability of ionization of a bvo-level atom
including the effect of spontaneous emission from the
excited state. T is the pulse length. H~, =1,. p, =1,
yz

—-0.01, y z
——0.1. F is the inverse spontaneous life-

time of state la) due to decay to state ~g).

3, where P(T) is plotted versus 5 for two values
of T. This figure was obtained withy, =l, y =0.01,
y, =0.1, andH, =4. Comparison of the curves
with I'= & and 1.0 to the one calculated for I'=0
shows that the main effect of spontaneous emis-
sion is to alter the shape somewhat for both maxi-
mum and minimum. However, we found that there
is no change in the time scale required for the
development of either the maximum (-1/~H„~) or
the minimum (-I/y, ) from the values predicted by
BA. In particular, the location of the minimum
for T«1/y, and the location of the minimum for
T»1/y, are almost independent of I'. Thus, for
nonzero I there is still a factor of 2 change in the
position of the minimum relative to that of the
maximum as pu, lse length increases.

From the numerical calculations, we can obtain
an indication of the variation of the shape of the
ionization curve with I'. If ~H„~»y„an increase
in I' causes a relatively small decrease in P(T}
at the maximum, and a large decrease (on a log-
arithmic scale) in P(T) at the minimum. If y,
»~H„~, P(T) at the maximum decreases consider-
ably, and P(T) at the minimum increases with an
increase in I'.

W'e shall return to a consideration of the effects
of spontaneous emission in the discussion of Sec.
V, where we will consider why ~ plays such a
small role in the time evolution of the ionization
profile.

IV. PULSE SHAPE

The final variable which we have considered is
the pulse shape. Physical considerations, to be
discussed in the next section, led us to believe
that the important question concerning the pulse
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Hga FIG. 4. Radiation pulse
shape under consideration.
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FIG. 5. (a) Position of the ionizationprofile minimum
vs g = T5mlrr/2g, lain = & &a j'2; q is given by Eq. ~5). '

Hga

pg 0 & 8 if the radiation pulse area. {b)
Relative value of this minimum (in units of yg) vs g.

shape was whether or not the field was turned on
adiabatically. Adiabatically, in this case, was
felt to most probably mean that the field was turn-
ed on slowly compared to the Rabi oscillation of
the atom between ~g) and (a). Far away from reso-
nance, of course, the Rabi oscillations have a fre-
Iluency

~
5~/2II'. This situation would correspond to

one in which the "Fourier broadening" of the ap-
plied field produced by its turn on is less than the
detuning from resonance.

In order to investigate the influence of pulse
shape on the multiphoton ionization process, we
have used the CF model with the pulse shape
shown in Fig. 4. The parameter 7, which charac-
terizes the rise time of the pulse, was varied
from values r«2m/5;„ to values r»2m/5;„where
5,„=qy,/2 is the value at which the minimum
occurs according to second-order perturbation
theory.

General aspects of the resonance profile pro-
duced by differing pulse shapes have previously
been studied using the CF model. ' In the present
work, we are interested in a very specific aspect
of the profile —its evolution in time. As in the
previous sections, we shall concentrate on the
motion and magnitude of the interference mini-
mum.

One aspect of the results of this calculation is
indicated in Fig. 5(a), where we plot the position

\

of the minimum versus Il=v5 .,„/2v for H„=10',
y =1,yg= 10 . The parameter 8 is the pulse area
of the radiation. In all cases, the pulse length T
was much less than 1/y„ i.e., less than the time
required for the displacement of the minimum
when rectangular pulses are used.

For q«1. , the minimum is at 2g . ; for g»1 at
The position of the minimum changes fairly

abruptly at g-—0.6. That is to say, if q»1, the
minimum does not move in time, but rather will
always be at the position g,.„predicted by pertur-
bation theory. Note that q=1 corresponds to a rise
time of the pulse ~=2m/5;„. Thus q»1 corre
sponds to the pulse being turned on adiabatically
with respect to the Rabi oscillations.

In Fig. 5(b), we show the relative value of the
ionization probability at the minimum as a func-
tion of q. Again, the results are essentially the
same: for q«1, the minimum is very shallow,
but at g=0.5, the minimum undergoes a sharp de-
crease in magnitude. This indicates once more
that the minimum produced for q»1 is essentially
that mhich is predicted by second-order perturba-
tion theory.

One sees then, that the manner in which the
field is turned on can have a determining effect
in the time evolution of the multiphoton profile,
with the key criterion being whether or not the
field is turned on adiabatically. We mill discuss
why this should be so in the next section.

V. DISCUSSION

A. Beers-Armstrong model

Since the results obtained above using the im-
proved models of multiphoton ionization have been
compared to results of the BA model, a thorough
understanding of the BA model will facilitate dis-
cussion of the results of the improved models.

If one uses perturbation theory to obtain approxi-
mate solutions of the density matrix equations for
the two-photon ionization of a two-level atom, one
finds that there are two paths which can be follow-
ed in going from p«, the ground-state density, to
p», the density of a continuum state. These two
paths are indicated in Fig. 6. The interactions

HoF' How'

~OO FOE' ~E'E'

|(' = P,gg gO
oe,

Hgo Ho~--~ PgE FOE PEE

r

Hq

FIG. 6. Paths through which ionization proceeds.
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Ig)-—

0

H

8

FIG. 7. ac Stark level
shifting due to sudden turn-
on of the field at t=o. H
= H~~. The heavy lines
indicate population (sche-
matic).

written above the arrows in Fig. 7 are those which
appear in the perturbation expression linking the
various elements of the density matrix. The upper
path is often referred to as a "two-step" process
since it involves moving population density from
lg) into la) and then on into lE'), i.e., it contains
the sequence p«-p„p~.~.. The lower path is re-
ferred to as a "two-photon" process, since it does
not involve putting the atom into state la), but rath-
er describes a roughly simultaneous absorption of
two photons which takes the atom from lg) to lE).
If one considers the dependence of p» on E, one
finds additional differences between the two-step
and two-photon processes. " If the field is detuned
from the lg)-la) resonance, then the former has a
maximum which conserves energy in the last step
la)-lE ). If the power broadening of the interme-
diate state la) and its lifetime due to ionization
are taken into account, the latter process has its
main maximum such that energy is conserved in
the overall transition lg)-lE). Thus if we consid-
er only the main contributions from the two-step
and two-photon processes, we find that E&E when

energy is not conserved in the first step lg)-la).
Of course, in a complete, rather than a perturba-
tion, solution of the density matrix equations for
two-photon ionization, these paths are not so clear-
ly separable. However, we shall find it convenient
to retain this nomenclature when discussing the
results which are given in the previous sections.

Let us first consider the BA model, and the rea-
sons why there is a shift in the shape and location
of minima of the resonance profile predicted by
that model. An understanding of this will make
our subsequent discussions much more straight-
forward. In the BA model, there are additional
paths between p~~ and p», shown in Fig. 6„which
involves the matrix element H~~. Transitions pro-
duced by H~~ must be energy conserving in the pro-
cess lg)-lE) since H,e is obtained from perturba-
tion theory. There is therefore possibly an inter-
ference introduced into the two-photon process by
the presence of H~~, e.g., between the indirect
path p~~-p, ~-p» and the direct path p~~-p», both
of which have the same beginning and ending points.
This is indicated schematically in Fig. 6. That is

to say, an expression for p» obtained using per-
turbation theory will reflect the interference be-
tween the contributions of the two processes.
Namely, there mill be a contribution to p» from
the indirect path of the form eH,~p,~, and a con-
tribution from the direct path of the form PH~e p~e.
Depending on the parameters involved, these two
terms may make contributions to p» either of the
same or of opposite signs. However, the presence
of a direct path produced by H~~ should not signifi-
cantly affect the upper two-step path since the
maxima of the contributions from these two paths
do not coincide in energy. We shall show below
that the mathematical predictions of the BA model
are explained very well by this interpretation.

Expanding Eqs. (13) and (l4) of BA in a power
series in I/O and keeping only the lowest-order
nonvanishing terms involving either H~, /5 or y, /6
we find an approximate form of P(t) which is valid
«»arge l&l»IH„l, y, and times t»/l5l:

P(t)=—1-(lH„l'/6')exp(-y, t)-(l-lH, .l'/6') e ", (39)

where

qy
' H H ' H H

u=y 1+ y' =2m H + " '~ =2m8'8

and 5;=E~+e-E;. The second term on the right-
hand side of Eq. (39), (lK~, l'/6') exp(-y, t), is ap-
proximately equal to p„(t), as can be shown, in a
rather tedious way, using the BA model to calcu-
late

j U~(t) l' = p„(t), and then making an expansion
valid for the conditions given above. This term
thus corresponds to the contribution to the total
ionization probability from the two-step process.
There are obviously no interference effects pres-
ent in this term. However, the third term on the
right-hand side of Eq. (39) clearly does show in-
terference effects (in o} produced by the presence
of H~~; it is this final term which approximately
describes the contribution of the two-photon pro-
cess to the total ionization probability. The final
form given above for g follows if second-order
perturbation theory is used to evaluate H~~. It is
obvious from this expression that o is just the
ionization rate which is obtained from lowest non-
vanishing order perturbation theory.

In obtaining Eq. (39}, we have dropped rapidly
oscillating terms of the type sin5t and cosset.
These terms are very important for t close to
zero, since the cosset term assures that p„(0)=0,
and the singt term dominates the rise of p„(t)
from zero to the value lH~, I'/O'. However, the
combination of these terms tends to average to
zero for times t&lel.
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For pulse lengths T&1/y„both exponentials in
(39) can be expanded to give

those of Eq. (89) depends on whether or not in the
region of that minimum one term dominates the
sum

The quantity in brackets above is just the transi-
tion rate o, of BA taken at large 5. When T»I/y„
bu«&1/o, exp( y, T-)=0, and

P(T)=«JT— (42}

B. Many-level model

By making a perturbation expansion valid away
from all resonances of the Green's functions for
the two-photon ionization of a many-level atom,
one easily finds the approximate ionization prob-
ability

a„-a. i'
P(t)=1-2«« " exp(-y;f)

5«

o is, of course, just g2 of BA taken at large Q.

The ionization profile for T&1/y, is therefore seen
to be produced by a term with a sharp minimum

(o) superimposed on a term which is smoothly
varying in 5; for T»1/y„ the smoothly varying
term disappears.

As indicated above, the value of p (t) builds up
very rapidly after f= 0 (in a time 1/~5)}, and then
effectively decays away with a lifetime 1/y, . We
can interpret this rapid buildup as having been
produced by the sudden turn-on of the field. The
magnitude of the increase in p„, ~H„~'/62, is just
that which is necessary to conserve the total en-
ergy of the atomic system when the levels are
suddenly ac Stark shifted by the applied field (Fig.
'I). The excited state )a) then decays via ioniza-
tion without having its population further replen-
ished since the field is tuned far from resonance.
Thus, for large ~5~, except for the population pro
moted to ~a) by the turn on of the field at t=0, the
atom must decay predominantly via a two-photon
process which displays sharp interference effects.

««. exp(
5g

for all t such that this sum is of the order of 0.
This condition is obviously necessary since 0 in
(43) is identical to o in (39); that is, the usual
second-order perturbation cross section. In gen-
eral, one can expect one term to be dominant in
(43) if the region of the minimum is much closer
to one level than to any of the others. This "gen-
erally" will not, of course, be true if the matrix
elements into or out of this state are unusually
small.

I~ 2
P(t)-=1- ';" exp[-(y, + I')t]+ 1-' "' e"~a Q2

(45)

C. Spontaneous emission

Equations (35}can also be solved approximately
for large p; the resulting probability of ionization
is quite similar to that given in Eq. (39). Of
course, the coefficients ~H„~'/5' must be replaced,
but the new coefficients show only a weak depen-
dence on I' and are given to a fair approximation
by ~H„['/(5'+-,'I'). This approximate form is ex-
act as I" 0, and is off only about a factor of 2 in
the region of p,-„when I'=10y, . The value of 0 al-
so changes, but again, the changes are small.
The main difference between the solutions to Eqs.
(85) and (39) is that exp(-y, t) is replaced by
exp[-(y, + I')t].

Following the arguments of Sec. VA, one might
then expect that the changes in the shape and posi-
tion of the minimum would in this case occur with
a characteristic time I/(y, +I'). This, however, is
not correct, as can easily be shown if we consider
Eq. (39}with y, replaced by y, +I'

where

g K+«H«««

&-oC (48)

(44)

This equation should provide a fairly good approxi-
mation if 5»1', ~H„~,y, . Once again, we are in-
terested in the variation of P(t) in the region of

Let us consider an extreme case where
exp[-(y, + I")t] rapidly decays away, leaving the
expression

In Eq. (43), I/y« is the ionization lifetime of the
ith state. Comparison of (43) with (39) shows that
the profile predicted for the many-level atom will
show a time evolution which is qualitatively the
same as that of the two-level BA atom. In particu-
lar, one can expect to see interference minima
which move and change their shape in time.

Whether or not the predictions of (48) for a par-
ticular minimum are quantitatively similar to

P(t) —=1-(1—~H„f/0') e ", t»/(y, + I').

Expanding the exponential, one obtains

P(t) = IH„F/5'+at+ (47)

In the region around g,.„, the first, term in this
series has the magnitude y~/y, . The second term
is approximately equal to y~t except very near to

where it has a sharp minimum. Thus the
smoothly varying (in 5) first term in P(t) will dom-
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inate the probability in the region around 5,.„until
t»1/y, . The situation is thus qualitatively as in
the BA model, and one observes a minimum which
moves and changes its shape on a time scale 1/y, .
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APPENDIX

D. Pulse shape

If the reasoning of Sec. VA is correct, the mov-
ing minimum observed in the BA model is, in ef-
fect, produced by the nonadiabatic turn'on of the
driving field. If the field is turned on adiabatical-
ly, there will be no populating of ~a) at f =0 due to
the turn on of the field. Furthermore, for large
detuning, there will be no population promoted to
(a) by the field for t&0. Thus there will be no
superposition of cross sections such as occurred
in Eq. (39) which leads to the short-time behavior
of BA.

The calculations discussed in Sec. IV fully sup-
port this interpretation of the BA results. That is,
the transition rate abruptly changes to the second-
order perturbation rate when the rise time of the
pulse is approximately equal to 1/5, the criter-
ion for an adiabatic turn on of the field.

We outline here the numerical procedure for
efficiently calculating o.„(t),m = g, (i} in Eq. (18)
via their Fourier transforms G„(z).

Equation (25) can be written as a matrix equa-
tion:

A.G=(A-z1) G=B,

where

W~ iy~/-2 H~, iy~, /-2

l Hg~-iy~g/2 W —iy /2

1 0

G= G,

(A2)

VI. CONCLUSIONS

We have made a number of improvements to the
BA model, and have considered the effects of these
improvements on the predicted short-time behav-
ior of tw'o-photon ionization. In particular, we

have considered the effects produced by treating
more levels of the atom explicitly, by introducing
spontaneous emission, and by the shape of the
pulse. The first two of these changes in the model
cause no qualitative chases in the predictions of
BA; the last of these effects was shown to be of
critical importance. We have discussed the rea-
sons why these improvements in the model either
did or did not significantly effect the predictions,
and showed that the results can be interpreted as
a competition between two-step and two-photon
modes of ionization. We note that this discussion
indicated. that for short time periods, the two-step
process could be quite important even when the
first step was considerably detuned from reso-
nance. This is in contrast to a conclusion of Che-
botayev" reached by an analysis based on time-in-
dependent perturbation theory alone.

These calculations imply that either the type of
minimum in the cross section predicted by
Feneuille and Armstrong or the phenomena of a
moving minimum' should be observable in prin-

. ciple. However, in practice, both of these will
be extremely difficult to observe due to the re-
quirement that the field be turned on fast with re-
spect to the inverse of the detuning from resonarice
at the minimum.

The solution of (A1} will be formally given by

detg )„-

detA I

(A3)

The determinant in the denominator can be ex-
pressed as a function of the eigenvalues of matrix
A

det[g. (
= det[g-z], )

= (yg-z). (A4)

Consequently the Fourier transform Eq. (21}of G„
will be

where C„(z) is the determinant of the matrix ob-
tained fromm by replacing its m column with ma-
trix B.

The evaluation of (A5) is immensely facilitated
by the use of the theory of residues; namely,
since we are considering only t&0 the integral in
(A5) is equal to the contour integral along the path
shown in Fig. 8. The latter integral is then equal
to 2@i x (the -sum of residues of the integrand func-

'

tion). This sum:includes only the eigenvalues X,
with Im X&&0; it turns out that all the eigenvalues
of A possess this property.
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, ( Imz

+R
= Rez FIG. 8. Integration con-

tour for Eq. (A5).

Thus

(-1) (x, -z„'I).
f=f, ~A

(A6)

We note here the distinct advantages of this
method of evaluating n (t) versus the widely used
direct integration of Eqs. ($1}: (a} In dealing with
a realistic problem one may have to treat large
detunings of the order of 0-l eV, 1 eV=&0" sec '
(S=1). The experimentally typical pulse durations

are 1 psec-100 nsec. In solving Eg. (31}with 6-1
eV one then deals with oscillating factors with
phase gt=&0'-&O'. In order to follow such oscilla-
tions one should need &0'-&0' integration steps
for each value of g. This would require prohibi-
tively large time even for a medium size com-
puter. (b) With such a number of steps the possi-
bility of overwhelming roundoff errors is intro-
duced to the degree of doubting the significance
of the results. (c) The necessary computation
time is proportional to the pulse duration in the
direct integration case, whereas independent of it
in the present approach. (d) One can see more
transparently the various contributions to the
ionization probability, especially through the
roots X~ whose imaginary parts are the "effective"
ionization lifetimes of the respective levels.

The present procedure is similarly applied to
Egs. (36) by solving the algebraic system of equa-
tions of the Fourier transforms for p«, p„, cp,
and p.
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