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Two-electron atoms. The Kinoshita expansion
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Kinoshita has pointed out that the famous Hylleraas expansion, i4i = gA, „s'u "t", is unable to furnish a
formal solution to the Schrodinger equation for the two-electron atom. He further noted that the source of
the difficulty is the arbitrary restriction of the indices I and m to positive values. The Kinoshita variables
s = s, p = u/s, and q = t/u alleviate this difficulty, and a Kinoshita expansion Q = QC, „„s'p q"
seems capable of furnishing formal solutions. It is shown here for 8 states that CI „——0 for all CI „with
n & m. This result is equivalent to the statement that negative powers of u are not needed. This result,
when applied to the 1'S ground state, allows the determination of all coefficients of the form C, ,„+,„.The
implied infinite series are summed and explicit closed-form expressions are found which involve a novel
logarithmic term. Conditions which must be imposed on that part of Q constructed from C, » „are discussed.

I. INTRODUCTON

The Hamiltonian equation for two electrons of
charge e and a nucleus of charge -Ze moving only
under the influence of their mutual Coulombic in-
teractions is given in atomic units' by

(--,' Vs, ——,
' Vs —Z/r, —Z/r, +1/r„)g= Eg.

The nucleus is taken to be infinitely massive, and
relativistic effects are ignored. The eigenfunctions
and eigenvalues of this equation have been studied
intensively over the past 50 years by various pow-
erful methods of approximation, yet surprisingly
little of an exact nature is known. Thus in 1937,
Barlett' pointed out, using elementary arguments,
that for small values of the interparticle distances,
the ground-state solution has the form

(n+1)(n y2)Ci „„,y(m -n y2)(m+n+S)C,

+(n+m —l)(n —m —I —S)C, „„
—(n —m —2)(n ~ m —2l —S)C,

'(I ™+2)(™+1)Cim-s N-s+4ZCi-i m n

l -1,m+1, n +C» -1,m- 1, n-2 + ~C» -2,yn, n

—+C»-2, m-2, n-2= 0 ~ (4)

(5a)

On the basis of this relation and of conditions of
continuity and single valuedness, Kinoshita found
relations between certain of the coefficients, the

„, but did not pursue his studies systematical-
ly.

Kinoshita initially proposed his expansion as a
generalization of the famous Hylleraas expansion'

&=1-Z(r, +r,) ~ sris+ ~ ~ -. (2)

s tpmqn (Sa)

where

S =f'2+%'i

P =r„/s,
q = (r, r,)/r„. —

(Sb)

If this expansion is substituted into Eq. (1), a re-
cursion relation between the C, „ is obtained as
follows:

Fock' has given a rigorous proof of Bartlett's re-
sult. Fock employed an expansion in the so-called
hyperspherical coordinates. Certain of the coef-
ficients in these expansions, or parts of the coef-
ficients, have been obtained exactly, ' but results
have been meager.

Kinoshita' has studied an expansion of the form

where

s =x, +r»

t=y -r .
(5b)

Kinoshita noticed that Eq. (5a) is unable to furnish
a formal solution to Eq. (1). Kinoshita pointed out
that negative powers of s and of u seemed to be al-
lowed by the boundary conditions, so that the re-
striction of / and m to positive values was an ar-
bitrary restriction. In the present paper it is
shown that negative powers of u are not needed,
and, in fact, that they violate the boundary condi-
tions.

Further, in the expression for the 1'S ground
state of the two-electron atom, all coefficients of
the form C, »„„have been. determined. That part
of the total wave function which is constructed from
these terms,
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42, o«Q 2p 2))+ 1~ ))i
p,, n

has been explicitly summed to give a closed-form
expression for )1), ,«. The expression includes a
novel logarithmic term of an unexpected and com-
plicated form;

The basic contribution of the present paper is the
establishment of the following result, valid for all
S states,

C, n=0, n&m. (6)

The result is established by an induction. The in-
duction proceeds as follows. Suppose Eq. (6) holds
for all m ~mp. There are two cases. Either mp
and n have the same parity or they do not. The
easiest case to establish is mp and n have different
parities. In this case, substitute into the recursion
relation Eq. (5),

C l, mp+X, m@+21+4

(v + 1)(v + 2) ~ ~ ~ (m + v+ 2)=2 m()+2
(2 v + 2)(2v+ 3) ~ ~ ~ (m, + 2v+ 4)

xC l y m p+ ly m p+ 2 '

At this point it is convenient to continue the proof
with an n of a definite parity, say n even, the ease
of principal interest. A parallel argument can be
made to apply mutatis mutandis to odd n also. The
numerator of Eq. (15) consists of m, +2 factors in-
volving v. The denominator consists of mp+3 such
factors. There are ~ mp+2 even terms in the de-
nominator, and each even factor in the denomina-
tor divides a factor in the numerator. Thus, after
cancellation, the numerator is given by a polyno-
mial of degree —,

' m, in v. Then Eq. (15) becomes

C, „„„=- R),(n)C
(n —1)(n —3) ~ ~ ~ (n —mop 1)(n -mo —1)

'

(i6)
m =neap —1,
n = pl p + 2 v + ]. , v = 0

~ 1, 2 ~. . .
There results

(m, +2v+2)(m, +2v+3)C,

o+ +3) ) ))( +). mo)2)+)

(7)

Note that this new version of Eq. (15) is now valid
for v=-1, andthatn hasbeenredefined as ypgp+2v

+4. The numerator is a polynomial of degree p, in
n, where 2p, =mp. The denominator is a polyno-
mial of degree g =1. Thus the right-hand side of
Eq. (16) may be written as a sum of partial frac-
tions as follows:

—2v(2m, y2v 2l —3)C. ..„„,=O. (8)

For v=0, there follows immediately,

=0l, mp+lt mp+3 (9)

l~ mp+$y mQ+2v+3 ly mQ+].y mQ+3 '

and for v~ 1,
C, „„, („,„„=[2v/(mo+2v+ 2)]C, , (ip)

Repeated application of this formula to the term on
its own right-hand side leads to

A, (mo)
l m p+ 1, n l, mp+4 mp+2

gw
(17)

, where

g 4;(m, )q"

n)=mp+2 i=p

(18)

That part of the total wave function which arises
from these C, ~, „ is given by

s fl o Q C) o~„q =sp o C) ~ 24)(mo))

The right-hand side is zero by virtue of Eq. (9),
and hence

= Q A, (mo)
n=mp+2

(19)

l m +1m +2v+3 (i2) Let n, = mp+ 2. Then

The case in which mp and n have the same parity
is approached by su'bstituting into the recursion
relation the parameter values

~~ ~~

~

n 1 + @
np-2$-4 ~n+j.q ) q2)+11 q2l+). (2P)

n „n —2i —1 1 —q „n+1'
Thus

nz =mp —1,
n =Bzp+2v+2.

(i3) 4 (m, ) = P (q')q ln[(1+ q)/(1 —q)]+ Q„(q'), (2l)
where

There results

o + 2 + 3)(m o + 2 v + 4)C ) m + t m +2))+4

—(2v+1)(2moy2v+4)C, ,„„.. .„„„=O. (14)

P„(q') = Q A,.(mgq",
i=p

o.(t)') = Q

(22)

(23)
Straightforward manipulation of this expression
leads to The logarithmic term diverges as q approaches +1.
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On the other hand, both P and Q are well-behaved
functions of q for all values of q. Further, a.s q
goes to 1, P„has the value

P „(1)= Q A,.(m, ) . (24)
i=o

The sum on the right-hand side of Eq. (24) is ex-
actly the coefficient of n in B„as defined in Eq.
(16), and hence is necessarily not zero. It follows
then tha. t

P„(1)w0, (25)

and hence @(mg as given in Eq. (21) diverges log-
arithmically. This singularity can not be removed
by forming linear combinations of terms involving
the different @(mg, as their coefficients, the
s'p o" are independent variables. There are no
other sources of bad behavior remaining as q' goes
to 1. Hence, the only way to remove the singulari-
ty is to require

Cr, +a, =0 nemo+ (26)

which establishes the second case.
The two induction. s proved above can now be

combined to establish the desired result, Eq. (6).
Assume that Eq. (6) is valid for all m ~md for a
particular parity of mo. Application. of the relevant
ca.se, one or the other of the bvo inductions above,
will establish that Eq. (6) is valid for m & m, + 1.
Then application of the other induction will estab-
lish the validity of Eq. (6) for m ~md+2, and so on.

It remains to demonstrate that the lemma holds
for the initial cases. Kinoshita has shown that

III. RESULTS FOR THE SECOND-ORDER TERM (I = 2)

g = g C, „,„s'p"q~, (30)

where v is an integer. Systematic substitution in-
to the recursion relation gives explicit results for
C, , „,„(i.e. , for odd m). These results may be
summarized as follows:

C
(-)"(~- ~)

2 ~ 2e+1 2v 3 x 2 e (2~ ])(2p ]) p Qg+A

2 (2p+3)
6 (2 p, —1)(2p, + 1)

Z 1
if v=1,

(2~ -1)

(31)

where the factor (p v)/p is taken as zero when g
= 0. Alternately, note tha, t

On the basis of the exactly known zero- and
first-order terms for the ground sta, te, i.e. , Eq.
(2), and on the basis of the result established
above, Eq. (6), it is now productive to investigate
the recursion relation for the case l = 2. A com-
plete solution is not to be expected, of course, be-
cause the behavior at each singularity has not been
considered. The form of the expansion Eq. (3) en-
sures correct behavior at s - 0 and at P -0, but it
rema, ins to extract further information from the
case variables that are large and from the case
P, q-1. Because of the symmetry with respect to
interchange of r, and r„ the expansion for the 1'S
sta.te of helium is written

C, , „=0, n-1, (2V)

C, ~ „=0, n-1. (28)

C) 2 „=0 s even and tl

This same substitution (m =0) shows that already
the C, 2„series with n odd leads to a divergence of
the type in Eq. (21). The singularity can only be
removed by requiring C. .. be zero, so that

Equation (27) follows directly from the require-
ment of continuity and single valuedness, and Eq.
(28) from Kato's second theorem [see Ref. 5, Eq.
(A6)). Kinoshita's version of Eq. (28) only claimed
validity for n ~ 2. The slight (but vital) extension
to n= 1 may be verified directly from Kato's sec-
ond theorem, or mediately from Kinoshita's own
Eq. (A10). Insertion of m =0 into the recursion re-
lation leads to the result

and take this factor as zero when p, -1 is negative.
Let the second-order wave function (I = 2) be de-
noted by

42 ~2, odd+ 42, even ~

where

42~odd- S g C2~2eel» 2vP'
and g...„„is a similar summation involving the
even powers of P. It is possible to carry out the
indicated summations in Eq. (33) and to obtain

'

p, ,dd in closed form. The required summations
are outlined in the appendix. The final result is

&. .dd
= d &s'( '(2p' 1--p'v') i-n[(1+p)/(1 -p)]

+pu —2p —pq In [(1+~)/(1 ~))), (34)
C, , „=0, ne0, 2

This concludes the induction.

(29) where

Q =1 —p +p q (36)
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and

r =q(1 ~)/(u+X), (35)
(Al)

(37)

The final form, Eq. (34), has been extensively
checked by a direct reexpansion, by numerical
methods, and by substitution into Eq. (1) as de-
scribed in Sec. IV.

The logarithmic term involving r is rather com-
plicated, and does not resemble any logarithmic

, term suggested for the helium-atom wave function
by previous investigators. These suggestions in-
clude terms which contain" lns, terms which con-
tain' lns(1+p) and lnsp(1+q), and of course the fa-
mous Bartlett- Fock terms~ ' which contain
ln s'(1+p'q').

=2 —2u~2 ln(1+u)/2,

(A2)

u=(1 4 )"' (As)

Pl+3 i 1+p„,(2m —1)(2m+1) 1-P

gy p2th+1 ] p= —'P'ln
2m 1 ' 1 p'

(A4)

(A5)

where u is the same u as in Eq. (35) and is related
tox by

W a CONDITIONS ON

In general,

Ttg+ ~(g, +&0& .= 0, (ss)

where T is the kinetic energy term and V is the
potential energy term of Eq. (1). In view of Eq.
(32), it follows that

There remains

=~('-.) ('=) ='E(.) "'
There follows immediately

'-'. (-. ) =Z(l) "(':) '-'

(A6)

(A&)

Tp, „„+4Z/(1 —p'q') +E + ~ = 0,
~/p 2~p/(I p'q—') = o. -

(39)

(40) Thus

= —2 ln(1 +u)/2.

limp, „,=s'f(p, q)ln(1 —p) ~s'g(p, q), (41)

where f and g are well-behaved as P approaches
unity. The function f must also remain finite (non-
zero).

Equation (40) furnished an excellent and thorough
check on the result presented in Eq. (34). In the
limit as P approaches unity, both of the logarith;-
mic terms in g, ,~d contain terms that diverge like
ln(1-P). Hence, P, „„must also contain a diver-
gence of this form, as it is the only part of g capa-
ble of combining with g, ,~d to eliminate the singu.
larity. Thus

Q = —2q —,ln —,(1+u) .dg'

Let s =Pq'. - There follows

dg
Q = —2z —,ln —,'(1+u) ~8'

It is easily shown then that

Q = 2 ln(1 ~u) —2Pq lr& —2PqG,

where

d8t" = s =~ tan8.X+cos8 '

(A8)

(Alo)

(Al 1)

G is a standard integral, and may be obtained from
tables.

APPENDIX: SUMMATION OF EQ. (33.) G = (1/p) In[(1 +r)/(1 —r)] +z(p), (A12)

The summations needed to establish Eq. (34)
from Eqs. (33) and (31) are not so much difficult
as devious. Most of the summations may be ob-
tained from the following easily verified evalua-
tions:

where

r = q(1 —X)/(u+ Z), (Als)

and z is the constant of integration and turns out to
be zero.
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