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A new transformation for the Coulomb problem is introduced and its significance is discussed. Coulomb
wave functions in the 6 representation are derived. Examples of the application of the transformation are
given.

I. INTRODUCTION u=2p p/p' (2)

The Coulomb system has been a problem of in-
terest to physicists and mathematicians for many
decades. Among the works published, the review
articles by Bander and Itzykson' and the mono-
grayh by Englefield' dealt with the symmetry as-
pects of the problem. On the other hand, Chen
and Chen' gave a comprehensive account of the
two-body Coulomb amplitudes. Arecentarticleby
Abarbanel' on the "inverse r-squared force" con-
firms the sustained interest in the problem.

More recently, we discovered a new self-adjoint
operator X, and used it to derive a differential
equation for the zero-energy wave function in the
u representation, ' which has been obtained hitherto
by solving an integral equation. This discovery
has made possible a transformation from the set
of dynamical variables r and p to the new set u and
A„and hence a new way of geometrizing the Cou-
lomb field. ' The new way, as we shall see, is a
more appropriate way for the problem at hand.

In Sec. II, we will introduce the new transforma-
tion. We will then discuss the geometrical and
physical significance of the new transformation in
Sec. IO. In Sec. IV, we will generalize our pre-
viously obtained zero-energy result to wave func-
tions for nonzero energies. Section V contains
some possible applications of the transformation.
Finally, in Sec. VI, we will make some concluding
remarks.

II. TRANSFORMATION

The work of Pauli, ' Pock, ' and Bargmann' sought
to explain the additional degeneracy of the nonrel-
ativistic hydrogen atom in terms of the symmetry
group of the four-dimensiona1 rotations in projec-
tive momentum space. Accordingly, a point in
momentum space is projected stereographically
onto a unit hypersphere in a four-dimensional
space with the use of Fock coordinates

& =2p. p/(p"p'. ), &.=(p'-p'. )/(p"p.'), (I)

Ao = -( rp'+ p r)/4p, + [p( p r) + ( r p) p] /2p, ,

5 =go+'N u/u (4)

r=-(Aou'+u'Ao)/4p, +[u(AO u)+(u. Ao) u]/2p, ,

where p, = Ze'p, is taken to be positive for an at-
tractive Coulomb potential. The operators u and

A, satisfy the canonical commutation relations

[AO~, A08]=0, [u„,A08]=ih5„e.

Consequently, X, admits the operator representa-
tion

A, =-SSV„.
We have already used this to derive a differential
equation for the zero-energy hydrogen wave func-
tion in the u representation. The solution thus ob-
tained is in agreement with the result obtained by
solving an integral equation. '

HI. SIGNIFICANCE OF THE TRANSFORMATION

g =(sinn sin8 cosQ, sinn sin8 sing, sinn cos8, cosa)

To see further what is so good about this trans-
formation, let us observe (a) the zero-energy be-
havior of the Casimir operator of the degeneracy
group SO(4), (b) the line element in Einstein spaces, ,

and (c) the classical trajectories in the u space.

A. Casimir operator

In accordance with the new transformation, we
introduce the new Fock coordinates

]=4vu/(4v'+u'), ],=(4v' -u')/(4v'+u'), (8)

where v p, /po. In spherical polar coordinates,
we have for the Pock coordinates

where pa= -2pE.
,

The new transformation is based upon the intro-
duction of the following operators:

and for the Casimir operator"

C = 8'/en' —2 co—tn(a/sn) +L'/h'. (10)
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Accordingly, we obtain the Casimir operator in the
u representation

(4v'+u')' d' (4v'+u') d

(4v'+u')'
f6v2~2

Taking the zero-energy limit, which is tantamount
to contracting SO(4) to Z(3), we obtain

lead to vastly different geometrical and physical
consequences. The line element given by Eq. (19)
on hypersurfaces of fixed energy represents a line
element in Einstein spaces of .constant curvature. '
It has a well-defined nonvanishing zero-energy
limit as Rp= v . It should be noted that our zero-
energy limit happens to be the noncosmological
limit. ~' Furthermore, Eq. (19) is in the form of a
line element along the optical path in a medj.um of
index of refraction

Co(u) = lim ~ =—,—— +, . (12)
C(u) d' 2 d

@~m V dD Q dQ Q
n(M) =1/(1+u'/4v'), (20)

yields the zero-energy limit

C,(p) = lim 4p', C(p) =-p'~, t' d' I,'l
&o~o Edp P i

(14)

(15)

Though the zero-energy partial-wave solution

j,(2p, /p) does satisfy the equation

C.(p)j,(2p. Ip) =j,(2P. Ip), (18)

the equation takes on the bona fide form of an
equation for spherical Bessel functions only when
the transformation p =2P, /u is made in accord
ance with Eq. (2). This supports our contention
that the u representation is the proper represen-
tation for the Coulomb problem of all energies.

B. Line element

The Fock coordinates defined in Eq. (1) or Eq.
(8) can both be considered as parametric rep-
resentation of a hypersphere

R2 $2 +R2 $2 R2

of radius Ap 'pp or Qp = v in a four-dimensional
space according to whether the components of p
or u are taken as parameters. In other words,
both stereographic projections put the group mani-
fold in the interior of a three-dimensional sphere
of radius Rp. However, the line elements of the
two hypersurfaces given by

ds' =4dp'/(1+p'/p', )' (18)

ds' du'/(1+u'/4v')' (19)

It follows naturally that the zero-energy partial-
wave solution j,(u) satisfies

C,(u) j,(u) =j,(u),

which is indeed the equation for spherical Bessel
functions. On the other hand, the Casimir operator
in the p representation

p'o+P')' d' (Po+p'} d (po'+P

which tends to unity as v tends to infinity. There-
fore, in terms of n(u), the Coulomb problem can
be properly related by optical-mechanical analogy
to the MaxweQ fish-eye problem; ' ' for which the
index of refraction

n(r) =1 /(1 +r' /R}a (21)

p.'+(p„- ~p. II.)'=(p. Il }', (22)

where e =(I +2mZL, '/p,')+' is the eccentricity of
classical orbits. Equation (22) represents a circle
with its center on the positive p, axis and an en-
ergy-independent radius p, /I, . As the energy in-
creases, the center moves away from the origin.
At E =0, all trajectories corresponding to differ-
ent angular momenta are tangent to each other at
the origin. For a repulsive potential p, —p„we
have

p.'+(p„+~p. /I }'=(p./I)'.
Hence the center of the circular trajectories is
located on the negative p„axis instead. It should
be noted that Eq. (28} for the repulsive case can
be obtained from Eq. (22) for the attractive case
by making an inversion p (po/p') p.

The trajectories in the u space are given by

u„'+ (u„+2&v'/L)' = (2v'/L, }2, (24)

which is invariant with respect to the sign of the
Coulomb potential. The + and —signs are for E&0
and E&0, respectively-. Therefore, the centers of
trajectories for positive and negative energies are
located on the positive and negative g, axis, re-

approaches unity as Ro ~ as in the case of n(u),
Clearly, the line element given by Eq. (18) does
not have these properties.

C. Classical trajectories

The classical correspondence of the quantum-
mechanical Coulomb problem has been discussed
by Gutzwiller' and Norcliffe et pl. » in terms of
momentum space trajectories, known as hodo-
graphs. For the attractive Coulomb potential, the
momentum-space trajectories are given by
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spectively. As E increases, the centers recede
away from the origin. For E =0, we have u„=I..
Therefore, there is no accumulation point for the
"angular momentum" trajectories for various
angular momenta in the u space as in the p space.
Furthermore, the fact that Eq. (24) is invariant
with respect to the sign of the potential suggests
that the inaccessible region of one is the analytical
.continuation of the accessible region of the other.

IV. DERIVATION OF %PAVE FUNCTIONS

Having introduced the transformation and dis-
cussed its significance, we now proceed to derive
the Coulomb wave functions for nonzero energies
in the u representation. To do so, we begin with
the SchrMinger equation for negative energies

manner. It should be noted that the requirement
of single valuedness of the solution given by Eq.
(33) yieMs the well-known bound-state energies
E„=-Z'e'm/2n'fi'. The momentum space wave
functions are related to our solution by

4(p) = 4 (u)/p',

where u is given in Eq. (2).

(3s)

V. APPLICATIONS

A. Overlap integral

While the fuQ implication of the new transforma-
tion is yet to be explored, in this section we pre-
sent some results as examples of its possible ap-
plication.

(p'/2V —Ze'/r} 4' = -(po/2V)@.

Using the relations

B=rP'/2p„

r =au'/2p, ,

(2s)

(28)

(2V)

The overlap of the radial wave functions R„and
Pp does not seem to v anish and to be readily cal-
culable. However, we can easily calculate the
overlap integral of 4( u) and 4o( u) and obtain the
following result from Eqs. (33) and (34)

which can be obtained from Eqs. (4) and (S), re-
spectively, we can transform Eq. (25) into

B(l+u'/4v ) 4 =4 . (28)

We now introduce a unit vector A. and rewrite Eq.
(28) in the form

B(1+I'/4v') 4(u) =TO(u) . (29)

Since B admits, according to Eqs. (4) and (V), the
operator representation

B= $IQVf g (30)

we have finally from Eq. (29)

-i}fV„(1+u'/4v') e(u) =X% (u),
where we have made the substitution

4'(u) =ii+(u) .

(31)

(32)

Equation (31) can be solved" to give the eigenfunc-
tion associated with the Hermitian operator Ap and
normalized on the energy scale

( )
(2p) v 2ivA. ' u i Q

a partial-wave expansion of which yields the par-
tial-wave solution j,(u} in Eq. (13). The solution
for positive energies can be obtained in a similar

(33)

It can easily be verified that the wave function has
the correct zero-energy limit'

%,(u) =lim e(u) =const&exp(iX. u/ii), (34)

B. Matrix element of the dipole operator

The matrix element of the dipole operator r has
been evaluated' by Barut and Kleinert in terms of
a dilatation operator and a fiber space of the hy-
drogenic wave functions. We show in this subsec-
tion hoof this result can be obtained by using the
newly identified operator 8, which is related to
the Runge-Lenz vector A as follows':

B=A+ p, rH/p, (.3V)

Si~c~ [A, H] =0 and [r,H] =ih p/p, we have from
Eq. (3V)

[B,a] =in pa/p, (38)

Taking matrix elements of the above two equations
between hydrogenic wave functions and combining
the results, we obtain

&nlmlr ln'f'm') =
&

&«iiilplii'~'vari')
& @n' -&n

(39)

+ u+pudu= p, m Sv 2
p

The angular part of the integral can easily be car-
ried out. By letting y =ii —2v arctan(u/2v) and not-
ing f,

"
dy sincy/y = 2 m sgn(c), the above result can

be verified. The implications and usefulness of this
result have yet to be investigated. As v tends to
infinity, siny/y in the integrand tends to unity and
Eq. (36}becomes, except for a constant factor,
the normalization integral for %0(u).
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In terms of the generators of the dynamical group
for the hydrogen atom (see Appendix), we can show
directly"

nn'&nlmlpln'l'm'& = &nlml exp(-i8„„T)1" ln'l'm'& .
(40)

Substitution of Eq. (40) into Eq. (39) yields the
well-known result' '"
&nlmlr le'l'm'&

, (nlml exp(-i8„„pT)I' ln'l'm')
p nn'nn

for attractive and repulsive potentials, respective-
ly.

Noting that Eqs. (2) and (45} give p' =u/2a where
a =p, /po, we now transform 0'(p') into the u rep-
resentation by making use of the unitary scaling
operator S(P), P =1/2a, which has these pertinent
properties":

s(p)~(p) =p '~(pp),
s(p) o"= p" o"s(p),
s*(p) =s(1/p).

Consequently, Eq. (44) becomes
2S'n'

+ &nimlA ln'i'm'&,
Pc

(41) (e, lole, &... pafe=p(e)oe(u)du. (4 l)

C. Symmetry between attractive and repulsive cases (E)0)

In this subsection, we establish the symmetry
relation

&4 f lo ' l4', & „=exp [v(vf - v,.)]&%'f l
0"l4', &„,, (42)

where the observable O stands for r, p, r or p.
Such symmetry relations have been demonstrated
and discussed by Biedenharn et a/. "in connection
with the radiative properties of charge particles
moving in attractive and repulsive Coulomb fields
in terms of a classical contour integration and
Sommerfeld's integral. We will establish the sym-
metry relation Eq. (42) in terms of the properties
of the dynamical group for the hydrogen atom.

To begin with, we consider

&e, lole, &.„fppep(p)oe-;&p),

&e, lo le, & ... fp d=p(e)'po(ep ), '

(43)

(44)

where the subscripts stand for the set vs and'4

where

(d„„i~E„-E„=(p,'/2p, h ')(n" -n')/n'n".

Thus it is seen that, while the Hermitian operator
A generates n =n' transitions, the non-Hermitian
operator B generates nWn' transitions.

4 ...(&) =(p'- p', )'~„,„(p)/4p'„

4„,„(g') =(u'-4v')'@„, „(u)/16v',

(50)

(51)

where $ and $' are given by Eqs. (1) and (8), re-
spectively, except with + and = signs interchanged.
Accordingly, we have

&e~lole;)„,=f ef(Op og(edO&n (52)

&e, lole, &... pf ef((=)p os, (( '), en'

where

« ~
= (~Po}'d'P/(P' -Po}'

dn, =(4v)'d'u/(I' -4v')'.
(54)

(55)

Since $ and g' are points on different sheets of the
hyperbloid $o- $'=1, we have~

efe($'} = exp(1r vf) @f*($), (56)

We now express the integrals in Eqs. (43) and (4V)
as invariant matrix elements" of po and p'0,
where (see Appendix)

p =(r, —s)/p„ (48)

p' = (1"o —S)/2v, (49)

between the tilted states in the p and u representa-
tions

p' =(po/p') p. (45) 4, (&') =exp(-vv, ) 4,(() .

Ze' dq%(q')
lq' -ql' (46)

goth of the wave functions 4(p) and 4'(p') satisfy
the integral equation for pao=2pE

Furthermore, it can easily be shown that

p =20p

dAg = dggf.

(58)

(59)

Note, however, that the substitution of 4(p') into
Eq. (46) results in a change of the sign of the inte-
gral&e This sign change, tantamount to the change
-e to e, makes 4($) and 4(p') the wave functions &oflol4, &„,=e pv(vf —v, )&of lola, &,., (60)

Combining Eqs. (52) to (59), we obtain the desired
result
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In a similar manner, the symmetry relation Eq.
(42) can be established by replacing 0" by (po)"

T=i jf(r p —ijf)/v'

=ijf(u B —2iS)/v' or i@(u Ap-ih)/v',

VI. CONCLUDING REMARKS

We have introduced the new transformation for
the Coulomb problem and discussed its signifi-
cance. We have also given some examples of its
possible application. The usefulness and implica-
tions of the new transformation needs to be fur-
ther explored.

where

B= -rp'/2p, +p( r ~ p)/p„
r =-Bu'/2p, +u(B u)/p, .

The newly identified operator B is therefore given
by

8 =a(A -M).

APPENDIX: PHYSICAL REALIZATIONS OF THE SO(4,2)
GENERATORS

The 15 generators of the dynamical group for
the hydrogen atom admit the following realizations
in the p and u representations:

L=rxp=uxB or uXXp,

-A = -B—r/2a,

M = I+ r/-2a,

r =rp/v =Bu/v,

I', = ,'(rp'/p, +r/a) =—B+Bu'/4v',

S = ,'(rp'/p, —r/-a) =B—Bu'/4v',

It should be noted that by setting p, =a=jf = v=1,
the generators in the p representation take the
forms given by Barut and Bronzin. ~' It should
also be noted that in the u representation the non-
Hermitian operator 9 instead of the Hermitian .

operator A, plays the central role. The operators
B and A& satisfy the same commutation relations
with u. ' In the zero-energy limit, v , we have
from the u representation

L=rxB, A =B, M=-B,

The significance and the implications of the above
dual realization are being investigated. "
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