Properties of single-term atomic states calculated in a variationally optimized-local-central-potential model

K. Aashamar*

Department of Physics and Center for Chemical Physics, University of Western Ontario, London, Ontario N6A 3K7, Canada

T. M. Luke and J. D. Talman

Departments of Applied Mathematics and Physics and Center for Chemical Physics, University of Western Ontario, London, Ontario N6A 5B9, Canada

(Received 23 June 1978)

A method has been developed for calculating properties of single-term atomic states using a variationally optimized effective local central potential. The method has been applied to the ground states and, in certain cases, low-lying excited states of the elements with $3 \le Z \le 54$. Results are presented for the energies of these states and certain other properties such as dipole polarizabilities and single-particle orbital parameters. The results show that the method leads to wave functions that are very close to Hartree-Fock wave functions but for which the single-particle orbitals can be obtained from a single numerical central potential.

I. INTRODUCTION

The Hartree-Fock (HF) approximation¹ can be applied to atoms in a variety of ways because of the fact that a single Slater determinant composed of single-particle angular-momentum eigenfunc-tions is in many cases not an eigenfunction of the total orbital and spin angular momenta.

For an open-shell atom such as carbon, one approach, which we will call single-term Hartree-Fock (STHF), is to form an eigenfunction, e.g., ${}^{3}P$, of the L^{2} and S^{2} operators from the groundstate $(1s)^2(2s)^2(2p)^2$ configuration, and carry out the variational calculation for the expectation value of the Hamiltonian with respect to the singleparticle orbitals. Another approach, which we will call configuration-averaged Hartree-Fock (CAHF) is to average (with the statistical weights) the expectation value of H over all the terms of the ground-state configuration before performing the variational calculation. This method, which has been called "hyper-HF" by Slater² is somewhat simpler to implement than STHF, because the averaging process is essentially an angle averaging, and eliminates the angular dependence from the problem in a simple way.

Complete results for the ground or close-toground states of all atoms in STHF have been given by Froese Fischer,¹ and similar results for CAHF have been given by Mann.³ For closed-shell atoms or atoms with one valence electron or one hole in a closed shell, the two methods are the same.

In a previous article,⁴ (hereafter referred to as I) a variationally optimized effective central potential model for atoms has been developed. This model used the configuration-averaged expectation

value for H. This method will be called the configuration-averaged optimized-potential model (CAOPM). It has been found⁴⁻⁶ that this method gives results that are in very close agreement with the corresponding CAHF results.

In this article, the methods of I will be extended to develop an effective potential model for the case in which the expectation value of H is calculated for a single term. Because of the success of the CAOPM in approximating the CAHF results, it was felt that this would lead to results close to the STHF results.

The theory for the model will be developed in Sec. II and some of the numerical details discussed in Sec. III. The results for a selection of properties of certain atoms will be given in Sec. IV and compared with the STHF and CAOPM results. It is found that the results are again very close to the Hartree-Fock results. The effective potentials are in most cases rather close to the potentials found in the CAOPM calculations. We also have presented results for the ground-state configurations of certain transition elements for which numerical HF results do not ceem to be readily available.

II. THEORY

We consider a single wave function of the form

$$\Psi(LS) = \sum C_{LS}(m_1, m_2, \dots, m_N) | m_1, m_2, \dots, m \rangle ,$$
(2.1)

where $|m_1, m_2, \ldots, m_N\rangle$ represents a Slater determinant with orbitals of magnetic quantum numbers m_1, m_2, \ldots, m_N occupied. The *n* and *l* quantum numbers are omitted for convenience. The quantity $\langle \Psi(LS) | H | \Psi(LS) \rangle$ can be expressed in the form (in units in which $\frac{1}{2}e^2 = \hbar = 2m = 1$)

19

6

© 1979 The American Physical Society

where

$$I(i,i) = \int_{0}^{\infty} P_{i}(r) \left(-\frac{d^{2}}{dr^{2}} + \frac{l_{4}(l_{i}+1)}{r^{2}} - \frac{2Z}{r} \right) P_{i}(r) dr,$$
(2.3)
$$R_{\lambda}(ijkl) = 2 \int_{0}^{\infty} dr \int_{0}^{\infty} dr' P_{i}(r) P_{j}(r') \times (r_{\zeta}^{\lambda}/r_{\zeta}^{\lambda+1}) P_{k}(r) P_{i}(r').$$
(2.4)

In the present one-term calculation, only the terms (kl)=(ij) or (kl)=(ji) occur in the two-particle terms in Eq. (2.2). The coefficients q_i and $b_{ijkl}(\lambda)$ are purely geometric, and are calculated from the $C_{LS}(m_1, m_2, \ldots, m_N)$ of Eq. (2.1) for the particular term of interest. The functions $P_i(r)$ are the reduced radial-wave functions for the single-particle orbitals. In the present calculation they are assumed to satisfy the reduced radial Schrödinger equation

$$-\frac{d^2 P_i}{dr^2} + \frac{l_i(l_i+1)}{r^2} P_i - \frac{2Z}{r} P_i + V(r) P_i = e_i P_i, \quad (2.5)$$

where V(r) is the effective central potential that is to be varied.

The variational problem is to minimize $\langle H \rangle$ subject to variations in V(r). This requires that

$$\frac{\delta\langle H\rangle}{\delta V(r)} = \sum_{i} \int_{0}^{\infty} \frac{\delta\langle H\rangle}{\delta P_{i}(r^{*})} \frac{\delta P_{i}(r^{*})}{\delta V(r)} dr^{*} = 0.$$
 (2.6)

It is seen that

$$\frac{\delta \langle H \rangle}{\delta P_{i}(r)} = 2q_{i} \left(-\frac{d^{2}}{dr^{2}} + \frac{l_{i}(l_{i}+1)}{r^{2}} - \frac{2Z}{r} \right) P_{i}(r) + 4 \sum_{k} U_{ik}(r) P_{k}(r) = 2q_{i}[e_{i} - V(r)] P_{i}(r) + 4 \sum_{k} U_{ik}(r) P_{k}(r), \qquad (2.7)$$

where

$$U_{ik}(r) = 2 \sum_{jI\lambda} b_{ijkl}(\lambda) \int_0^\infty dr \, P_j(r \, \gamma(r_{\varsigma}^{\lambda}/r_{\varsigma}^{\lambda+1}) P_l(r^{\gamma}).$$
(2.8)

It was shown in I that

$$\frac{\delta P_i(r')}{\delta V(r)} = -G_i(r, r')P_i(r), \qquad (2.9)$$

where $G_i(r, r^{\prime})$ is the Green's function for the reduced radial equation

$$G_i(r, r') = \sum_{k \neq i} (e_k - e_i)^{-1} P_k(r) P_k(r').$$
 (2.10)

An explicit expression for $G_i(r, r')$ has been given in I.

When Eqs. (2.7) and (2.9) are combined with (2.6), it is found that the effective potential V(r) satisfies the integral equation

$$\int_{0}^{\infty} H(r, r') V(r') dr' = Q(r), \qquad (2.11)$$

where

$$H(r,r') = \sum_{i} q_{i} P_{i}(r) G_{i}(r,r') P_{i}(r'), \qquad (2.12)$$

$$Q(r) = 2 \sum_{ik} \int dr' P_i(r) G_i(r, r') U_{ik}(r') P_k(r'). \quad (2.13)$$

In deriving (2.11), the terms in e_i in Eq. (2.7) have dropped out because the Green's function $G_i(r, r^{\prime})$ is orthogonal to $P_i(r)$. The variational problem has now been reduced to the problem of obtaining self-consistent solutions to Eqs. (2.5) and (2.11).

III. NUMERICAL METHODS

Equations (2.5) and (2.11) have been solved numerically in logarithmic variables $\rho = \ln r$, $-8.0 < \rho < 4.6$. The differential equation (2.5) has been solved using the Numerov method with various values of $\Delta \rho$ with the integration being cut off when $P_i(r) \sim 10^{-5}$. The integral equation (2.11) is solved by replacing the integral by a summation and treating the equation as a system of linear equations. For this part of the calculation $\Delta \rho$ was 0.2.

The solution of Eq. (2.11) has a potential difficulty in that the kernel is singular since V(r)=1is a solution of the homogeneous problem. In practice, the integral is cut off at a suitable r~10 a_0 , and the potential is extrapolated as a Coulomb potential for larger r. It was shown in I that for the COAPM the potential behaves like the static potential produced by the atom with one electron removed for large r. It can be proved that this is also the case in the present calculation. The calculated V(r), which can contain an arbitrary additive constant, has been matched to this asymptotic behavior at r_{max} .

The atomic-structure program of Eissner and Nussbaumer⁷ has been used for the calculation of the geometric coefficients q_i and $b_{ijkl}(\lambda)$. After the optimized effective potential was obtained, the total energy calculation was performed using this program.

IV. RESULTS

The numerical results of the present calculation are presented in Tables I and II. The results can be compared with the numerical HF results of

TABLE I. Comparison of ground-state (and some near-ground-state) total energies and polarizabilities for the neutral atoms from Li through Xe. Except for entries labelled by a letter, the HF energies are those of Ref. 1, and the HF polarizabilities those of Ref. 8.

		Energy (Ry)	· · ·	ΔE	Po	larizability	7 (Å ³)
Element	Term	OPM	HF	ppm	OPM	HF	Exp.
от:	2025	14 9649	14 9655	47	15.02	15.06	99 top
J Bo	25 5 (2c) 21 c	- 29 1448	- 14.0055	41	7.81	7 77	44 I4
4 De	$(23)^{-2}$	40.0555	- 40.0591	52	3.48	2 4 2	
5 D	2p F (0.4.) 28 D	- 45.0555	- 49.0301	55	1 79	1 74	
O U	$(2p)^{n}P$	- 10.0100	- 10.0114	50	1.09	1.00	1 19 . 0 000
7 N	$(2p)^{-3}$	- 108.7964	- 108.8019	51	1.03	1.00	1.13±0.06
80	$(2p)^{-3}P$	- 149.6149	- 149.6188	20	0.75	0.73	$0.77 \pm 0.06^{\circ}$
9 F	$(2p)^{\circ} P$	- 198,8157	- 198.8187	15	0.04	0.53	o porch
10 Ne	$(2p)^{-3}$	- 257.0910	- 257.0942	11	0.40	0.39	0.3946
11 Na	35*5	- 323.7119	- 323.7178	18	18.74	18.67	$21.5 \pm 2^{\circ}$
							$24.4 \pm 1.7^{\circ}$
12 Mg	(3s) ²¹ S	- 399.2223	- 399.2293	18	14.26	14.13	7.0 ± 1.8^{e}
13 Al	3p ² P	- 483.7462	- 483.7534	15	11.18	10.97	
14 Si	$(3p)^{23}P$	- 577.7008	- 577.7087	14	6.98	6.81	
15 P	$(3p)^{34}S$	- 681.4264	- 681.4376	16	4.55	4.42	
16 S	$(3p)^{43}P$	- 794.9998	- 795.0098	13	3.53	3.44	
17 Cl	$(3p)^{5}{}^{2}P$	- 918,9569	- 918.9641	9	2.67	2.61	
18 Ar	(3p) ⁶¹ S	-1053.623	-1053.635	11	2.02	1.98	1.641 ± 0.002 b
19 K	$4s^2S$	-1 198.314	-1 198.330	13	37.69	37.58	45.7 ± 6^{f}
10 11	10 0	1 100.011	1100.000	10	0.100	000	45.2 ± 3.2^{b}
20 Ca	(4s) ²¹ S	-1353.503	-1353.516	10	33.91	33.80	$\begin{cases} 19.7 \pm 0.6 \\ 22.5 \end{cases}^{e}$
21 Sc	$3d(4s)^{22}D$	-1519452	-1519.471	13	25.59	26.80	
92 TY	$(2d)^2(A_c)^{28}F$	-1696 789	-1696 812	14	21.85	22.40	
22 II 99 W	$(34)^{(\pm 3)}$ 1 $(34)^{3}(4c)^{2}4F$	1995 740	1 885 769	15	19.03	19 10	
23 V 24 Cm	$(3d)^{5}Ae^{7}S$	-2086 687	$-2.086.710^{a}$	11	9.97	11 58	
24 01	(54) 45 0	-2000.001	2086 714 h	11	0.01	11.0 -	
	$(3d)^4(4s)^{25}D$	-2 086 588	-2 086 620	15	15 92	16 60	
	$(3u)$ (± 3) D	-2000.000	-2 000.020 2 086 610 ⁸	15	10.04	10.00	
95 Mn	(2 d) 5 (A c) 26 S	2 200 602	-2 200.013	17	14 70	14 60	
20 Mil	$(3a)^{6}(4a)^{25}D$	9 594 954	9 594 997	19	19 09	19.70	
20 Fe	$(34)^{(45)} D$	-4 044.004	-2 324.001	10	11 22	11 20	
27 CO	$(3u)^{(45)} r$	-2 102.191	-2 (02.029	19	10 19	10.90	ac , r b
28 NI	$(3a)^{(4s)}$	-3013.705	-3013.742	14	10.13	10.20	20 ±0
29 Cu	$(3a)^{-4}s^{-5}$	-3211.815	-3277.926 -	10	4.00	1.34	<i>44</i> ±4
	(a 1)9(4) 22m		-3277.930 "	17	0.40	0.04	
	$(3a)^{*}(4s)^{D}$	-3277.806	-3277.900	10	0.09	9.04	
	10 11 10 1 × 21 0		-3277.899 "	10		0.10	
30 Zn	$(3a)^{-2}(4s)^{**}S$	-3 555.665	-3 555.696	9	8.35	8.12	
31 Ga	4p-P	-3846.495	-3846.522	7	9.80	9.43	
32 Ge	(4p) ** P	-4 150.697	-4 150.719	5	7.28	7.01	
33 As	(4p)**S	-4468.457	-4468.477	4	5.42	5.22	
34 Se	(4 <i>p</i>)*° <i>P</i>	-4 799.722	-4 799.735	3	5.04	4.56	
35 Br	(4 <i>p</i>)** <i>P</i>	-5 144.860	-5 144.883	4	3.96	3.80	a ca b
36 Kr	(4 <i>p</i>) • • S	-5504.082	-5504.110	5	3.25	3.12	2.48 ^b
37 Rb	5s ² S	-5876.684	-5876.715	5	46.14	45.96	$48.7 \pm 3.4^{\text{b}}$
38 Sr	$(5s)^{21}S$	-6 263.063	-6 263.091	4	45.22	44.92	$\begin{array}{c} 24.0 \\ 31.4 \\ 25 \\ +3^{b} \end{array}$
39 V	4d(5e)22n	-6669 905	-6 663 368	11	21 79	35 52	-0 -0
40 Zr	$(4d)^2(5c)^{23}F$	-7077 060	-7 077 990	3	26 06	29.30	
41 Nh	$(10)^{4} = 6n$	-1011.909	-7507 160 8	0 0 1	16 70	40.00	
41 NN	(±4) 55 D	-1 207.168	-7507 100 h	1.0	10.19		
	$(4d)^3(5s)^{24}F$	-7507 075	7 507 104	4	99 90	94 09	
	(100) 1	-1901.019	-7507.104	4	23,20	24.92	
			-7 507.079 ^a	0.5			
42 Mo	(4 d) ⁵ 5s ⁷ S	-7 951.078	- 7 951.068 ^a	-1	12.42	13.4 ^h	9 ± 2^{b}
			-7951.102 ⁿ	3			

9

		Energy (Ry)		ΔE		Polarizabili	ty (Å ³)	
Element	Term	OPM	HF	ppm	OPM	\mathbf{HF}	Exp.	
	$(4d)^4(5s)^{25}D$	-7 950 864	-7 950 887	3	20.25	21.63		
	(10) (00) D	1000.001	-7950.856^{a}	-1				
43 Tc	$(4d)^5(5s)^{26}S$	-8409.546	-8409.577	4	18.21	19.13		
44 Ru	$(4d)^7 5s {}^5F$	-8883.055	-8 883.053 ^a	-0.2	10.82			
	,	. ÷	-8883.080 ^h	3				
	$(4d)^6(5s)^{25}D$	-8882.945	-8 882.975	3	16.51	16.88		
			-8 882.949 a	0.5				
45 Rh	$(4d)^8 5s {}^4F$	-9371.731	-9371.767 ^a	4	10.32			
			-9371.767 ^h	4				
	$(4d)^{7}(5s)^{24}F$	-9371.574	-9371.602	3	14.70	15.10		
			-9371.578 ^a	0.4				
46 Pd	$(4d)^{101}S$	-9875.802	-9875.814 ^a	1	3.51	3.43		
			-9875.84 8 ^h	5				
	$(4d)^8(5s)^{23}F$	-9875.520	-9875.566	5	13.54	13.64		
			-9875.542 ^a	2				
47 Ag	$(4d)^{10}5s^{2}S$	-10 395.337	-10 395.370 ª	3	8.59	9.59		
-			-10395.398 ^h	6				
	$(4d)^9(5s)^{22}D$	-10 394.978	-10 395.036	6	12.05	12.42		
		1	-10 395.006 a	3				
48 Cd	$(5s)^{2}$ ¹ S	-10 930.198	-10 930.266	6	11.07	11.41		
49 In	$5p^2P$	-11480.262	-11480.338	7	12.64	12.77		
50 Sn	$(5p)^{2}{}^{3}P$	-12045.856	-12045.863	1	8.73	10.20		
51 Sb	$(5p)^{34}S$	-12626.914	-12626.971	5	8.42	8.06		
52 Te	$(5p)^{4}{}^{3}P$	-13223.522	-13 223.568	3	7.59	7.30		
53 I	$(5p) {}^{52}P$	-13835.930	-13835.962	2	6.62	6.31	•	
54 Xe	$(5p) {}^{6} {}^{1}S$	-14464.235	-14464.277	3	5.64	5.38	4.044 ^b	

TABLE I. (Continued)

^aRef. 10.

^cR. A. Alpher and D. R. White, Phys. Fluids 2, 153 (1959).

^dG. E. Chamberlain and J. C. Zorn, Phys. Rev. 129, 677 (1963).

^eP. L. Altick, J. Chem. Phys. <u>40</u>, 283 (1964).

^fW. D. Hall and J. C. Zorn, Bull. Am. Phys. Soc. <u>12</u>, 131 (1967).

^gRef. 9.

^h Ref. 8.

Froese Fischer¹ and Fraga *et al.*,^{8,9} the analytic wave-function HF calculations of Clementi and Roetti,¹⁰ and where possible, with experiment. It is seen that there is general close consistency among the results, with some exceptions that will be noted in the following.

The total atomic energies and dipole polarizabilities are given in Table I for the elements Li to Xe. There are two entries for Cu, Ag, and some of the transition elements. The tables of Froese Fischer give results only for the terms in which the 4s (or 5s) shell is filled while for these elements the s shell is open or unoccupied in the ground state. The comparative HF results for the these true ground state terms are those of Clementi and Roetti and those of Fraga *et al.* Otherwise the Froese Fischer results are used for comparison.

Generally, the discrepancy (ΔE) in total energy from the HF results decreases from about 50 ppm for the lightest elements to about 5 ppm for the heaviest elements. We note that the agreement with the ground-state energies calculated by Clementi and Roetti is unexpectedly good, and that in two cases, Ru and Mo, the optimized potential model (OPM) energy is actually below the HF energy. Evidently, the Clementi and Roetti results are not absolute HF minima, either because the functional forms are not sufficiently general, or because the solutions have not been fully optimized.

The dipole polarizability of the ground state of a an atom is an important property in, for example, its behavior in collisions. The results for the polarizabilities were calculated using the variational method of Pople and Schofield¹¹ and Thorhallsson *et al.*¹² In this method the second-order energy shift of an atom in a uniform electric field is estimated variationally by multiplying the unperturbed wave function Φ by a factor of

^bR. R. Teachout and R. T. Pack, At. Data <u>3</u>, 195 (1971).

TABLE II. results for c	Single orbita onfiguration d	l properti "s are tho	es in the groundse of Ref. 10; c	d-state (and so otherwise they	me near-gr are from R	ound-state) ef. 1. The n	configuration egatives of th	s for a selec 1e single-par	tion of eler ticle energ	nents betwe ies are sho	en Li and Xe wn.	. The HF
		(-1)×Sin	igle-Particle Ei	nergy (Ry)			4	ر2	-12		T L 3	
Element	Term	Orbital	HF	OPM	HF	OPM	HF	OPM	HF	OPM	HF	OPM
ц Ц	942 D	16	15 391	13.827	0.3259	0.3274	0.1434	0.1452	4.674	4.664	•	•
5	zh r	of 20	0.98941	1 057 0	1.977	1.957	4.709	4.596	0.7129	0.7260	•	0 • 0
		24	0.61971	0.620 32	2.205	2.254	6.146	6.432	0.6050	0.5966	0.7756	0.7907
16 01	0, 8, 0	ļ	(0.610)	61 691	0 1578	0 157 9	0.03347	0.033.62	9.618	9.613	•	• •
IU Ne	S- 047	SI	00.040	TCOTO	0 809 1	0 804 8	0 9671	0.973.0	1.633	1.630	0 0 •	•
		25 2 <i>p</i>	3.000 0 1.700 8	J.6926	0.9653	0.966 1	1.228	1.232	1.435	1.436	10.01	11.04
		•	(1.585)									
14 Si	$3p^2 \ ^3P$	ls	137.62	131.31	0.1114	0.1115	0.01670	0.01673	13.58	13.58	•	•
8	7	2s	12.313	10.684	0.5629	0.5667	0,3773	0.3831	2.590	2.574	•	•••
		2b	8.5121	7.4413	0.5354	0.5362	0.3597	0.3615	2.456	2.457	47.27	47.57
		3° 1	1.0797	1.0825	2.207	2.190	5.676	5.578	0.6032	0.6142	0 0 0	•
		3¢	0.59423	0.596 15	2.752	2.774	8.981	9.136	0.4780	0.4787	2.054	2.203
		•	(0.599)							C L C		
17 CI	$3s^{2}3p^{5}$ ² P	Is	209.77	201.92	0.09130	0,09133	0.01120	0.01121	16.56	16.56	•	
	I	2s	21.215	19.026	0.4417	0.4442	0.2312	0.2341	3.314	3.296	• •	•
		2b	16.144	14.594	0.4057	0.4063	0.2043	0.2053	3.202	3.200	100.4	100.7
		3s	2.1458	1.8818	1.556	1.550	2.813	2.794	0.8749	0.8855	•	•
		3p	1.012,8	1.0054	1.842	1.848	4.059	4.090	0.7333	0.7354	6.769	7.059
			(0.956)						01.00			
24 Cr	$3d^44s^2 D$	SI	441.18	429.50	0.064 15	0.064 16	0.005 52	0.005.52	23.53	23.53	0	• •
		2s	52.878	49.152	0.2940	0.2952	0.1020	0.1028	5.013	4.99	• •	
		2p	44.731	41.815	0.2601	0.2606	0.083 06	0.08343	4.931	4.926	350.5	350.6
	. •	3s	6.9982	5.9444	0.9051	0.9075	0.9432	0.9484	1.542	1.543	00.	•
		3p	4.4977	3.9015	0.9656	0.9619	1.097	1.087	1.410	1.418	39.65	40.85
		3d	1.1383	0.71710	1.219	1.245	1.910	2.038	1.083	1.077	3.348	3.385
		4s	0.47948	0.47736	3.494	3.391	14.17	13.55	0.3643	0.3900	•••	•
	$3d^{5}4s$ ⁷ S	ls	440.77	428.99		0.06416		0.005 52		23.53		
	(pround)	2s	52.419	48.580		0.2955		0.1031		4.987		•••
	-0	2p	44.279	41.250		0.260.8		0.08360		4.924		350.5
		35	6.5699	5.6489		0.9144		0.9646		1.532		•
		3¢	4.1014	3.6207		0.9749		1.120		1.402		39.91
		3d	0.746 96	0.49598		1.404		2.720		0.9964		2.911
		4s	0.44388	0.466.92		3 . 478		14.20		0.3773		•
			(497)						•			
29 Cu	$3d^9 4s^2 2D$	ls	658.07	643.65	0.05288	0.05287	0.00375	0.00375	28.51	28.52	•	•
		2s	82.169	77.298	0.2375	0.2382	0.06650	0.06687	6.225	6.202	•	•
		2p	71.758	67.786	0.2075	0.2077	0.05275	0.05281	6.157	6.156	672.3	673.2

10

K. AASHAMAR, T. M. LUKE, AND J. D. TALMAN

<u>19</u>

(-1) X Single burdlet Every (B) r i^2 <th< th=""><th></th><th></th><th></th><th></th><th></th><th>TABL</th><th>.ЕП. (Conti</th><th>inued)</th><th></th><th></th><th></th><th></th><th></th></th<>						TABL	.ЕП. (Conti	inued)					
			(-1) × S	ingle Particle I	Inergy (Ry)		r		r2		-1~	•	1 6.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Element	\mathbf{Term}	Orbital	HF	MGO	ΗF	MdO	НF	OPM	HF	OPM	HF	OPM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			38	10.521	8.9491	0.7184	0.7208	0.5953	0.5992	1.959	1.955	:	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3\$	7.1138	5.982 5	0.7510	0.7507	0.6651	0.6639	1.824	1.825	83.02	83.76
$3d^4a_5^2$ is 0.56944 0.58376 2.973 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6661 0.6207 0.6603 0.6161 0.6163 0.7711 0.0037 0.6161			3d	1.4804	1.0486	0.9183	0.9253	1.105	1.136	1.457	1.456	8.154	8.246
			4s	0.56948	0.583 76	2.973	2.896	10.37	9,965	0.4303	0.4560	• • •	•
		3d ¹⁰ 4s ² S	15	6.57.58	643.47		0.05287		0.00375		28.53		:.
2p 71.234 67.513 0.2075 0.03274 6.139 6.139 $6.74.1$ $3p$ 0.47594 0.55151 0.7547 0.6721 1.1317 82.84 $3p$ 0.47594 0.55151 0.7547 0.6721 1.137 1.496 1.747 $3p$ 0.47594 0.55161 0.03714 0.0115 0.0412 0.7547 0.6721 1.137 1.496 1.746 $3p$ 0.47594 0.51614 0.03119 0.00115 0.0419 4.053 1.747 1.749 1.749 4100 1.712 1.1039 0.1326 0.1329 0.03119 0.7413 0.1491 1.76 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.749 1.741 1.749 1.741 1.749 1.741 1.741 <td< td=""><td></td><td>(ground)</td><td>2s</td><td>81.636</td><td>77,008</td><td></td><td>0.2381</td><td></td><td>0.06681</td><td></td><td>6.207</td><td></td><td></td></td<>		(ground)	2s	81.636	77,008		0.2381		0.06681		6.207		
32 10.023 $5.72.7$ $0.722.7$ 0.66721 1.511 1.714 1.510 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.04811 0.04811 0.04811 0.04811 0.04811 0.04811 0.04811 0.04811 0.04811 0.04811 0.04811 0.048111 0.048111 0.048111 0.048111 0.048111		b	20	71.234	67.518		0.2075		0.05274		6.159		674.1
39 6.6483 5.758 0.7547 0.6711 1.377 1.461 1.461 1.277 1.461 1.277 0.4413 1.177 1.277 0.4413 0.745 0.28141 2.9833 1.377 0.4413 0.6413 0.7415 0.62461 1.287 0.4413 0.1396 0.03717 0.00719 0.00717 0.00719 0.00717 0.00718 0.0413 0.741 0.7413 0.7413 0.7413 0.713 0.1114 0.2331 0.01185 0.013 0.113 0.1111 0.2311 0.0118 0.0118 0.0118 0.113 0.1111 0.01117 0.0118 0.0118 0.113 0.1111 0.01117 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 <td></td> <td></td> <td>3s</td> <td>10.023</td> <td>8.7217</td> <td></td> <td>0.7227</td> <td></td> <td>0.6029</td> <td></td> <td>1.951</td> <td></td> <td>•</td>			3s	10.023	8.7217		0.7227		0.6029		1.951		•
3^2 0.881.61 0.581.61 0.981.61 0.981.61 0.981.61 0.981.61 0.481.61 <th0.10< th=""> <th0.10< th=""> <th0.10< td="" th<=""><td></td><td></td><td>30</td><td>6.6483</td><td>5.7588</td><td></td><td>0.7547</td><td></td><td>0.6721</td><td></td><td>1.817</td><td></td><td>82.94</td></th0.10<></th0.10<></th0.10<>			30	6.6483	5.7588		0.7547		0.6721		1.817		82.94
			3d	0.98148	0.85181		0.9833		1.327		1.406		7.743
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4s	0.47590	0.62461		2.953		10.26		0.4413		
41 Nb $44^{6}s^{5}$ Vr is 1371.14 1350.0 0.057719 0.001 85 0.001185 0.0449 0.058 0.038 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.038 0.				(0.568)					1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41 Nb	$4d^{3}5s^{2} 4F$	1s	1371.14	1350.0	0.03719	0.03717	0.00185	0.00185	40.49 .	40.53		:
2p 177.91 170.89 0.1397 0.02383 0.0036 3.149 1.224 2.124 <th2.124< th=""> 2.124 2.124</th2.124<>			2s	194.22	186.06	0.1626	0.1628	0.03108	0.03116	9.134	9.116	•	0010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2p	177.91	170.89	0.1398	0.1397	0.02383	0.02380	9,094	9*098	2124	2129
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			35	34.763	31.427	0.4516	0.4537	0.2333	0.2355	3.159	3.144	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			34	28.430	25.645	0.4483	0.4499	0.2335	0.2353	3.057	3.045	346.0	343.8
			3d	16.923	15.099	0.4308	0.4316	0.222.9	0.2240	2.857	2.855	49.98	50.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4s	5.3307	4.4170	1.188	1.189	1.596	1.601	1.123	1.131	•	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4 <i>p</i>	3.344 5	2.8386	1.313	1.312	1.972	1.970	1.007	1.013	43.51	45.47
5s 0.43320 0.44025 3.928 3.775 17.72 16.52 0.3199 0.3426 \cdots $2p$ 1370.9 13870.0 0.03719 0.00185 40.50 \cdots \cdots $2p$ 177.64 170.56 0.1397 0.03719 0.03118 9.111 2130 $3p$ 34.493 31.188 0.4561 0.1397 0.02380 9.099 2130 $3p$ 28.158 25.411 0.4501 0.2247 2.445 $2.343.8$ $3p$ 28.158 25.411 0.4501 0.2247 2.345 $2.49.9$ $3d$ 16.623 14.250 0.4321 0.2355 3.045 $3.43.8$ $4p$ $3.108.3$ 2.6829 1.324 1.126 1.126 1.126 $4d^{55}1D$ 16.601 0.3321 0.2355 0.2355 2.945 2.77 $4d^{55}1D$ $1s$ 0.4401 1.1217 1.126 <td></td> <td></td> <td>4d</td> <td>0.81174</td> <td>0.53204</td> <td>1.900</td> <td>1.956</td> <td>4.346</td> <td>4.711</td> <td>0.6948</td> <td>0.6875</td> <td>3.174</td> <td>3.234</td>			4d	0.81174	0.53204	1.900	1.956	4.346	4.711	0.6948	0.6875	3.174	3.234
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$			5S	0.43320	0.44025	3.928	3.775	17.72	16.52	0.3199	0.3426	•	:
		$4d^4 5s^6 D$	ls	1370.9	1350.0		0.037 19		0.00185		40.50		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(pround)	2s	193.95	185.70		0.1628		0.03118		9,111		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9	2p	177.64	170.56		0.1397		0.02380		660.6		2130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			35	34.489	31.188		0.4539		0.2358		3.143		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			34	28.158	25.411		0.4501		0.2355	•	3.045		343.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			34	16.652	14.850		0.4321		0.2247	• .	2.852		49.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4s	5.0689	4.2516	•	1.194		1.617		1.126		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4 <i>b</i>	3.1083	2.682.9		1.324		2.011		1.006		44.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			44	0.597 52	0.43998		2.149		5.846	•	0.6385		2.772
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			SS	0.42844 (0.498)	0.454 19		3.051		11.11		1700°0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42 Mo	$4d^{4}5s^{2}5D$	ls	1442.7	1421.0	0.036 30	0.03627	0,00176	0.00176	41.49	41.53	• •	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2s	206.02	197.54	0.1584	0.1586	0.02950	0.02956	9.378	9.361	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			20	189.20	181.89	0.1361	0.1360	0.02257	0.022 54	9.340	9.345	2298	2304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3s	37.483	33.974	0.4376	0.4396	0.2189	0.2211	3.264	3.248	:	•
3d 18.877 16.900 0.4133 0.4144 0.2046 0.2061 2.970 2.967 55.77 55.77			3⊅	30.885	27.939	0.4333	0.4350	0.2180	0.2198	3.164	3.151	380.7	378.0
			34	18.877	16.900	0.4133	0.4144	0.2046	0.2061	2.970	2.967	55.77	55.77

П

<u>19</u>

12	1					K	ζ.	A .	A S	H.	A M	[A	R,	T	`.	М.	L	U	K F	2,	A	N I)	J.	D	•	T A	A L	M	A I	N								<u>19</u>
		OPM	•••	52,29	4.036	•	•••	•	2304	• • •	378 . 5 55 70	01.10	61 E9	3 579	•••		•	•	2681	•	453.7	68.61	:	67.51	5.769	•••	•	•	2681	•	453.6	68.59	:	66.41	5.241	•		•	2885
	-r	HF	:	50.11	3.954	•	,										• •	•••••••••••••••••••••••••••••••••••••••	2674	• • •	456.8	68.57	•	64.78	5.665	• •											••••	•	2877
		MqO	1.184	1.068	0.7501	0.3549	41.53	9.359	9.344	3.249	3.152	101 1	101.1	0 7089	0.3522		43.53	9.849	9.836	3.457	3.364	3.193	1.291	1.176	0.8602	0.3715	43.53	9.849	9.836	3.457	3.364	3,193	1.286	1.167	1728.0	0.3613	44.53	10.09	10.08
	- I s	HF	1.177	1.061	0.7558	0.3317											43.48	9.865	9,831	3.474	3.377	3.196	1.282	1.167	0.8646	0.3536											44.48	10.11	10.08
	ر2	MdO	1.465	1.779	3.903	15.50	0.00176	0.02957	0.02255	0.2209	0.2196	1 470	1.413 1 815	4.557	15.37		0.00160	0.02671	0.020 31	0.1957	0.1928	0.1756	1.245	1.481	2.959	14.11	0.00160	0.02671	0.02031	0.1957	0.1928	0.1756	1.257	1.510	3,381	14,33	0.00153	0.02545	0.01931
(pənu		ΗF	1.462	1.785	3.665	16.55											0.00160	0.02667	0.02034	0.1940	0.1914	0.1746	1.245	1.491	2.823	14.67	•										0.00153	0.02540	0.01934
LЕ П. (Conti	r	OPM	1.138	1.247	1.787	3.650	0.03627	0.1586	0.1360	0.4395	0.4348	0.4140	1.258	1.914	3.648		0.03460	0.1508	0.1291	0.4138	0.4076	0.3833	1.049	1.138	1.559	3.480	0.03460	0.1508	0.1291	0.4138	0.4076	0.3833	1.054	1.148	1.002	0.0.0	0.03382	0.1471	0.1259
TAB		ΗF	1.137	1.249	1.747	3.794				• -							0,03462	0.1506	0.1292	0.4120	0.4062	0.3825	1.049	1.142	1.533	3.565											0.03384	0.1470	0.1260
	lergy (Ry)	OPM	4.858 5	3.1622	0.62899	0.45687	1421.1	197.40	181.75	33.896	27.865	1000 V	3.0077	0.538 53	0.47428		1568,6	221.75	205.09	39.416	•32.871	20.858	5.7275	3.7940	0.818 52	0.51220	1568.3	221.46	204.80	39.142	32.595	20.577	0.49.0	3.5353	0 4404E	0.447.0	1645.4	234.27	217.13
	gle Particle En	HF	5.8204	3.7147	0.94002	0.44932	1442.4	205.71	188.89	37.170	30.574 10 560	E 500 A	3.444 1	0.71366	0.443 96	(0.522)	1591.3	230.65	212.81	43.158	36.025	23.011	6.8228	4.4830	1.1380	0.47980	1591.0	230.32	212.48	42.826	35.696	22.684	TTTC°Q	4.1996 0.000500	00 07010	(0.541)	1668.4	243.48	225.12
	$(-1) \times Sin_{\rm g}$	Orbital	45	4p	4d	5s	ls	2s	2p	38	30	40	45 4 <i>b</i>	4d	55		Is	2s	24	35	3p	3d	4s	4p	4d	ริเร	ls	2s	2p	35	30	34	4S	4 <i>P</i>	3 c 7 V	S	1s	2s	2 <i>p</i> .
		Term					$4d^{5}5s^{7}S$	(ground)									$4d^{6}5s^{25}D$										$4d^7 5s 5F$	(ground)									$4d^{7}5s^{24}F$		
		Element															44 Ru																				45 Rh		

(Continued)	
TABLE II.	

		/ 1) < Sinc	lo Domtiolo Fra	(B.r.)		2	2.4		>		- ?		
Element	Term	Orbital	HF HF	OPM	HF	MGO	HF	MdO	HF	МЧО	HF	OPM	
		35	46.115	42.244	0.4003	0.4019	0.1830	0.1846	3.579	3.562	••••		
		30	38.712	35.444	0.3939	0.3951	0.1799	0.1811	3.483	3.471	498.3	495.2	
		3d	25.192	22.923	0.3689	0.3697	0.1621	0.1630	3.308	3.304	75.61	75.57	
		4s	7.3370	6.0755	1.011	1.010	1.156	1.155	1.334	1.345	:	•	
		40	4.8818	4.0228	1.096	1.092	1.373	1.364	1.218	1.229	72.87	76.03	
		4d	1.2227	0.83018	1.451	1.480	2.531	2.670	0.9157	0.9082	6.622	6.681	
		55	0.49422	0.47765	3,467	3,382	13.89	13.33	0.3640	0.3812	•	•••	
	$4d^8 5s^4 F$	ls	1668.1	1644.7		0.03382		0.00153		44.53		• •	
	(ground)	2s	243.13	233.85		0.1471		0.02544		10.09		•	
	-)	24	224.77	216.71		0.1259		0.01931		10.08		2884	
		35	45.754	41.832		0.4021		0.1848		3.561		•	
		30	38,354	35.027		0.3954		0.1814		3.469		494.4	
		3d	24.837	22.503		0.3701		0.1634		3.302		75.47	
		4s	7.0005	5.8541		1.015		1.167		1.337		:	
		40	4.5756	3.8137		1.101		1.389		1.218		74.56	
		44	0.90252	0.67663		1.553		2.985		0.8744		6.170	
		55	0.44080	0.45309		3.559		14.88		0.3629		•	
			(0.548)										
46 Pd	$4d^{8}5s^{2}$ ^{3}F	15	1747.3	1723.4	0.033.10	0.03307	0.00147	0.00146	45.48	45.53	•	•	
5	8	2.8	256.66	247.15	0.1436	0.1437	0.02423	0.02426	10.35	10.34	•	:	
		20	237.78	229.50	0.1230	0.1229	0.01842	0.01839	10.32	10.33	3090	3097	
		3s	49.144	45.072	0.3892	0.3909	0.1731	0.1745	3.684	3.666	•	•	
		30	41.470	38,007	0.3823	0.3836	0.1694	0.1707	3.590	3.576	542.2	538.3	
		3d	27.442	24.994	0.3563	0.3572	0.1510	0.1520	3.419	3.415	83.08	83.01	
		4s	7.8550	6.5450	0.9762	0.9754	1.078	1.076	1.385	1.394	• •	•	
		40	5.2857	4.3726	1.054	1.051	1.270	1.262	1.269	1.279	81.48	84.60	
		4d	1.3147	0.95489	1.378	1.395	2.283	2.362	0.9662	0.9624	7.661	7.766	
		55	0.50730	0.51117	3.381	3.322	13.23	12.89	0.3735	0.3883	•	•	
	$4d^{10}$ 1S	1s	1746.6	1723.3		0.03307		0.00146		45.54		:	
	(ground)	2s	255.93	246.66		0.1437		0.02426		10.34		•	
)	20	237.06	229.03		0.1229		0.01839		10.33		3099	
		3s	48.409	44.641		0.3909		0.1746		3.666		000	
		30	40.740	37,581		0.3836		0.1707		3.576		538.5	
		3d	26.718	24.552		0.3573		0.1521		3.413		82.92	
		4s	7.1627	6.1569		0.9822		1.093		1.385		•	
		4 <i>p</i>	4.6488	4.0058		1.064		1.300		1.264		82.57	
		4d	0.66248	0.694 59		1.540		2.977		0.8923		6.659	
			(0.612)										
47 Ag	$4d^{9}5s^{2}{}^{2}D$	1s	1828.1	1804.0	0.03239	0.03238	0.00140	0.00140	46.48	46.49			
		2s	270.77	260.40	0.1403	0.1404	0.02313	0.023 17	10.60	10.55	•		
ļ		2.6	250.17	242.27	0.1201	0.1200	0.01756	0.01752	10.57	10.58	3313	3323	

<u>19</u>

PROPERTIES OF SINGLE-TERM ATOMIC STATES...

13

		(−1) × Sin	ngle Particle E	nergy (Ry)	r		y^2		- ~		1 73	
Element	Term	Orbital	HF	OPM	HF	MdO	HF	OPM	HF	OPM	HF	MdO
L		35	52.247	48.074	0.3788	0.380 5	0.1639	0.1653	3.788	3.769	:	•
		30	44.299	40.752	0.3714	0.3726	0.1599	0.1610	3.696	3.682	588.6	584.5
	,	3d	29.761	27.225	0.3447	0.3456	0.1411	0.1420	3.530	3.524	91.00	90.84
		4 <i>s</i>	8.3777	6.9911	0.9439	0.942.9	1.008	1.006	1.435	1.445	•	•
		4p	5.6955	4.6986	1.015	1.012	1.180	1.172	1.319	1.330	90.61	94.16
		4d	1.4121	1.0558	1.312	1.327	2.071	2.136	1.016	1.012	8.791	8.891
		วิร	0.51929	0.53831	3.304	3.233	12.66	12.21	0.3824	0.3987	•	•
	$4d^{10}5s$ ² S	ls	1827.7	1803.6		0.03236		0.00140		46.54		•
	(ground)	2s	269.76	260.05		0.1404		0.02316		10.58		••••
		2p	250.37	241.91		0.1200		0.01752		10.58		3323
		3s	51.838	47.736		0.3804		0.1652		3.770		•
		30	43.893	40.414		0.3726		0.1610		3.682		584.4
		3d	29.358	26.884		0.3456		0.1420		3.524		90.82
		4s	8,0015	6.6890		0.9465		1.015		1.440		•••
		4p	5.3522	4.4086		1,019		1.190		1.321		92.79
		4d	1.0733	0.82079		1.385		2.365		0.9792		8.301
		5 S	0.43944	0.472.09		3.444		14.00		0.3756		•••
			(0.557)									
54 Xe	$5s^{2}5p^{6}$ 1S	1s	2448.8	2420.8	0.02814	0.02811	0.00106	0.00106	53.47	53.55	::	•
		2s	378.68	367.46	0.1209	0.1209	0.01716	0.01717	12.31	12.30	••••	•
		2p	355.56	345.70	0.1031	0.1030	0.01292	0.01289	12.29	12.30	5183	5194
		35	80.351	75.505	0.3187	0.3196	0.1159	0.1165	4.527	4.511	•	•
		3p	70.443	66.304	0.3094	0.3101	0.1108	0.1113	4.445	4.431	989.9	984.0
		3d	52.238	49.233	0.2803	0.2809	0.09263	0.09312	4.304	4.299	160.8	160.6
		4s	15.713	13.848	0.7453	0.7471	0.6256	0.6293	1.843	1.845	:	•
		4p	12.017	10.585	0.777.0	0.7787	0.6855	0.6892	1.741	1.744	189.6	192.4
		4d	5.5556	4.9898	0.8705	0.8726	0.8809	0.8872	1.509	1.512	24.03	24,51
		5s	1.8886	1.7598	1.981	1.960	4.440	4.349	0.6479	0.6613	•	• • •
		5p	0.91438	1.0506	2.338	2.352	6.277	6.358	0.5472	0.5471	17.83	18.69
			(0.891)									

TABLE II. (Continued)

The parameters μ and ν are to be determined variationally. The polarizability is then given by

$$\alpha = \frac{2}{3} (6A_2B_0^2 - 8A_1B_0B_1 + 6A_0B_1^2) / (9A_0A_2 - 8A_1^2),$$

where

<u>م</u>`. .

19

$$A_{k} = \langle \Phi | \sum_{i} r_{i}^{k} | \Phi \rangle, \quad B_{k} = \langle \Phi | \sum_{ij} r_{i}^{k} \mathbf{\tilde{r}}_{i} \cdot \mathbf{\tilde{r}}_{j} | \Phi \rangle.$$

The results show substantial agreement with the HF results, except in the case of the ground-state term of Cu and of Y, where there are unaccountably large discrepancies. Available experimental results are also recorded (numbers paired together represent upper and lower bounds determined from experimental oscillator strengths). In a number of cases, the agreement with experiment is reasonably good; in some of the cases in which there is a large discrepancy, it may be that configuration mixing will change the results substantially, as occurs in the case of oscillator-strength calculations. We note also that HF results for the ground-state polarizabilities of certain of the transition elements seem not to be available.

We have recorded and compared certain individual orbital properties for a selection of elements in Table II. The elements have been chosen to be representative of the various configuration types of all the elements considered, and to include all the cases for which numerical HF calculations have not been made for the ground state. The OPM single-particle energies for inner electrons may differ from the HF values by as much as 10%, as in *B*, but more generally are in agreement to within 5%. For the outer electrons the agreement between OPM and HF energies is very close except in the transition elements.

It should be noted that the single-particle energies do not seem to have a direct or quasidirect physical significance as do the HF single-particle energies, since there does not seem to be any analog to Koopmans's theorem in the OPM. Nonetheless, we have noticed that in most cases the last OPM single-particle energy is close to the corresponding HF result and is also close to the experimental ionization potential. The latter are given in parentheses under the single-particle energies.

It is of interest to note that the greatest discrepancy between the HF and OPM single-particle energies for the outer electron occurs for the s and d levels of the transition elements. These are seen to be much closer to degeneracy in the OPM, with the energy of the s electron being decreased and the energy of the *d* electron being increased. This degeneracy is perhaps physically reasonable because of the known competition between the levels in filling the *d* shell in the transition elements. Spectra of the transition elements show that configurations d^{ns} and $d^{n-1}s^2$ differ in energy by small amounts of the order of 0.1 Ry. This is perhaps further evidence that the near degeneracy is significant.

It is also interesting to observe that the OPM single-particle energies for the last electron seem to be closer to the ionization potential than are the HF energies in the transition region. The orbital radial averages exhibited in Table II again show close similarity between the HF and OPM results. Differences are very slight for the inner electrons and though, for example, in the case of $\langle r^2 \rangle$ a maximum discrepancy of about 7% occurs in the outer orbital, 1% or less is more usually found.

In the cases in which the numerical HF properties for the true ground states are not tabulated, the OPM results should be reliable estimates of the HF results. The properties of the outermost electrons are most sensitive to the particular term considered; the inner-shell properties are essentially independent of the term considered.

V. CONCLUSIONS

The OPM that has been previously applied to closed-shell atoms and to configuration-averaged energies of open-shell atoms can also be applied to single terms of open-shell atoms, and as seen before, the results are very close to HF results. The method has the advantage over the HF method in that the wave functions are derivable from a single central potential that is then useful for other other calculations, e.g., calculation of single-particle excited states. Because the results are so close to the HF results, the potentials would seem to be a useful alternative to the Herman-Skillman¹³ potentials, which have been extensively used in atomic-structure calculations.

The potentials found have differed only slightly from the CAOPM potentials. However, certain properties may be quite sensitive to the details of the potential. For example, the splitting between the 4s and 3d levels in Mo changes considerably between the two terms considered.

Detailed results have been presented here for neutral atoms $3 \le Z \le 54$. In addition, optimized potentials have been obtained for the further set of elements up to radon, Z = 86. The complete set of optimized potentials will be published separately; however, the authors will attempt to satisfy any requests they receive for the potentials for particular atoms or positive ions if they are required in advance of their publication.

Finally, the method discussed here can be generalized fairly readily to multiconfiguration calculations; this will be discussed in future publications.

ACKNOWLEDGMENT

This work was supported by the National Research Council of Canada.

- *On leave from University of Oslo, Oslo, Norway. ¹C. Froese Fischer, *The Hartree-Fock Method for*
- Atoms (Wiley-Interscience, New York, 1977).
- ²J. C. Slater, The Self-Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1974), Vol. 4.
- ³J. B. Mann, LASL Report No. LA-3690, 1967 (unpublished).
- ⁴J. D. Talman and W. F. Shadwick, Phys. Rev. A <u>14</u>, 36 (1976). See also R. T. Sharp and G. K. Horton, Phys. Rev. 90, 316 (1955).
- ⁵M. M. Pant and J. D. Talman, Phys. Rev. A (to be published).
- ⁶M. M. Pant and J. D. Talman, Bull. Am. Phys. Soc. <u>23</u>, 286 (1978).

⁷W. Eissner and N. Nussbaumer, J. Phys. B <u>2</u>, 1028 (1969).

- ⁸S. Fraga, J. Karwoski, and K. M. S. Saxena, *Handbook* of Atomic Data (Elsevier, Amsterdam, 1976).
- ⁹S. Fraga, J. Thorhallsson, and C. Fisk, Theoretical Chemistry Report No. TC-6807 (1968) (unpublished).
- 10 E. Clementi and C. Roetti, At. Data Nucl. Data Tables <u>14</u>, 177 (1974).
- ¹¹J. A. Pople and P. Schofield, Philos. Mag. <u>2</u>, 591 (1957).
- ¹²J. Thorhallsson, C. Fisk, and S. Fraga, Theoret. Chim. Acta (Berlin) 10, 388 (1968).
- ¹³F. Herman and S. Skillman, Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, 1963).