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Shape resonances of 2P type are calculated for electron scattering with Be and Mg target atoms using the
Harris method with an ad hoc polarization potential. Good agreements’ are obtained for resonance energies

and widths.

I. INTRODUCTION

In recent years, considerable progress has been
made in the calculation of resonances in electron
scattering with both atomic and molecular targets.
Several good reviews on resonances (also known as
temporary negative ions or compound states) have
been given.! Electron scattering resonances can be
separated into three classifications!®’: core ex-
cited type I (also called Feshbach resonances),
core excited type II (excited state shape reso-
nances), and single-particle resonances. The par-
ticular type of resonances which will be of concern
here is the single-particle resonances. They are
also shape resonances since the angular momentum
of the electron forms a penetrable barrier in the
potential via the centrifugal term I(Z+1)/2r2, which
serves to trap the electron. Such resonances are
expected to be seen only in p and higher partial
waves. For single-particle resonances there are
no target excitations, as in core excited type II,
and they can be used as the definition of negative
electron affinities.

Single-particle resonances have been observed
for the group-II elements Mg, Zn, Cd, and Hg by
Burrow et al? These systems are ideal for ob-
serving shape resonances because they provide a
low-1lying unoccupied np orbital for the incoming
electron, resulting in a 2P resonance. Unfortun-
ately, measurements of the Be resonance have not
been made due to the high toxicity of the substance.

The anion states of Be and Mg are of considerable
interest. For both Be and Mg, there is possibly a
25 state due to an electron occupying a 3s and 4s
orbital, respectively. Such states are predicted
by isoelectronic extrapolation techniques® to lie be-
low .the corresponding 2P states. These states do
not exhibit a centrifugal barrier to trap the incom-
ing electron and, therefore, will not appear as
shape resonances in the elastic cross sections.
The 25 state of Be~ is predicted to be bound by ex-
trapolation procedures but this has not been sub-
stantiated by ab initio calculations.* We refer the
reader to the work of Massey® for a more detailed
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discussion of these states.

Relatively few calculations on the 2P resonances
have been done for Be and Mg. Hunt and Moisei-
witsch® carried out elastic scattering calculations
on a variety of atoms using a model potential and
recently Rescigno et al.” have performed static-
exchange calculations on Be using the complex co-
ordinate method.

Other cases in which one might expect to find
shape resonances are the rare-gas atoms, but for
these systems the incoming electron would have to
occupy an orbital of the next higher » quantum num-
ber. Hence, the additional electron will be at a
large radial distance and see little of the potential
required to localize it. Another important differ-
ence is in the polarizabilities of these atoms,
which are much smaller than those of the group-II
atoms. Because of these factors, shape reso-
nances for rare-gas atoms will probably not be
discernable from the background elastic scattering
cross section.

II. METHOD OF CALCULATION

When a partial-wave expansion of the scattering
function is made, the resulting equations to be
solved are

( 1 42 1(1+1)
"2 @it T2t
The momentum of the scattered electron, k&, is
given by &k =(2E)V2, ’

We use the Harris method® to solve the above
equations. In this method the scattering wave func-
tion is represented as

+V(r)>\ll,=E\Il, . (1)

\It,=s,+tc,+2b‘u,, (2)
i .

where s; and ¢, are functions that go asymptotical-
ly (where V goes to zero) as j; and »n,, the spher-
ical Bessel and Neuman functions, respectively.
From this expreséion, ¢ can be identified as tang,,
the tangent of the phase shift. The functions u, are
a get of L? functions which describe the wave pac-
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ket near the atom and go to zero asymptotically.

If the target is chosen to be represented by the
Hartree-Fock approximation (static exchange), we
write

Vir)= V_H[: s (3)

and the #,’s are the virtual Hartree-Fock orbitals.

In order to evaluate the integrals to obtain the
phase shift §,, we must choose an explicit form for
. s;and ¢;. The following choice of Harris and
Michels® is used in our calculations:

s;=j,(k7),

(i+1) @

kr-]

€1 =jraa(Rr)+ 2(fr) = my

r—> 00
where the latter approximation to », is due to
Armstead.'

Many authors have studied the evaluation of the
two-electron integrals with a scattering function
which are needed for the remaining terms. One
additional integral must be evaluated when using
the approximate form of #, for ¢,. This is (u,|T,
-3#|c,), which arises because ¢, is not an eigen-
function of the kinetic energy T, as is j,. The main
advantage of this method is that integrals involving
only a single scattering function need to be evalu-
ated and they can be done analytically.

The atoms studied here are highly polarizable
and, therefore, the static-exchange approximation
is expected to be inadequate. We include polariza-
tion effects in our calculations with-a modified po-
tential of the form

V('r) : VHF + Vpol(r) ) (5)
where

{ —a/2r%, r>7,
ol =

V.
—ar/2ry, r<r,.

p

(6)

The parameter « is the static polarizability and »,
is an arbitrary cutoff parameter. Potentials of
this type have been studied by Truhlar ef al.?

In order to use a potential of this form, some
method must be chosen to obtain a value of 7,. In
this work we have arbitrarily chosen 7, as the
distance at which the centrifugal barrier plus po-
larization is zero. The choice is meaningful only
for 71+0, as is the case for the systems in ques-
tion, and gives rise to the expression

ro=[a/U(1+1)]V2.

If a polarization potential is included, the functions
%; in Eq. (2) must now be eigenfunctions of L=F
+ Vo instead of the Fock operator F. Also the ad-
ditional integrals («;|V,y|s;) and (u;|V,,|c;) must
be calculated.

A shortcoming of the Harris method is that the

ol

9,11

scattering quantities can only be evaluated at dis-
crete energy values. Since these values are ob-
tained as positive eigenvalues of a particular Ham-
iltonian, it is not possible a p#iori to select a given
scattering energy. The systems studied here are
of relatively small size, and therefore several
large basis sets can be employed to generate many
energy values. If the quantities in question do not
undergo rapid variations between the available en-
ergies, this method does not present any difficult
ies in determining the overall energy dependence
by some means of interpolation.

III. CALCULATION OF §; AND §,;

To describe the target beryllium atom, Cle-
menti’s®® extended STO Hartree-Fock solutions
were used for the 1s and 2s orbitals. This basis
gives a total self-consistent field (SCF) energy of
-14,57302 a.u. These functions were augmented
with 12 p, orbitals to provide the needed p virtual
orbitals and energies. Three different sets of
functions were used to provide a distribution of en-
ergies over the range of interest and these are
shown in Table I. The p-wave phase shifts and
partial cross sections were then calculated in the
static-exchange approximation. In order to calcu-
late the phase shifts and partial cross sections in
the static-exchange plus polarization approxima-
tion, the static polarizability o of Be used was 47
a.u. with the cutoff parameter », chosen as 5 bohrs.
The results of the two calculations are summarized
in Table II for energies less than 7.5 eV. A plot of
the phase shifts and partial cross sections are
given in Figs. 1 and 2, respectively. From these
graphs it is easy to see that polarization effects
are very important in describing the resonance in
Be.

The process used for Mg is similar to that used

TABLE 1. Additional Be p, functions.

Set I Set II Set II
1.900 2.000 2.100
1.400 1.500 1.600
0.900 1.000 1.100
0.700 0.750 0.800
0.450 0.500 0.550
0.350 0.375 0.400
0.220 0.250 ' 0.280
0.170 0.180 0.190
0.110 0.120 0.130
0.085 0.090 © 0,095
0.055 0.060 0.085
0.025 0.030 0.035
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TABLE II. Be results.

Static exchange Static exchange + polarization
Energy (eV) 64 (rad) 0y @.u.} Energy (eV) 6y (rad) 0y @.u.)
0.0042 0.0001 0.0024 0.0042 0.0030 1.1325
0.0055 0.0002 0.0040 0.0054 0.0040 1.5237
0.0068 0.0003 0.0064 0.0068 0.0051 1.9967
0.0184 0.0016 0.0693 0.0182 0.0197 10.8887
0.0226 0.0022 0.1050 0.0224 0.0258 15.2638
0.0272 0.0028 - 0.1521 0.0268 0.0328 20.6289
0.0542 0.0080 0.6089 0.0527 0.0837 67.9889
0.0650- 0.0107 0.9071 0,0628 0.1085 95.7466
0.0767 0.0139 1.3019 0.0734 0.1383 132.7036
0.1338 0.0352 4.7537 0.1215 0.3356 457.8664
0.1586 0.0461 6.8721 0.1401 0.4359 652.,4380
0.1854 0.0591 9.6559 0.1586 0.5492 880.9481
0.3000 0.1285 28.0907 0.2313 1.0497 1667.7666
0,3524 0.1692 41.2480 0.2618 1.2441 1757.3047
0.4070 0.2167 58.2635 0.2940 1.4150 1702.4255
0.6087 0.4409 153.4354 0.4311 1.8184 1118.4447
0.7012 0.5541 202.4999 0.5030 1.8979 914.3762
0.7953 0.6709 249.2473 0.5828 - 1.9452 762.3221
1.1433 1.0298 329.6384 0.9212 1.9645 474.8625
1.3166 1.1574 326.7206 1.0987 1.9511 402.5179
1.5053 1.2577 308.3944 1.2930 1.9308 347.4711
2.2525 1.4430 224.0107 2.0505 1.8601 229.7704
2.6585 1.4692 190.9507 2.4545 1.8214 196.1158
3.1057 1.4779 163.7279 2.8958 1.7846 169.1473
5.0173 1.4225 99.9954 4.7316 1.6661  107.4190
-5.9656 1.4019 83.5482 5.6393 '1.6297 90.6379
6.9973 1.3809 70.6895 6.6252 1.6002 77.3511
for Be. Clementi’s™ extended STO Hartree-Fock sisted of only two different exponents with » quan-
solutions were used to describe the target 1s, 2s, tum numbers running from 3 to 7 for each. All
2p, and 3s orbitals which give a total SCF energy three sets consisted of functions with one exponent
of —199.61458 a.u. These were then augmented equal to unity and the remaining one assuming the
with three sets of p, functions to produce virtual values of 0.30, 0.325, and 0.35, respectively. For
‘orbitals. Unlike the Be sets, these functions con- the calculations which included polarization, the

static polarizability used was 81 a.u. with a cutoff
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FIG. 1. Be I=1 phase-shift curves. The points labeled
by A were obtained using the static-exchange potential FIG. 2. Be I=1 cross-section curves with and without
and those labeled by * were obtained using the polariza- polarization. For an explanation of the labeling see

tion plus static-exchange potential. Fig. 1.
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of 6.3 bohrs. The results below 7.5 eV are sum-
marized in Table III with plots of 6, and o, shown
in Figs. 3 and 4, respectively.

IV. EVALUATION OF RESONANCE PARAMETERS

The resonance energies and widths can be ob-
tained from the phase shift curves via the method
of time delay.! The time an outgoing particle is
delayed due to the presence of a potential is given
by

dé

At=2n —. (7

dE

.The energy of maximum time delay is identified as
the resonance energy E,, and the width I" is given
by

- 40 ) ‘ )

To actually solve for E, and I" from the previous-
ly calculated phase shifts, the values of the first
and second derivatives of each curve are used. To
obtain these, the phase-shift values were fit with a
cubic spline and the first and second derivatives
then evaluated at the known energies. These quan-
tities were then, in return, fit with cubic splines
to provide continuous curves for interpolation. The
second derivative curve was used to define the en-
ergy E, because it is more accurate to interpolate

the zero of this curve than the maximum of the
first derivative. The width I" is then found by eval-
uating the first derivative at E,. Table IV shows

_ the calculated resonance energies and widths for

Be and Mg and a comparison with other results.

The accuracy of the resonance positions and
widths is dependent on the accuracy of interpolation
using the spline fits. We feel that we have enough
points in the region of interest so that the cubic
spline fits do not introduce any spurious behavior
and that our calculated quantities are precise.

V. CONCLUSIONS

As can be seen from Figs. 2 and 4, polarization
effects play a very important role in calculating
accurate resonance energies and widths for the
highly polarizable group-II atoms. The results of
this work are highly dependent on the semiempir-
ical polarization potential used and further study
of the methods of choosing the parameters is
needed. Other methods of including polarization
are also worth further study, in particular the ab
initio (second-order) optical potential.’®> Such po-
tentials would increase the computational effort
required for this method, but could be used with a
discrete basis and would be -interesting to try.

In comparing our resonance positions with the
experimental one, it should be noted that the latter
were estimated by the maximum in the total cross

TABLE IIl. Mg results.

Static exchange

Static exchange + polarization

Energy (eV) 84 (rad) 0y @.u.? Energy (eV) 64 (rad) 6y (@.u.
0.0818 0.0212 2.8035 0.0718 0.1879 249.0809
0.0929 0.0257 3.6478 0.0796 0.2186 302.9130
0.1041 0.0307 4.6316 0.0871 0.2495 359.0384
0.2518 0.1531 47.3775 0.1814 1.0416 2106.5748
0.2825 0.1846 61.1360 0.1984 1.1570 2167.3577
0.3131 0.2179 76.5687 0.2156 1.2597 2154.1128
0.5237 0.5152 237.7273 0.3878 1.7450 1282.9533
0.5797 0.5927 276.0759 0.4360 1.7765 1127.3356
0.6352 0.6665 308.6260 0.4860 1.7949 1003.2621
0.9517 0.9941 378.7139 0.8090 1.7889 604.3531
1.0531 1.0574 369.5619 0.9123 1.7706 540.0515
1.1566 1.1068 354.6390 1.0181 1.7497 487.8392
1.7422 1.2139 258.4543 1.6124 1.6186 317.3692
1.9283 1.2207 234.7038 1.8012 1.5848 284.7117
2.1169 1.2207 213.7889 1.9915 1.5528 257.4616
3.3015 1.1425 128.5517 3.1542 1.3813 156.8413
3.6084 1.1229 115.4799 3.4583 1.3511 141.2673
3.9171 1.1024 104.2571 3.7631 1.3229 128.0946
6.4047 0.9314 51.5651 6.1448 1.1334 68.4913
6.8692 0.9082 46.4105 6.6005 1.1073 62.1744
7.3382 0.8855 41.9011 7.0612 1.0814 56.5881
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FIG. 3. Mg l=1 phase-shift curves with and without
polarization. For an explanation of the labeling, see
Fig. 1.

section. From our partial cross sections, this
maximum is seen to lie slightly above the calcu- -
lated resonance position. The position of the max-
imum in the partial cross section may not corres-
pond exactly to that in the total cross section,
which may be shifted. slightly due to the large,
broad s-wave component not given in our calcula-
tions. The experimental widths were determined
as the distance between the maximum positive and
negative slopes of the total cross section.

The results of Rescigno et al.” provide a good
check on our procedures. They used the same
static-exchange potential in their method and,
hence, should obtain the same results. Indeed, our
static-exchange results are in very good agree-
ment with theirs.

Hunt and Moiseiwitsch® have also performed
elastic scattering calculations on Be and Mg using
a model potential of the form

-z(1/r=1/r)), r<r,
Vie)= {0, 7 >7, 9)
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FIG. 4. Mg I=1 cross-section curves with and without
polarization. For an explanation of the labeling see
Fig. 1.
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TABLE IV. Resonance parameters.

- Beryllium: E, r
SE? 0.769 1.611
SEPD 0.195 0.283
HM ¢ 0.60 0.22

~ RMoO¢ 0.76 1.11
Magnesium: R, T
SE 0.460 1.374
SEP 0.161 0.238
HM 0.37 0.10
Robb © 0.166 oo
Expt. 0.15 0.14

aStatic exchange (this work).

bStatic exchange + polarization (this work).
CReference 6.

dReference 7.

e€W. D. Robb (unpublished results from Ref. 2).
f Reference 2.

where the parameter 7, was chosen by an isoelec-
tronic extrapolation procedure. This potential does
not allow for the long range —a/2r* attractive po-
larization potential, and this is likely the reason
for their resdnance position to possibly be too
high. This is similar to our static-exchange re-
sults, which also lack the long-range potential.

There are several other methods available for
calculating shape resonances, among which are the
stabilization method,'® R-matrix method,'” and
close-coupling methods,'® and many of these meth-
ods have been applied to electron-molecule scat-
tering. In its present form, the method used in
this work does not lend itself readily to this type
of application. The difficulties involved could pos-
sibly be circumvented if a procedure could be
found for evaluating the needed integrals using
Gaussian type functions instead of STO’s. The
Harris phase-shift method is also not directly ap-
plicable to other types of resonances above the ex-
citation threshold and to solve this problem one
must use other procedures such as the Harris and
Michels minimum-norm method.® Nevertheless,
for applications to atomic single-particle reso-
nances, we feel that the simplicity of the Harris
method outlined in this work makes it very appeal-
ing and certainly very competitive with other meth-
ods.
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