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Pathological behavior of the open-shell restricted self-consistent-field equations
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The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li
and Na atoms, according to the values of the parameters implied in those equations. A similar behavior,
characterized by the presence of several variational solutions is observed in both atoms. Some of these
solutions can be assigned to excited configurations. Excitation energies are in good agreement with
experimental data. Doublet stabiTity for the solutions obtained has been studied, discussing the saddle-point
character present in those solutions associated to excited configurations.

I. INTRODUCTION

The open-shell restricted self-consistent field
theory (OSRSCF) has received much attention from
the methodological point of view and multiple
derivations for its pseudoeigenvalue equations are
found in the literature. ' ' The first serious ap-
proach to the problem is due to Roothaan' and
although it has been successful in solving a large
number of OSRSCF problems, it only applies to a
limited series of electronic structures, treating
them as an average of electronic states.

Every approach which attempts to reach the
pseudoeigenvalue equations in a general form,
and, therefore, valid for any electronic state,
goes through the process of obtaining the appro-
priate couplings between shells by satisfying the
Hermiticity of the undetermined I agrange multi-
pliers (ULM} matrix, via the following requirement

where E is the Fock operator associated with the
m shell and $ is an occupied orbital of that shell.

It has been shown' that equations derived after
introducing condition (1}in the restricted Euler
equations can lead to results which do not satisfy
in general terms a stationary value for the energy
as they depend on the values of the arbitrary para-
meters used by the above mentioned approaches.

This dependence suggests the possibility of
finding practical solutions different from those of
the ground state associated with the system chosen.

In the present work we have limited ourselves to
Li and Na atoms both with doublet multiplicity and,
therefore, with the simplest OSRSCF equations.
Of all theories derived from condition (1), that of
Huzinaga4 shows a more general character;
therefore, we shall be using his equations for the
open-shell Hartree-Fock restricted model
(OSRHF).

In Sec. II we study the possible solutions of

OSRHF equations, as a function of the values taken
by the parameters appearing in those equations,
discussing the meaning of those solutions with an
extremum character for the energy.

The presence of multiple solutions for the
OSRHF equations (due to the sensitivity of these
equations to the parameters introduced) requires
a stability study of those solutions satisfying the
extremum condition in order to define their nature
from the variational point of view.

Finally, in Sec. III, a doublet stability analysis
for the most significant solutions obtained in Sec.
II is carried out, determining the sign of the sec-
ond variation of the energy. A discussion of the
saddle-point character found in those solutions
associated with excited configurations is also
included.

II. SOLUTIONS OF EQUATIONS OF OSRHF
FOR ATOMIC DOUBLETS

For a two-shell electronic system, the OSRHF
equations are

+ &&=~a&a

the first applying to closed subshell orbitals, and
the second to those of the open ones. H' and H'
are the operators for the closed and open sub-
shells, respectively. In Huzinaga's theory4 those
operators are defined in terms of the Fock opera-
tors (F', F') and the subshell projectors (P', P')
as

H'= F' —P'(p, ~+ (1 —p„)E'),
H'=F -P'(p F'+(1 - p,„)F'),

where p,„and p, „are parameters taking any
arbitrary values except the pair p,„=j. and p„=0
leading to Birss and Fraga equations. '

The iterative solution of Eq. (2) has been reached

O~1979 The American Physical Society



464 FEDERICO MOSCARDO AND JOSE R. ALVAREZ-COLLADO 19

R'= P —P'[I,.F +(1 —I,.)F']
—[p„F'+(1, —g„)F']P',

R'= P'- P'(u. ,P'+ (1 —V,)P')

—(u..+'+ (1 —u.,)F')P',

(6)

which satisfy Eq. (2) once the orthogonality be-
tween all orbitals is proved.

Orthogonality between orbitals of one subshell
is assured since the rotation matrices, used to
diagonalize the representation of the operators
R' and R', are orthogonal. This does not happen
for orbitals of different subshells.

The expansion basis used in the present work is
Gaussiantype orbitals (GTO). For Li, a basis of the
type 1sls' 2s2s ' 2s".2s"' has been used, each of
those functions being developed from six Gaus-
sians. This basis has been chosen in order to
approximate the Slater type orbitals (STO) basis
optimized by Clementi, ' for the Li ground state, with

identical exponents. The energy found with the STO
basis for Li ground state is -7.432 727 a.u.

The majority of the calculations carried out for
the Na atom use a minimal basis set with each
orbital constructed as a contraction of four
Gaussian functions.

Figure 1 shows the results obtained with level i
for Li using a wide range of p, „and p, „values. It
shows two zones (I, II) the first, characterized
by the convergence to a single energy value
(- 7.430 679 a.u. ), is the variational solution of the
ground state and satisfies the nullity of Eq. (1). Zone
II is characterized by a random behavior in the SCF
process, with no convergence to any value of the
energy being observed in the cases studied. Line
(a) of Fig. 1, passing through the point y, „=1
and parallel to the axis p, „, presents a series of

in two ways:
(i) The first way is by solving the 'single operator

equation
Hg=eg (4)

with H defined as

H = H'(1 —P') + H'(1 —P'),
and where Q represents an orbital of the set de-
fined by both subshells and the complementary
subspace of the virtual orbitals.

Since the operator of Eq. (5) is not symmetrical,
eigenvalues and eigenvectors of Eq. (4) have been
reached by first obtaining the eigenvalues for the
Hesenberg form associated to H and then the
orthonormalized eigenvectors by using some re-
currence expressions. '

(ii) The second way is by alternative diagonali-
zation of the two symmetrical operators

4

-2.

FIG. 1. Li atom; level i result. Convergence zones to
a definite energy value.

convergent solutions (which we define as a parti-
cular family dependent on p, „) including the solu-
tion of Birss and Fraga's theory' (p„=0, p„=1)
previously discussed. "

None of the solutions of the family that corres-
ponds to line (a) satisfy the nullity of (1), and
consequently they must be considered as nonvaria-
tional SCF solutions.

The calculations carried out for level i are an
extension of a previous analysis' and add no
characteristics to those already found. Calculation
for every solution obtained have been made with
different trial orbitals, and only those of family
(a) are sensitive to the selection of the initial
functions. Without a deeper analysis this finding
could lead to the mistaken conclusion that every
variational solution corresponds to a minimum
value of the energy.

Figures 2 and 3 show the results obtained by
diagonalizing alternatively the operators of level
ii [Eq. (6)]. The zones in which Figs. 2 and 3 have
been divided represent points in the plane p,„, p,„,
leading to the same solution. Outside those zones,
convergence in the iterative process was not ob-
served. In both figures, zone I corresponds to
the ground-state solution, with an energy of
-7.430679 and -160.702006 a.u. for the Li and
Na atoms, respectively. The orbitals associated
with each of those solutions are orthonormal and
the integral of Eq. (1) is zero in both cases, which
indicates, that they are extrema values of the
energy.

Zones II and III in Fig. 2 correspond to solutions
contradicting the antisymmetry principle, yielding
three spin orbitals with the same spatial part (one
of them is associated to the open-subshell opera-
tor R'). This is a surprising result since one
would not expect a definition of the couplings be-
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TABLE I. Energy levels in a.u. for the three solutions
encountered for the Li atom. The second eigenvalue
corresponds to the open-shell occupied orbital.

Solution

0

Ground state
Birss-Fraga
Excited

-2.4770
—2.4538
-0.2803

—0.1963
-0.2136
-3.6379

~co

FIG. 2. Li atom; level ii results. Convergence zones
to a definite energy value. Boundaries of zones II, III,
and IV are approximate since no exact borderline exists
between convergence zones and those with no conver-
gence. Point && correspond to Birss and Fraga.

tween shells (even when imperfect) which only
forces the ULM Hermiticity, to provoke the
severance of a constraint as strong as the anti-
symmetry condition. ' It is obvious that this type
of solution, as well as those associated with non-
orthogonal orbitals, must be discarded as it does
not satisfy the requisites established for obtaining
OSRSCF equations.

3.

0. x C

+co
FIG. 3. Na atom; level ii results. Convergence zones

to a definite value of the energy. Boundaries of zones II,
III, and IV are approximate since no exact borderline ex-
ists between convergence and nonconvergence zones.
Point && corresponds to Birss and Fraga's theory, with
energy —160.567 277 a.u.

Zone IV in Fig. 2 merits a more detailed study.
The energy obtained is -5.340913 a.u. and the
orbitals B.ssociated with this solution are ortho-
normal and satisfy the nullity of Eq. (1). This
solution satisfies all requirements demanded of a
stationary value.

Analysis of the orbitals shows that the one of the
closed subshells is of the 2s type while the singly
occupied one is 1s. Table I presents the eigen-
values, in both subshells, for the fundamental,
Birss and Fraga, and zone-IV solutions. From
those eigenvalues and from the form of the orbitals
it is inferred that 1s2s is the configuration asso-
ciated to the solution with energy -5.340913. This
solution corresponds to an excited state generated
by the promotion of an electron from the inner
shell to orbital 2s, with an excitation energy of
56.87 eV.

Experimental data obtained by collisional excita-
tion' assign for the optically forbidden transition
(2s -1s) for Li, an excitation energy of 56.31 eV,
in excellent agreement with present results. . The
wave functions associated with ground and excited
states, although nonorthogonal, show' a scalar
product of 0.0013.

Region II, in Fig. 3, corresponding to the Na
atom, represents a solution which contradicts
Pauli s principle. This is also true for the Li
atom, as mentioned above.

Regions III and IV in Fig. 3 represent two solu-
tions that satisfy the extremum condition for the
energy, with the orthogonality condition also
satisfied for the orbitals of each solution. Again,
the solution associated to region IV can be class-
ified as an excited state with electronic configura-
tion 1s'2s'2P'Ss' and energy -159.505 898 a.u. In
this case, excitation energy from the ground state
is 32.54 eV.

Analysis of orbitals and eigenvalues of the
region-III solution indicates an excited state with
configuration 1s2s'2p'Ss', ener gy -120.839 970
a.u. , and excitation energy associated to the tran-
sition Ss-1s, 1084.64 eV.

From the previous results, and those obtained
for Li, a variational solution associated to another
excited state 1s'2s2p'Ss' for Na should be expected.
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TABLE II. Energy levels in a.u. for the three solutions encountered for the Na atom. The
last eigenvalue corresponds to the open-shell occupied orbital. Upper indices t and d indicate
triply and doubly degenerate eigenvalues, respectively.

Solution

Ground state
Excited (2P)
Excited (1s)

-40.4599
-41.2187
—3.5819

—2.7848
-3.2998
-2.36090

—1.5172
-2.0621"
-0.2491

-0.1870
—0.24'28

-45.1589
-2.2303

~ ~ ~

That solution, however, has not been found.
Since the numerical results obtained in the

calculations with the minimal basis cannot be used
for quantitative purposes, the three most signifi-
cant solutions found for Na (ground and the two
excited states} have been computed again with a
double-zeta-type basis (Isis' 2s2s' 2p2p' 3s3s'}
and every orbital constr'ucted by contraction of
six Guassians (see Table II). This basis is of
similar quality to the STO one, optimized by
Clementi" for the Na ground state with the same
values for the exponents. The energy found with
the STO basis for Na ground state is -160.849 730
a.u.

Energies found for open-shell configurations
3s, 2p', and 1s, are -161.809085, -160.665356,
and -122.416 863 a.u. , respectively. The transition
energies found are 31.13 eV (3s-2p) and 1074.52
eV (3s- Is). The optically active transition
3s -2p, has been experimentally observed using
photoabsorption techniques" and also by induced
collisional excitation.

The energy associated to this transition is 30.93
eV,"which agrees well with present calculations.

Unfortunately, we do not have experimental
data for the optically forbidden transition (3s- Is).
Nevertheless, the result obtained here is quite
reasonable if one compares it to the monoelec-
tronic energy of level 1s for the ground state,
and if one assumes Koopman's theorem as a valid
approximation.

Orthogonality between variational solutions ob-
tained for Na is satisfactory since the scalar
product between the wave functions associated
to configurations 1s'2s 2p 3s and 1s2s 2p'2s' is
0.0038. The scalar product between those wave

functions and that of configuration 1s'2s'2p'3s' is
zero for symmetry reasons.

HI. STABILITY ANALYSIS FOR SCF SOLUTIONS

Conditions for doublet stability in OSRHF equa-
tions have been formulated by Paldus and Cizek, "
where they were applied in their study of linear
polyens instability, following the semiempirical
formalism of PPP. ' Yamaguchi and Fueno" have
studied both nondoublet and spin-flipping instabili-
ties in free-radical dissociation processes.

In this section we present the results of a doublet
stability study carried out over the SCF solutions
presented in Sec. II. Nondoublet instabilities are
not considered here since we are exclusively
interested in the stability of our solutions within
the set of possible solutions restricted by spin and
spatial part.

The stability criterion followed here is based on
the sign of the second variation for the energy,
implying calculation of the eigenvalues of the
matrix:

where A is the matrix grouping interactions be-
tween all possible monoexcitations compatible with
the OSRHF model and S is the matrix containing
interactions between the configuration under study
and all possible biexcitations, also compatible
with the model.

To deduce the matrix elements far a doublet
term in the restricted Hartree-Fock (RHF) approx-
imation is a laborious process and it is included

TABLE III. Li atom. Eigenvalues X and X' for matrices A+ B and A- B, respectively.

Solution X4

Ground state
Excited
Birss-Fraga

0.12305
-2.035 68

0.13499

0.292 22 1.61488
0.396 38 0.71149
0.304 65 1.635 08

2.19945
2.742 15
2.152 48

0.123 07
—2.018 46

0.13472

0.292 30,
, 1.616 29 2.19583

0.368 49 0.604 52 2.628 8
0.303 85 1.633 33 2.150 95
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in the paper by Paldus and Cizek.""With real
orbitals, as in the present case, matrix (7) can
be written in real form as a block diagonal matrix

(8)

-$.408.

-'th0'i

-V.440
-t40$ .

such that submatrices A+B and A-B correspond
to variations in real and imaginary spaces, re-
spectively. "

For-Li, stability of solutions for the ground and
excited states, as well as that for the theory of
Birss and Fraga, have been studied. Table III
show the four lowest eigenvalues associated to
submatrices A+B and A —B from (8).

For the ground state, all eigenvalues are posi-
tive, thus indicating that it is a minimum (whether
it is local or absolute is not in the scope of this
analysis and therefore every time a minimum
appears its local character will be assumed).

The smallest eigenvalue associated with the
excited state is negative, which implies the pre-
sence of a saddle point. Obtaining a single negative
solution for matrix A+B indicates the existence
of. a stable solution with real orbitals, below the
one studied and corresponding in this case to the
fundamental state previously found.

Eigenvalues associated to Birss and Fraga
type of solution are all positive, implying initially
that such a solution is a relative minimum. How-

ever, the sign of the second variation for the
energy as a stability criterion is conditioned to the
nullity of the first variation and, as shown pre-
viously, this is not true for solutions associated
to line (a) of I ig. 1.

Figure 4 presents the energy associated with

the solutions of line (a) as a function of p,„. It
shows that the curve tends to a minimum, asso-
ciated with the ground state, when

~
g„~ increases.

It also shows the Birss and Fraga solution does
not correspond to an extremum for p,„.Here is
an example of how studying the sign of the second
variation for the energy can lead to wrong conclu-
sions about a solution's stability unless it is fol-
lowed by an analysis of the solution's extremum
character.

-W. 442 .

g -7.4h.4

I ~

-&-&-4 04 2p

-&.4zo .

I I ~ ~ ~ ~ I ~ ~ lr a

-S-(..-4-a O a 4 (; S ~ So Pro

Table IV shows the lowest eigenvalues for sub-
matrices A+B and A —B of (8) associated with
ground, first-excited (Ss-2p), and second-excited
(Ss- ls) solutions for Na. Eigenvalues for the
ground state are all positive, indicating that it is a
minimum.

If matrices A+B and A-B of (8) present two or
more negative or zero eigenvalues, the solution
is a multiple unstable saddle point. Negative
eigenvalues above the lowest one, are connected
to one or more minima through unstable points in
the scalar space associated with the Hamiltonian.
This is the case of the two excited solutions ob-
tained for Na.

FIG. 4. Bepresentation of line (a) (Fig. 1) as an energy
function vs p~ G.S. is the energy obtained for the ground
state.

TABLE IV. Na atom. Eigenvalues X and V for matrices A + 8 and A —B, respectively. Upper indices I; and d indicate
triply and doubly degenerate solutions, respectively.

Solution

Ground state 0.297 33 0.92541 2.266 77~ g.316 16' 0.29740 0.92388
Excited (3s 2p) -0.836 34 0.0000~ 0.61973 1.39124 -0.83625 0.0000"
Excited (3s 1s) -39.596 10 -38.7800~ -37.406 20 0.590 42 -39.5952 -38.7820'

2.2174 2.31481
0.68678 1.399 13

-37.3922 0.467 68
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The first excited state has a negative eigenvalue,
related to the ground state, and with an absolute
value similar to that of the energy implied in the
Ss-2p excitation. The second eigenvalue is zero
and it is doubly degenerate. Its existence can be
explained considering that the excited state is not
the result of an average (as it would have been
using Roothaan's theory) but it is generated by
the promotion of an electron from a 2P orbital;
therefore, two degenerate solutions must always
exist with the one studied.

Three negative eigenvalues are found for the
second excited state indicating that it is a saddle
point. From their moduli it can be inferred that

they are related to the ground state obtained here.
The lowest eigenvalue is directly related to the
fundamental state, while the second is triply
degenerate and related to the ground state through
the first excited state which has the same degene-
racy as the eigenvalue.

The third eigenvalue (nondegenerate), suggests
the possible existence of an unstable solution,
associated to the 3s -2s transition, which, as
pointed out before, has not been found here.

We are currently extending the treatment pre-
sented here to study possible excited solutions in
molecules with doublet mutliplicity and we shall
be reporting the results in a future paper.
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