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Calcnlation of P shape resonances in Be and Mg
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Shape resonances of I' type are calculated for electron scattering with Be and Mg target atoms using the

Harris method with an ad hoc polarization potential. Good agreements" are obtained for resonance energies

and widths.

1. INTRODUCTION

In recent years, considerable progress has been
made in the calculation of resonances in electron
scattering with both atomic and molecular targets.
Several good reviews on resonances (also known as
temporary negative iona or compound states) have
been given. ' Electron scattering resonances can be
separated into three classifications" "&: core ex-
cited type I (also called Feshbach resonances),
core excited type II (excited state shape reso-
nances), and single-particle resonances. The par-
ticular type of resonances which will be of concern
here is the single-particle resonances. They are
also shape resonances since the angular momentum
of the electron forms a penetrable barrier in the
potential via the centrifugal term f(l+1)/2r s, which
serves to trap the electron. Such resonances are
expected to be seen only in p and higher partial
waves. For single~article resonances there are
no target excitations, as in core excited type II,
and they can be used as the definition of negative
electron affinities.

Single-particle resonances have been observed
for the group-II elements Mg, Zn, Cd, and Hg by
Burrow et aE.2 These systems are ideal for ob-
serving shape resonances because they provide a
low-lying unoccupied np orbital for the incoming
electron, resulting in a 'P resonance. Unfortun-
ately, measurements of the Be resonance have not
been made due to the high toxicity of the substance.

The anion states of Be and Mg are of considerable
interest. For both Be and Mg, there is possibly a
$ state due to an electron occupying a 3s and 4s

orbital, respectively. Such states are predicted
by i,soelectronic extrapolation techniques' to lie be-
low. the corresponding 'I' states. These states do
not exhibit a centrifugal barrier to trap the, incom-
ing electron and, therefore, will not appear as
shape resonances in the elastic cross sections.

. The '9 state of Be is predicted to be bound by ex-
trapolation procedures but this has not been sub-
stantiated by ab initio calculations. We refer the
reader to the work of Massey' for a more detailed

discussion of these states.
Relatively few calculations on the 'p resonances

have been done for Be and Mg. Hunt and Moisei-
witsch' carried out. elastic scattering calculations
on a variety of atoms using a model potential and

recently Rescigno et aE.~ have performed static-
exchange calculations on Be using the complex co-
ordinate method.

Other cases in which one might expect to find

shape resonances are the rare-gas atoms, but for
these systems the incoming electron wouM have to
occupy an orbital of the next higher n quantum num-
ber. Hence, the additional electron will be at a
large radial distance and see little of the potential
required to localize it. Another important differ-
ence is in the polarizabilities of these atoms,
which are much smaller than those of the group-II
atoms. Because of these factors, shape reso-
nances for rare-gas atoms will probably not be
discernable from the background elastic scattering
cross section.

H. METHOD OF CALCULATION

When a partial-wave expansion of the scattering
function is made, the resulting equations to be
solved are

The momentum of the scattered electron, k, is
given by h = (2E)'1'.

We use the Harris method' to solve the above
equations. In this method the scattering wave func-
tion is represented as

4t = st + tet+ Q b( st, ,

where s, and z, are functions that go asymptotical-
ly (where V goes to zero) as jt and n„ the spher-
ical Bessel and Neuman functions, respectively.
From this expression, t can be identified as tan5„
the tangent of the phase shift. The functions I, are
a Set of I.2 functions which describe the wave pac-
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ket near the atom and go to zero asymptotically.
If the target is chosen to be represented by the

Hartree-Fock approximation (static exchange), we
write

and the u, 's are the virtual Hartree-Pock- orbitals.
In order to evaluate the integrals to obtain the

phase shift 5„we must choose an explicit form for
s, and c,. The following choice of Harris and
Michels' is used in our calculations:

scattering quantities can only be evaluated at dis-
crete energy values. Since these values are ob-
tained as positive eigenvalues of a particular Ham-
iltonian, it is not possible a priori to select a given
scattering energy. The systems studied here are
of relatively small size, and therefore several
large basis sets can be employed to generate many
energy values. If the quantities in question do not
undergo rapid variations between the available en-
ergies, this method does not present any difficult
ies in determining the overall energy dependence
by some means of interpolation.

where. the latter approximation to n, is due to
A rm stead. '0

Many authors have studied the evaluation of the
two-electron integrals with a scattering function '"
which are needed for the remaining terms. One
additional integral must be evaluated when using
the approximate form of n, for c, . This is (u, ~ T,
——,'k'~c, ), which arises because c, is not an eigen-
function of the kinetic energy T, as is j,. The main
advantage of this method is that integrals involving
only a single scattering function need to be evalu-
ated and they can be done analytically.

The atoms studied here are highly polarizable
and, therefore, the static-exchange approximation
is expected to be inadequate. We include polariza-
tion effects in our calculations with-a modified po-
tential of the form

v(r) = v„„+v...(r},
where

-n/2r4, r &r0

—er/2ros, r (r
The parameter n is the static polarizability and ro
is an arbitrary cutoff parameter. Potentials of
this type have been studied by Truhlar ef u&."

In order to use a potential of this form, some
method must be chosen to obtain a value of ro. In
this work we have arbitrarily chosen r, as the
distance at which the centrifugal barrier p&us po-
larization is zero. The choice is meaningful only
for l w0, as is the case for the systems in ques-
tion, and gives rise to the expression

If a polarization potential is included, the functions
u, in Eq. (2) must now be eigenfunctions of I.=F
+ Vp &

i'nstead of the Pock operator F. A iso the ad-
ditional integrals (u,. ~ V„„)s, ) and (u,. ~ V„,( c, ) must
be calculated.

A shortcoming of the Harris method is that the

TABLE I. Additional BePo functions.

Set I Set II Set ID

1.900
1.400
0.900
0.700
0.450
0.350
0.220
0.170
0.110
0.085
0.055
0.025

2.000
1.500
1.000
0.750
0.500
0.375
0.250
0.180
0.120
0.090
0.060
0.030

2.100
1.600
1.100
0.800
0.550
0.400
0.280
0.190
0.130
0.095
0.065
0.035

III. CALCULATION OF 5I AND 5

To describe the target beryllium atom, Cle-
menti's" extended STQ Hartree-Fock solutions
were used for the 1g and 2s orbitals. This basis
gives a total self-consistent field (SCF) energy of
-14.573 02 a.u. These functions were augmented
with 12 p, orbitals to provide the needed p virtual
orbitals and energies. Three different sets of
functions were used to provide a distribution of en-
ergies over the range of interest and these are
shown in Table I. The p-wave phase shifts and

partial cross sections were, then calculated in the
static-exchange approximation. In order to calcu-
late the phase shifts and partial cross sections in

the static-exchange plus polarization approxima-
tion, the static polarizability e of Be used was 47
a.u. with the cutoff parameter r, chosen as 5 bohrs.
The results of the two calculations are summarized
in Table II for energies less than 7.5 eV. A plot of
the phase shifts and partial cross sections are
given in Figs. 1 and 2, respectively. From these
graphs it is easy to see that polarization effects
are very important in describing the resonance in
Be.

The process used for Mg is similar to that used
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TABLE II. Se results.
I

0.0042
0.0055
0.0068
0.0184
0.0226
0.0272
0.0542

. 0.0650
0.0767
0.1338
0.1586
0.1854
0.3000
0.3524
0.4OVO

0.6087
0.7012
0.7953
1.1433
1.3166
1.5053
2.2525
2.6585
3.1057
5.0173
5.9656
6.9973

0„0001
0.0002
0.0003
0.0016
0.0022
0.0028
0.0080
0.0&07
0.0139
0.0352
0.0461
0.0591
0.1285
0.1692
0.2167
0.4409
0.5541
0.6709
1.0298
1.3.574
1.2577
1.4430
1.4692
1.4779
1.4225
1.4019
1.3809

Static exchange
Energy (eV) . &.~ (rad) a& (a.u.2}

0.0024
0.0040
0.0064
0.0693
0.&050
0.1521
0.6089
0,9071
1.3019
4.7537
6.8721
9.6559

28.0907
41.2480
58.2635

153.4354
202.4999
249.2473
329.6384
326.7206
308.3944
224.0107
190.9507
163.7279
99.9954
83.5482
V0.6895

ization
0'g {a u. )

Static exchange + polar
Energy (eV) ~g (rad)

0.0030
0.0040
0.0051
0.0197
0.0258
0,0328
0.0837
0.1085
0.1383
0.3356
0.4359
0.5492
1.0497
1.2441
1.4150
1.8184
1.89V9
1.9452
1.9645
1.9511
1.9308
1.8601
1.8214
1.7846
1.6661
'1.6297
1.6002

1.1325
1.5237
1.996V

10.888V

15.2638
20.6289
67.9889
95.7466

132.7036
457.8664
652.4380
880.9481

1667.7666
1757.304V

1702.4255
1118.4447
914.3762
762.3221
474.8625
402.5179
347.4711
229.VV04

196.1158
169.1473
107.4190

.90.6379
VV.3511

for Be. Clementi's" extended STO Hartree-Pock
solutions mere used to describe the target 1s, 2s,
2p, and 3s orbitals which give a total SCF energy
of -199.61458 a.u. These frere then augmented
vrith three sets of po functions to produce virtual

'orbitals. Unlike the Be sets, these functions con-

sisted of only two different exponents with n quan-
tum numbers running from 3 to 7 for each. All
.three sets consisted of functions vrith one exponent
equal to unity and the remaining one assuming the
values of 0.30, 0.325, and 0.35, respectively. For
the calculations which included polarization, the
static polarizability used eras S1 a.u. with a cutoff
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FIG. 1. Se l =1 phase-shift curves. The points labeled
by 4 were obtained using the static-exchange potentia1
and those labeled by * were obtained using the polariza-
tion plus static-exchange potential.

FIG. 2. Be l=-1 cross-section curves with and without
polarization. For an explanation of the labeling see
Pig. 1.
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of 6.3 bohrs. The results below 7.5 eV are sum-
marized in Table IlI with plots of 5, and 0, shown
in Figs. 3 and 4, respectively.

IV. EVALUATION OF RESONANCE PARAMETERS

The resonance energies and widths can be ob-
tained from the phase shift curves via the method
of time delay. ' The time an outgoing particle is
delayed due to the presence of a potential is given
by

b, t=2n d5

.The energy of maximum time delay is identified as
the resonance energy E„, and the width I" is given
by

d5
(8)I' dE

To actually solve for E„and I from the previous-
ly calculated phase shifts, the values of the first
and second derivatives of each curve are used. To
obtain these, the phase-shift values were fit with a
cubic spline and the first and second derivatives
then evaluated at the known energies. These quan-
tities were then, in return, fit with cubic splines
to provide continuous curves for interpolation. The
second derivative curve was used to define the en-
ergy E„because it is more accurate to interpolate

the zero of this curve than the maximum of the
first derivative. The width I" is then found by eval-
uating the first derivative at E„. Table IV shows
the calculated resonance energies and widths for
Be and Mg and a comparison with other results.

The accuracy of the resonance positions and
widths is dependent on the accuracy of interpolation
using the spline fits. %e feel that me have enough
points in the region of interest so that the cubic
spline fits do not introduce any spurious behavior
and that our calculated quantities are precise.

V. CONCLUSIONS

As can be seen. from Figs. 2 and 4, polarization
effects play a very important role in calculating
accurate resonance energies and widths for the
highly polarizable group-D atoms. The results of
this work are highly dependent on the semiempir-
ical polarization potential used and further study
of the methods of choosing the parameters is
needed. Other methods of including polarization
are also worth further study, in particular the ab
initio (second orde-r) optical potentiat. " Such po-
tentials would increase the computational effort
required for this method, but could be used with a
discrete basis and would be interesting to try.

In comparing our resonance positions with the
experimental one, it should be noted that the latter
were estimated by the maximum in the total cross

TABLE III. Mg results.

Static exchange
Energy (ev) g $ (rad) o~ (a.u. 2)

Static exchange + polarization
Energy (eV) 6~ (rad) 6~ (a.u. )

0.0818
0.0929
0.1041
0.2518
0.2825
0.3131
0.5237
0.5797
0.6352
0.9517
1.0531
1.1566
1.7422
1.9283
2.1169
3.3015
3.6084
3.9171
6.4047
6.8692
7.3382

0.0212
0.0257
0.0307
0.1531
0.1846
0.2179
0.5152
0.5927
0.6665
0.9941
1.0574
1.1068
1.2139
1.2207
1.2207
1.1425
1.1229
1.1024
0.9314
0.9082
0.8855

2.8035
3.6478
4.6316

47.3775
6 1.1360
V6.5687

237.7273
276.0759
308.6260
378.7139
369.5619
354.6390
258.4543
234.7038
213.7889
128.5517
115.4799
104.2571
51.5651
46.4105
41.9011

0.0718
0.0796
0.0871
0.1814
0.1984
0.2156
0.3878
0.4360
0.4860
0.8090
0.9123
1.0181
1.6124
1.8012
1.9915
3.1542
3.4583
3.7631
6.1448
6.6005
7.0612

0.1879
0.2186
0.2495
1.0416
1.1570
1.2597
1.7450
1.7765
1.7949
1.7889
1,7706
1.7497
1.6186
1.5848
1.5528
1.3813
1.3511
1.3229
1.1334
1.1073
1.0814

249.0809
302.9130
359.0384

2106.5748
2167.3577
2154.1128
1282.9533
1127.3356
1003.2621
604.3531
540.0515
487.8392
317.3692
284.7117
257.4616
156.8413
141.2673
128.0946
68.4913
62.1744
56.5881



CALCULATION OF ~P SHAPE RESONANCES IN Be AND Mg

QQ I ~ ~ ~ ~ 1 I ~ \ i ~ ~ ~ ~ ~ % I ~
/

I ~ ~ ~ I l ~ ~ ~QQ TABLE IV. Resonance parameters.

1.50

II

1.00
X
CO

0.50

~ ~ I ~ 1 1 ~ ~ \
$

~ ~. ~ ~ T ~ '1 'I
/

~ I I \ ~ ~ ~ ~ ~0 Q

0.0 2.50
ENERGY (eV)

5.00 7.50

FIG. 3. Mg E=1 phase-shift curv'es with and without
yolarim', ation. For an explanation of the labeling, see
Fig. 1.
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FIG. 4. Mg l =1 cross-section curves with and without
yolarimation. For an explanation of the labeling see
Fig. 1.

section. From our partial cross sections, this
maximum is seen to lie slightly above the calcu-.
lated resonance position. The position of the max-
imum in the partial cross section may not corres-
pond exactly to that in the total cross section,
which may be shifted, slightly due to the large,
broad g-wave component not given in our calcuIa-
tions. The experimental widths were determined
as the distance between the maximum positive and
negative slopes of the total cross section.

The results of Rescigno et cl.' provide a good
check on our procedures. They used the same
static-exchange potential in their method and,
hence, should obtain the same results. Indeed, our
static-exchange results are in very good agree-
ment with theirs.

Hunt and Moiseiwitsch have also performed
elastic scattering ca1culations on Be and Mg using
a model potential of the form

Beryllium:

SE
SKI"

RMO"

Magnesium:
SE
SEP
HM
Robb
Empt.

0.769
0.195
0.60
0.76

R„
0.460
0.161
0.37
0.186
0.15

1.611
0.283
0.22
1.11

r
1,374
0.238
0.10

0.14

Static exchange (this work).
Static exchange + polarization (this work).

cReference
~Reference 7.
W. D. Robb (unpublished results from Ref. 2).

~ Reference 2.

where the parameter r, was chosen by an isoelec-
tronic extrapolation procedure. This potential does
not allow for the long range -a/2r attractive po-
larization potential, and this is likely the reason
for their resonance position to possibly be too
high. This is similar to our static-exchange re-
sults, which also 1ack the long-range potential.

There are several other methods available for
calculating shape resonances, among which are the
stabilization method, ' 8-matrix method, ' and
close-coupling methods is and many of these meth-
ods have been applied to electron-molecule scat-
tering. In its present form, the method used in
this work does not lend itself readily to this type
of application. The difficulties involved could pos-
sibly be circumvented if a procedure could be
found for evaluating the needed integrals using
Gaussian type functions instead of STO's. The
Harris phase-shift method is also not directly ap-
plicable to other types of resonances above the ex-
citation threshoM and to solve this problem one
must use other procedures such as the Harris and
Michels minimum-norm method. ' Nevertheless,
for applications to atomic single-particle reso-
nances, we feel that the simplicity of the Harris
method outlined in this work makes it very appeal-
ing and certainly very competitive with other meth-
ods.
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