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Eigenstates, coherent states, and uncertainty products for the Morse oscillator
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We obtain the exact, normalized, closed-form eigenfunctions for the one-dimensional Morse oscillator, as
well as the raising and lowering operators. We next review a new method for obtaining the coherent states
for arbitrary potentials, it being based on the classical motion of a particle. We apply this method to the
Morse oscillator. After demonstrating that in the appropriate limit our results reduce to those for the
harmonic oscillator, we obtain analytic insights into published numerical results on uncertainty products for
Morse-oscillator wave packets.

I. INTRODUCTION

In 1929, Morse' first introduced the potential" '

V(r) = U, (1 —e-'")'

as a useful model for diatomic molecules. For
this potential, the Schrodinger equation is only
approximately solvable. '4 For the one-dimension-
al analog, however, the problem turns out to be
exactly solvable, ' although to our knowledge exact,
normalized eigenfunctions have not been given.
The energy levels and wave functions for the
I. =0, three-dimensional case and the one-dimen-
sional case differ because 0 & r& ~, whereas -
& X &oo.

Studies of anharmonic potential systems are of
current interest as possible models for the inter-
action of coherent radiation with molecules. In
particular, the numerical studies by Walker and
Preston' of the one-dimensional Morse oscillator
produced some interesting results. For example,
a forced Morse oscillator diffuses from a near
minimum uncertainty-product ground-state wave
packet'and then evolves back into a near minimum
uncertainty state. Standardly, numerical calcula-
tions of this sort are done in a harmonic-oscilla-
tor basis. However, a clearer view of the situa-
tion can result if a more natural basis is used.

In Sec. II of this paper we obtain the exact,
normalized, closed-form eigenfunctions for the
one-dimensional Morse oscillator, and the raising
and lowering operators. Having the natural basis,
in Sec. 11I we review a new method~ (based on the
classical motion of a particle) which yields the co-
herent states for general potentials. This method
is applied to the Morse potential in Sec. IV, to
yield in closed form the normalized approximate"
coherent states. (The sense in which these states
approximate the true coherent states is explained. )
In Sec. V we first demonstrate that all our results
reduce to those for the harmonic oscillator in an
appropriate limit. Then we use our approximate

II. EIGENSTATES

The eigenfunctions for the one-d'imensional
Morse oscillator are usually written in terms of
unnormalized, confluent hypergeometric functions.
However, as we now show, they can more conven-
iently (and in normalized form) be written in terms
of associated Laguerre polynomials.

We choose the coordinate system so that the
minimum of the potential is at the origin. Then
all energies are positive and the harmonic os-
cillator limit emerges more naturally. The poten-
tial is now

V(x) = U, (1-e ')', z = ax,

Uo = X go, go = h a /2rrt .
(2.1)

(2.2)

If we write the eigenenergies as

E.=p~n (2.3)

then the Schrodinger equation becomes

, ee„—1'{I-e 'r)$„=0. (2.4)

The change of variables

yields

(
d 1 d e„-,A, A. 1

+——+ " +———
dy' y dy y' y 4

(2.5)

(2.e)

Extracting the y- and y-0 behavior by the sub-
stitution

s/2ystt (y)

where s'=e„- ~', we obtain

(2.'1)

coherent states to obtain analytical insights into
the numerical results of Walker and Preston on
uncertainty relations for wave packets in the Morse
oscillator.
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CP d
y —+(2s+1 —y) —+(&-s —2) u (y) =0.

d$ dy
(2.8)

(y) L(2)1 212 1 ) (y)

[The general solution of Laguerre's equation (2.8)
has unacceptable asymptotic behavior, '

u(y}-[I'(2s+1)/I'(s+-,' —&)]e'y ' ' ' '

(2.9)

as y-+™.See Equation 6.13.1(3) of Erdelyi
et al. '] Thus

]t) (&) —. ~(n y) y)(-2/2-))e-21/&L (2&-2n-2)(y)

0 ~n ~ [X—~] (2.10)
(2.11)Z„=S,[2]](n+-,')- (n+-,')'] &0.

This is Laguerre's equation, which has polynomial
solutions for ~- s ——,

' =n =0, 1, 2, . . . ,

The normalization constant N(n, A.) is determined
below.

The above associated I aguerre polynomials are
defined by

(2.12}

This is the standard definition in the mathematical
literature, in most books on special functions, '
and integral tables. o The Laguerre polynomials
I.„(t) which often occur in Coulomb wave functions
in quantum mechanics texts" are different (al-
though related) objects. Up to a phase, they are
L„"(t)=n! L„'"'„(t).

To obtain the normalization, we first prove the
result

e ' P '&[L&„")(t}]2/ff

n

I'(n+n~1) ~ ~ I (n —k —P) I'(n+k+1+P) 1
I'(++ I) I'(- k —P) I'(a+i+I) I'(0+1)I'(+ —0+1)

This is a generalization of known Coulomb inte-
grals'0'" to noninteger (]. and P. To show it,
write one L'„"'(t) in the integrand as the power
series (2.12) and then use Eq. (7.414.11) of Ref.
9. The normalization constant in Eq. {2.10) is
obtained from the special case 4„' ',z,„,.

a(2]].- 2n 1)r(n+ I)(]"-+(, ])= ] (2.14)

For later use we give the raising and lowering
operators:

g d
A„' =—(& —&- 2)e' + e' ——

dz &-(n+-,')+-,'

(2.15)

I

applying them to (2.10), and seeing that they re-
duce to the recurrence relations

(n l+)(n +)oL „"(,"{ )y= [c/(o( —1)—y(c(, +n)] L'„'(y)

+ ((]- 1)y ~
—L'."'(y)

/

(2.19)

!'2;2" ( )=2-«'."( )-2(~ ~ 1) 2
2'."'(2)). (2.22)(n)

Equations (2.19) and (2.20) can inturnbe obtained
independently by combining the standard recur-
rence relations for the Laguerre polynomials
given on p. 241 of Magnus et al.'

(]).—n —z) d A.

2 dy 2[1—(n+-,') w-,']) (2.16) HI. GENERAL COHERENT STATES

D(n —2 a~, A.) ]j)„„,(2]).—2n —1)
(2.17)

When these are applied to the normalized eigenstates
one obtains

Elsewhere, ' we have defined coherent states for
general potentials. One first finds those natural
variables of the classical bound-state motion
which vary sinusoidally in time. Consider the
classical Hamiltonian equation,

P'/2m+ V(x) =E. (3.1)

D(n, z) =
4/). (n +1)(2A.—n —1)

(21 —2n —2) (21 —2n —1)(12—2a —2)

(2.18)

We derived the A. '„by appropriately modifying
the Infeld and Hull" l raising and lowering oper-
ators for their Coulomb eigenfunctions. How-
ever, the reader can most easily verify them by

X,=A(Z) sin[(2), (E)t],

P, = mA(E)(d, (E)cos [&a,(E)t ] .

(3.2)

(3.3)

For potentials with one confining region, there
exist variables X, (x) and P, =mX, =(mX'(&)&)
which are solutions of (3.1) and whose time varia-
tions are given by
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X,(x) is the solution of the equation

tt m(A'- X')
tfx ' ' 2 (E —V(x})

Define the quantum operators

x =x, (x),

p =-,'[x'.p +p x.'],

(3.4)

(3.5)

(3.6)

point energy, and symmetrize. The Morse poten-
tial provides an example of this situation.

1V. MORSE-OSCILLATOR COHERENT STATES

A. Natural variables of the Morse oscillator

For the classical Morse oscillator potential of
Eq. (2.1), the solutions are"

whose commutator is

[X,P) =iG .

Therefore there is a generalized uncertainty re-
lation for X and P of the form

(~)'(~P)"--.'«&' . (3.8)

(3.9}

Obtain those states which minimize this uncer-
tainty relation.

It is well known" that these states satisfy either.
of the two equivalent eigenvalue equations

X, (x, E) = e —Uo/(Uo —E) =A. sinu&, t,
P, = mxae'" = m+,A cosa, t,
A=(UP)'"/(U, —Z),
u) =[2a'(U -E)/m]'/'

with classical equations of motion

X, =P, /m,
0

P,= —mu)', X,= —a'(U —E}X, .
The correct quantum operators are

g U0

Uo - H ho/4-

(4.1)

(4.2}

(4,3)

(4.4)

(4.5)

(4.6)

(4.7)

i( G) i(G)x+
( ), P t= (x)+

( ), (P)ll'

(3.10}

X =—'K, (n)[[A„+(A'„) ]+[A'„+(A„)t]].,

P =—„K.(s}[[A;+(A:)']-[A:.(A;)')],1

(3.11)

(3.12)

where K, (n) and K, (tt) are tt-dependent c numbers.
In all of the examples treated previously' X,

was independent of the classical constant of the
motion E. As Eq. (3.4) demonstrates, this is not
generally true. If X,=X, (x, E), to obtain the ap-
propriate quantum operator X one must make the
replacement E-H, possibly allowing for a zero-

The four parameters (X'}, (X'), (P},and (P') which
appear here are not independent because of the
constraint Eq. (3.8). The coherent states' are that
two parameter subset of these minimum. uncertain-
ty states specified by a certain value of /xX/dP.
This value is chosen such that the ground state be-
longs to the set of coherent states.

Just as for the harmonic oscillator, one can
express' the generalized position and momentum
operators X and P in terms of raising and lower-

. ing operators. However, because energy levels
are not in general equally spaced, the raising
and lowering operators can be & dependent and
(A.'„) 4 (A„). Thus the general representations of
the operators X and P are of the more complicated .

forms

ia'&, d d/e' —+—e'f .
ds ) (4.8)

In Eq. (4.7) we have inserted the zero-point'en-
ergy 8o/4. That this is correct can be seen by
inserting the operators A„' of Eq. (2.15}in Eqs.
(3.11) and (3.12), with K, ()t) =2k, /(A. —n —2) and

K, (tt) =2Aha'. One obtains Eq. (4,7) for X [with H
replaced by E„ofEq. (2.11)], and Eq. (4.8}for P.

The quantum equations of motion are

X =(- t/a)[X, H] =P/m, (4.9)

P = ( i/ft) [P, H-] = -a'((X, Uo —H) +(e*,—So/4f ),

(4.10}

(4.12)

which are the analogs of the classical equations
of motion (4.5) and (4.6}. The time-dependent
operators X(t ) and P(t) can also be calculated ex-
actly. The results are

X(t ) etttt/&X -tHt/o

i / g )t/o 1
=Xe ' o' cosu)„t +—

~

"
I sinu)„t~

2 U —Hj0

t/2
+(P/ka')e ' o'

~

"
~

sine„, (4.11)
(U0 —II j

P(t ) =Pe o cosu)„t ——
~

" sinu)„t
( g i/2

„„,&U„H 8„/4 -8„-
0 0
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where the zero-point angular velocity. ~p and the
quantum operator angular velocity &ue (the analog
to the classical &u, ) are

(u, = h, /ii,
2g U H) 1/2 2a2 1/2

(U. —H)

(4.13a)

where, in the iterated commutator Q„, the symbol
( }" means writing out the quantity enclosed in the
parenthesis n times.

Specifically,

(4.13b)

[It is not obvious that the right-hand sides of (4.11}
and (4.12) are Hermitian. The calculation nec-
essary to verify this property is explained at the
end of this subsection. ]

Equations (4.11)—(4.13) are obtained as follows. "
Use the general expression

e+xvqe-xv g ([I/ )n q(])n —g q
g p

?Z t

(4.14)

plicit example will be given at the end of Sec.
IVB.) Of course, a manifestly Hermitian form
of (4.11}and (4.12) can be obtained by taking a
symmetric combination of the two orderings.
However, the forms given are more convenient
for our purposes.

B. Approximate coherent states

Because X involves II in the denominator, the
calculation of G and the exact solution to the eigen-
value equation (3.9}can, to our knowledge, only
be done approximately. One must either use per-
turbation theory or an eigenfunction expansion.

Note, however, that for the special coherent
state which is the ground state, H(0=ED(0. More-
over, for relatively large Up, and for a coherent
state with (n) «U, /h„only relatively few num-
ber states [-6((n)' ')] will have a significant
overlap with the coherent state. Then one can ap-
proximate (U, —H- 8,/4) ' by (U, —E —8,/4) ',
where E =(H). The above two observations sug-
gest that one approximate X by X =X(H-E). With
this approximation the coherent-states analysis
can be done analytically, yielding "approximate
coherent states. *'

Consider the operator

X =e'- Uo/(UO- E —80/4), (4.16)

(4.15a)
where E =(H) will be given below. Then

[X,P] =ia'he" -=iG . (4.17)
and generally

(4.15b)

From Eqs. (4.9}and (4.10), the iterated commuta-
tors for X and P can be evaluated recursively for
X and P. The algebraic system composed of the
operators X„and P„, & =0', 1, . . . , is spanned by
the operators X, =X and X, =[h,X]—= [-H/h, +&',X]
=(i2/ha')P with coefficients which are polynomials
in the operator h. [X, =X(4h —1)+(i4/Sa')P, and
so on. ] There follows a three-term recurrence re-
lation for X„and a similar one for P„which can
be solved. Finally, the operator power series
can be formally summed to yield Eqs. (4.11) and
(4.12).

In the above calculations, the choice has been
made to write X and P to the left of their coef-
ficient polynomials in h. If this order is rever-
sed,"a very similar structure results, and the
same calculations can be carried out. The ex-
pressions for X(t) and P(t) which result are the
Hermitian conjugates of the expressions on the
right-hand sides of (4.11}and (4.12). Note, there-
fore, that the phase factor exp(-i &a,t }in (4.11}
and (4.12) is essential for Hermiticity. (An ex-

The solution to the eigenvalue equation (3.9) is

=A(C, B)[e ' "/ ']exp[-Ce '],
C =B(e') +i(P)/(a'h) =—u+iv.

(4.18)

(4.19)

Observe that

Up
(ni ' |n) =

U —H- g /4 (X —n)(A. —n —1)

=(nie in). (4.20)

(4.22)

(4.23)

[The first equality comes directly from (2.11}.
The second equality comes from evaluating (2A./
a)N'(n, &)J'„22'~,„,by Eq. (2.13).'] Equation (4.20)
is a verification that (niXin) =0. This result,
compared with (4.18) a,nd (4.19) shows us that to
obtain the ground state one needs the special val-
ue for the complex parameter C =B&/(& —1) and
one has to restrict the parameter B to be ~-1.
Thus, one finally has that

~c, =N(C, &)(e ' ' ")exp(- Ce '), (4.21)

N(C g) -a»2[2a] i/2/[I'(2g I)]&/2

C =(y —1)(e') +i(P)/ha'—=u+iv .
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N(C, A) can be evaluated by changing variables to
t =exp(- z).

By using integrals of the type we have discussed
as well as e(luation (3.9), one can verify that

u' l t' (ka')'u'&
[(a@'1[(~)')=(,(, ,)(„.) Il(2(, .

) &I
=-'(2&'.

(4.24)

[Note that (4.24) also holds for the ground state
with X used instead of X.] Lastly we calculate
E as + continuum, (4.26}

,l~ v' ['z
(~--'I,—+I--lj +(~--') .

) iu' «]
(4.25)

For the ground state C =u+iv=~, yielding the
ground-state energy 80(& —&).

One can decompose Qese approximate coherent
states into number states plus continuum. The
expression is

r~-x /2)

~ (x) =N(C, A.) g N(n, X)8(n, C, A)f„(x)/a
n-p

wh'ere the overlap function 8(n, C, &) is

8(N, C, &)=g I, . Il C I r(2Z-n-1+i }. (4.27)

With this decomposition, one can explicitly calculate

P 1/2 1)

&cslx(t)lcs& =
2,.'

n-p

N(n + 1, &)N(n, A)D(n, A ) [8+(rs +1,C, X)8(n, C, A) exp[i2 (X - 1 -n) (()otJ

+8(&+1,C, &)8*(n, C, &}exp[-i2(X—1-n}&u,t]+continuum contribution. (4.28)

The bound-state contribution of (4.28} is real, as
it must be if X(t) in the form of Eq. (4.11) is Her-
mitian. In particular, it would not have been real
if there had not been the factor exp(-ieot) in Eq.
(4.11).

then expanding exp[—y/2] as exp[power series in

x], and lastly using Stirling's approximation for
the gamma functions in N(n, X), one finds that

X/2
)im („=(~„2„~( )) [

exp[- —,'a x [a„(a~),

V. DISCUSSION

A. Harmonicwscillator limit a, =—[mes/h]'~' .
(5.5)

(5.6)

It is useful to investigate the limit in which the
Morse oscillator reduces to the harmonic oscil-
lator. This harmonic-oscillator limit is defined

by
lim= lim

HO
g-+oa

a~p

(5.1}

gg2 ~8lfd/~
/

First observe that by simple expansion of (2.1)
and (2.11)

lim V(x}=—,'m&umx'
HO

lim E„=:@&(++a~).
HO

(5.2)

(5.2)

Next look at the ei.genfunctions. By using the re-
lation on p. 251 of Magnus gt al„'

E(luations (5.5) and (5.6) are the properly normal-
ized harmonic-oscillator eigenfunctions. Also,

lim
.HO

Finally, one similarly can show that

(5.V)

1GIl
HO

( (p) (E~. &

x exp —(x —(x))' ~+
m(ul ix(p )~

(5.6)

That is, up to the phase facto~ exp [- i(p)/a@)]
one obtains Schrodinger's" original representa- '

tion of the harmonic-oscillator coherent- states.

(H&/v2 ) =(-1)"2"~'r(n+1)

X lim [n "~2I '(v a. x in)] (5.4)

B. Uncertainty products

In their interesting paper, Walker and Preston'
did a numerical study of the one-dimensional
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Morse oscillator, with parameters fit to the HF
molecule. The system was started in the ground
state, and then allowed to interact with a clas-
sical electromagnetic field. They found that in-
itially the system was almost in a minimum un-
certainty state of x and P:

q -=(a)(ap) & —,'5 (5.9)

had~ =0.503 5. (Below we will calculate this
number analytically. ) After about 5 optical os-
cillations '4 began growing rapidly with time to a
maximum of about 2.4 8 by 10 optical cycles.
then decreased back to near &@ after 20 optical
cycles. After this the pattern was approximately
repeated every 20 optical cycles.

Walker and Preston observed, from analogy to
the harmonic oscillator, that 'Lo-2@ is expected
since the Morse ground-state wave function is
similar to the harmonic-oscillator ground-state
Gaussian. Furthermore, their numerical results
showed that the energy absorbed from the exter-
nal field in about 10 optical cycles was deposited
back into the field in the next 10 cycles. [The
quantity (x(t)) displayed a similar pattern of
growth and decay. ] Thus 'tt(t) could be expected
to return to -35. The pattern then should ap-
proximately repeat itself every 20 cycles, as was
observed.

Additional understanding of this uncertainty-
product oscillation can be gained by further an-
alogy to the harmonic oscillator, also using the
results in Secs. III and IV. The electromagnetic
field is represented by an interaction proportional
to x, where x is the natural variable for the har-
monic oscillator: (n +1~ x~ n) are the only non-
zero matrix elements. This is a technical reason
that the forced harmonic oscillator remains ex-
actly in a coherent state. "

But, as we have seen, it is X(x), defined by
Eq. (4.7), which is the natural variable for the
Morse oscillator. One immediate consequence is
that x produces transitions to all (parity-allowed)
states, not just to adjacent eigenstates. Thus
the Morse oscillator forced by a time-dependent
potential proportional to x is not coherently
driven. A feel for this can be seen from Walker
and Preston's Figs. 2 and 3. After 10 optical cy-
cles, (n) -2.5 and 'll-2. 4 O'. For a harmonic
oscillator, %L„=(& +—2)K, so that for a totally un-
coherent harmonic oscillator with (n) -2.5, one
would expect %,-3N.

Moreover, the Morse ground state is a mini-
mum uncertainty state for the uncertainty prod-
uct of Eq. (3.8): (bX)~(M)'~ ~(G)'. Thus, one
expects %,x-,'S. As it happens, for the Morse
ground state with the HF parameters used by .

Walker and Preston, Eq. (3.8) is strikingly close
to Eq. (5.9) and the numerical factor in Eq. (5.9)
is 0.503 instead of 0.5. To make this statement
precise, we now analytically calculate the ground-
state uncertainty 'it~ (this yielding 0.503 for the
Walker-Preston system), and point out the gen-
eralization to higher Morse number states.

The Morse ground state can be written

g ~N(0 A. )(2A, ) 'im[f(2X-1 A, )]'i' (5.10)

f(T, &) =e "exp(-2Xe ').
By observing that

d
~~ f (2& —1, &) =—2gf (2A,—1, A.) —2f (2X, x)

(5.11)

(5.12)

and interchanging the order of differentiation and
integration, one obtains

(x), = a-'Z(0, X}'(2X}"-'

E(2A. —1, A.) + E(2&, &) I, (5,13)

where

&(', ") f~ =~(~( nX,2~(= (5.14)

The end result is that

(x), =a '[ln(2X)- C (2Z-1)], (5.15)

where 4' is the digamma function. ' Similarly,

(x') =a-'X(0 ~)'(2&)'"-'

(1 d' d
x~ — y'(2A. —1,A}+—E(2A., A)+E(2&+1, A)

~4 dX' ' d )

(5.16}

=a 'f4'(2A, —1)+[in(2A) —4'(2&-1)]') (5 17)

(P'), =- I'a+(O, ~)2 (2~)"-'

x [(& —,') E(2& —1, A, ) —2A2E(2A, , &) (5.19)

+X E(2A, +1,A.}]
= —,'I'a'(A. ——,') . (5.20)

Combining Eqs. (5.15)-(5.20)

(hx)2O(b, p)~~ = 2I (A. —2)4'(2A. —1) . (5.21)

For the HF parameters used by Walker and Pres-
ton, ~ =23.8V. This means that to evaluate the tri-
gamma function in Eq. (5.21}we can use the large-

where +' is the trigamma function. In an easier
manner

(5.18)



MICHAEL MARTIN NIETO AND L. . M. SIMMONS, JR.

argument expression

1 1 1'2' '4' So''
Thus

(hx)o(bP)c =0.5027 If.

(5.22)

(5.23}

number state, &40. The only difference is that
there will be (««+1)' times as many terms, be-
cause there are m+1 terms in the polynomial
L~a)' a" '«(1)

In later work we will present a discussion of the
time evolution of these coherent states.

Finally we point out that one can similarly cal-
culate the x —P uncertainty product for any other

This work was supported by the U. S. Depart-
ment of Energy.
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