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Binding of three identical bosons in two dimensions
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Qualitative features are discussed for the binding of three identical bosons inter'acting through pair
potentials in two dimensions. Two special cases, known to yield pathologies in three dimensions, are
examined using the Faddeev equation for the bound'states. The Thomas effect does not occur: in the model
which is treated, the trimer binding energy is finite for a zero-range force with a finite dimer energy. The
Efimov effect can only occur under more restrictive conditions than in three dimensions: the number of
bound trimer states is finite at the dimer threshold for a range of potential models. The trimer ground-state

energy is determined as a function of the coupling constant for a simple model, and variational results for
loosely bound Lennard-Jones trimers are shown to reflect a general trend found for the model.

I. INTRODUCTION

The three-body problem in quantum mechanics
is already complex enough that surprising possi-
bilities' 4 are included in the catalog of bound
states as a function of coupling constant. For
three bosons interacting through pair potentials
in three dimensions, the Thomas effect" arises
in the limiting case of zero-range forces and the
Efimov effect'4 occurs for resonant two-body
forces. Here we show that these two effects do
not generally appear for the binding of three iden-
tical bosons in two dimensions. This emphasizes
the role of spatial dimensionality in the formal
theory of trimer binding. Further, the results
have application to the self-binding of physisorbed
submonolayers of quantum gases" such as helium.

In the Thomas effect, for three identical bosons
in three dimensions, the trimer ground-state en-
ergy becomes infinitely negative for a zero-range
attractive potential of finite scattering length;
.there is an infinity of trimer bound states. ' For
one dimension, in this limit there is a single tri-
mer bound state with energy proportional to the
dimer energy. ' For two dimensions, we find in
this limit that there are 2 trimer bound states,
both with energy proportional to the dimer energy.
There is no Thomas effect in one or two dimen-
sions. We determine the bound states in two di-
mensions for two interaction models„as a func-
tion of the range parameter, and use the results
in a discussion of variational calculations for Len-
nard- Jones trimers. '

In the Efimov effect, for three identical bosons
in three dimensions, there is an infinity of trimer
bound states when the pair potential is resonant,
i.e., at the threshold for a bound dimer. 3 4 For a
near-resonant interaction Efimov' s construction'
provides an illustration of how a self-bound trimer

can be formed in the absence of a bound dimer.
We find that having the pair potential at the

threshold for a bound dimer is not sufficient to
produce an infinity of trimer bound states in two
dimensions. This limitation on the occurrence of
the Efimov type of binding is significant for mono-
layers of quantum ga'ses because variational cal-
culations with Jastrow trial functions' show the,
dimer and the many-boson thresholds for self-
binding are equal in two dimensions. The exis-
tence of the Efimov effect would have shown a
qualitative failure of the Jastrow trial function
for boson trimers near threshold.

In this paper we treat only the case of three
identical spinless bosons interacting via pair po-
tentials in two dimensions. The organization of
the paper is as follows: In Sec. II we review the
formulation of the trimer binding calculation in
terms of the Faddeev equation. ' The study of
the possibility of a Thomas effect is contained in
Sec. III. Model calculations for the trimer energy
as a function of the force range, with a compari-
son to calculations for a Lennard-Jones model,
are presented in Sec. IV. The study of the possi-

.bility of an Efimov effect is contained in Sec. V.
Some concluding remarks are made in Sec. VI.

H. FADDEEV EQUATION FOR THREE-BOSON BOUND

STATES

The construction of the Faddeev equation for the
bound states of three identical bosons' '" has been
summarized recently by Lim and Duffy. " Here we

give a statement of this equation and outline the
properties which are used in the following work.

The Schr6dinger equation for the three-boson
bound-state wave function 4 in the center-of-mass
system is transformed to a homogeneous integral
equation for a function Q related to%' by
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~(3) p2 + 3 q2 (3)

Except in the discussion of the Lennard-Jones
model in Sec. IV, we use units in which the re-
duced Planck constant I and the single-particle
mass M are set equal to unity.

An off-shell two-particle T matrix is defined in
the three-particle Hilbert space

+(P1) P2) P3) 0 (2[pl P2] s 3 [2P3 P1 P21 )

+ (cyclic permutations) .
Defining relative momenta, in Jacobi coordinates,

p 2[pi -P21, q= l [2P3 px p21,

the kinetic energy operator IIO" for three particles
can be written as

we use a partial-wave reduction.
The integral equation, Eq. (8), is in the form of

an eigenvalue equation for the kernel K. The
eigenstate energies -s& are the values of the pa-
rameter s which yield a kernel& with an eigen-
value equal to i. The pathologies of the three-
dimensional trimmer binding can be expressed'4
in terms of properties of the eigenvalue spectrum
of K. Except for the pathological cases & can be
reduced to a compact (or completely continuous)
kernel. ~' The exceptional cases of the Thomas
effect and the Efimov effect can be identified,
respectively, as divergences arising from the
ultraviolet (high momentum) and infrared (low
momentum) behavior of the kernel.

r, (z) = V, +. V, G[".(z) r. ,(~). (4) III. SEARCH FOR A THOMAS EFFECT

e(p, q) =2(z-p'-kq') '

X dp' p t z —4q' p+2q q+&p';p' .

We use this in a form given by Amado and Noble, 4

after defining a function

g(q, p) =A(P+-'q, q),

((~ 5) ff &~ &i &(~=i!~''i )('m ,');'.-

The kernel in Eq. (8) is

if(qplq'p') =2(z -p'-q'-q p) '

(8)

x&p+~qlt(z Rq') Iq'+2p'&g(q p').

with the free-particle Green's function

G,"'(z) = 1/(z -ff(')")

and the pair potential

V, = v»(cyclic) .
In the plane-wave representation, T,. is simply
related to the two-particle t matrix for a shifted
energy z —~3q2, z being the three-particle energy:

&p, qlT. (z) Ip', q'& =&Pit(z --:4')Ip'&t'(q-q'). (5)

Using the above definitions, the Faddeev equations
for three identical bosons become

For three bosons in three dimensions, interact-
ing via attractive pair potentials and with a cou-
pling constant proportional to the depth of the po-
tential and to the square of its range, the Thomas
effect of infinite trimer binding occurs for a limit
in which the range is taken to zero at (nearly) con-
stant coupling. ~ In this limit, the dimer binding
energy is held constant; in the absence of a bound
dimer the scattering length is held constant. The
essential features of the effect appear in an analy-
sis with a one-term separable potential or with a
simple local potential well. ~

In this section, we present the analogous separ-
able potential calculation for three bosons in two
dimensions. In two dimensions a purely attractive
well or an attractive one-term separable potential
has a bound dimer so that our analysis is for a
limit taken at constant. dimer binding energy. We
have not constructed a satisfactory zero-range
limit in two dimensions for a petential without a
bound dimer.

The first step is the reduction of the Faddeev
equation, Eq. (8), to a one-variable integral equa-
tion. We take the zero-range limit as the limit
P ~ in the form factor for the following one-term
separable potential~4

&klan

I
k'& =-f(~)f(~') (10)

with

f (u) =g/(u'+ p') .

In this paper we.find it convenient to use an en-
ergy variable s = -z, with bound-state energies
corresponding to positive values of s.

As it stands, Eq. (8) is a two-vector integral
equation. By specializing to the cases of one-
and two-term separable s-wave potentials this
simplifies to one-variable integral equations if

For Eq. (10), the t matrix of Eq. (5) is

&pit(-~) Ip'& =-f(p)f(p')/A(-s)
with

a(—s) =1 —fdic[f(k)] /0) +s).

The Faddeev equation becomes

(12)

(13)
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„ f(lp+-:k I)f (I&+-'p I)

(14)

for a function P(p) related to g by

p(p) = ~qg(q, p)f(lq+ pl). (15)

Projecting out the partial wave of zero total angu-
lar momentum gives

(16)

with

2r
K,(a, P) = deK(k, p),

0
(17)

where e is the angle between the vectors% and p.
The reduction in Eqs. (12)-(17) depends on the

separable form [Eq. (10)], but not on the specific
choice of form factor shown in Eq. (11).

The dimer binding energy E, =-s, is the solution
of

S(-s,) =0;

for Eq. (11) this equation is

o=i-', I(i **)*i.(*) i (';i'I.

TrZ'OK() = 16
[ln(s+ cpm) —lns2]2

k'dk
[(s+k'+p')' —~'p']

4 dg
y[ln(s+ fy) - lns, ]'
X dx

([1+x+(s/y)]'-x)
for s&s, . '

(23)
Therefore the Thomas effect of infinite trimer

binding does not occur for this two-dimensional
model: The largest eigenvalue of K becomes 1
han 1 for sufficiently large s. In the limit s s„

the largest eigenvalue is

'-,„=--:in[(s/s, ) —1], s-s, .
With the kernel in Eq. (22), the trimer eigen-

state energies -s~ can be scaled with -s» the

from
dimer energy. We determine the eigenval ues s&

rom the dependence of the eigenvalues of the ker-
nelKp Eq (16) ontheparameter s.

By numerical solution for the eigenvalues, we
find the three largest eigenvalues of the kernel
have the dependence shown in Fig. 1. As s ap-

5

(21)

and the projected kernel is

Ko(k'P) =4[in(s+zp') -'lns ] '
2

y[(y2+p2+s)2 y2p2]-1/2

The kernel Z'0 is compact since

To maintain a constant dimer energy E, as the
range goes to zero (P ~), the strength g must be
adjusted to go as

gg'/p'~ 1/(lnp' —lns, ), p ~. (20)

The way in which the energy s, appears in E . (20)
is similar to the case for three dimensions where
a reduced coupling constant is chosen near the
dimer threshold; the deviation from the threshold
value is then proportional to 1/Pa, where a is the
scattering length.

For the limit P-" with Eq. (20), the kernel of
Eq. (14) becomes

K(, p) =2/(s [in(s+f p') -lns, ]
x(s+p'+k'+k p))

1 2 4 6 8 10 12 14 16 18
E3/E2

FIG. 1. Three largest eigenvalues of the Faddeev
kernel for three bosons in two dimens o ' teensions in racting
with zero-range attracitve forces. The three largest

th
eigenvalues of the zero angular momentum pro' t' fpro~ec ion o

of the three- art
e kernel, Eq. (22), are shown as a funct f thion o e ratio

o e ree-particle energy to the two-particle energy
E3/E2. The trimer energies are determined from the
condition that an eigenvalue X equals 1. The values
obtained in this way for the two trimer bound states are
given in Eq. (24) of the text.
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IV. MODEL CALCULATION

With the assumption of a one-term separable
potential and the angular .momentum projection
of Eq. (16), the Faddeev equation reduces to a
one-dimensional integral equation which can be
solved by standard methods. ~' The angular mo-
mentum projection of Eq. (1V) was done analytical-
ly, Eq. (22), for the zero-range limit; it can also
be done analytically for form factor's similar to
Eq. (11),

f (k) =g/(k'+ p2)", m = 1, 2, . . . , (25)

without the zero-range limit being taken.
We show the results of solving the integral equa-

tion for the cases m =1 and m =2 in Fig. 2. The
ratio of the trimer ground-state energy Es 0 to
the dimer energy E, is shown as a function of the
coupling constant I" —= vg'/P4™. The coupling con-
stant I' is given in terms of the ratio E, /P by
Eqs. (13) and (18). Through these equations, Fig.
2 can also be read as a presentation of the ratio
E, 0/E, as a function of the range 1/P.

The ratio E, , /E, goes to 16.1 as the coupling
constant I' goes to zero, in accordance with the
zero-range result Eq. (24). The shape dependence
of the ratio can be judged from a comparison of
the results for the two form factors. Extrapolation
of the ratios to small coupling constants without
prior knowledge of these results could easily give
misleading conclusions. . The ratios for.both form

proaches s, , i.e., as the ratio Es/E, goes to 1,
there are only two eigenvalues larger than 1. The
largest eigenvalue becomes infinitely large at
s=s, , which is consistent with Eq. (23), but there
is no Sign of any other anomaly in the eigenvalue
spectrum. The eigenvalues are monotonically de-
creasing functions of increasing s.

We find the two trimer bound-state energies of
the zero-range model to be

E, 0=(16.1+0.2)E2, Es ~=(1.25s0.05}E2.

For three identical bosons in one dimension, a
limiting procedure similar to our Eqs. (19)-(21).
leads to an integral equation treated by Dodd. He
finds' a single trimer bound state, with energy 4
times the dimer energy.

The absence of the Thomas effect is related to
the question of the relative ordering of the thresh-
old coupling constants for self-binding of two and
three bosons, F, and 1 3. For a pair potential
model V(r}= Vof (r/f. ), the coupling constant is
I' =MVO l'/I'. If I', is finite and nonzero, a thresh-
old F, less than F, would permit the construction
of a zero-range limit (l-0) with finite dimer bind-
ing and infinite trimer binding.

factors show a sharp rise with decreasing 1 fol-
lowed by a leveling off at small F values. The
precision of most variational calculations of trimer
energies, such as for the Lennard-Jones model, '
is limited enough that it would be difficult to ob-
serve the leveling off.

We also show ratios E, 0/E, for a Lennard-
Jones (12, 6) potentiaP'" in Fig. 2. The corre-
spondence of the Lennard-Jones coupling con-
stant to the F in Fig. 2 is established in the fol-
lowing way. For the Lennard-Jones (12, 6) pair
potential

v(r) =4m [(g/r) ' —(g/r)'],

a coupling constant K is defined by

K = 4&a'M/k'.

(26a)

(26b)

The threshold coupling constant for a bound dimer
in two dimensions is found by numerical integra-
tion of the Schrodinger equation to be K, ,
=14.74 ~ ~ ~ . Similarly, near threshold the dimer
binding energy goes as

I/in)E, ) y(K -K, ,)+~ ~ ~

with y= —,', . From Eq. (19), at small I' the dimer
binding goes as

(26c)

In)E, [ =I/I + ~ ~ .
Therefore we take the correspondence between F
andK to be

I' = y(K -K, ,) (2V)

with the y and K, , values fitted to the numerical
resultss for the Lennard-Jones dimer energy.

With this identification, the results of variation-
al calculations for the boson trimer ground-state
energy were plotted in Fig. 2; the point at F =0.26
corresponds to the use of the De Boer-Michels
4He parameters~' for the Lennard-Jones potential.
These points are lower bounds on the ratio E, 0/E,
for the Lennard-Jones model. Given the amount
of shape dependence found. ' for the two form factors
in the separable potential model, the magnitude and

trend of the Lennard-Jones model results are in
good accord with these models. At the F value of
0.15, the ratio E, .~ /e for the variational cal-
culation is roughly 1&&10 . It decreases rapidly
with decreasing F and with the present precision
of the variational calculations it would be difficult
to follow the trend to the asymptotic small-F re-
gion found for the separable model.

The second trimer bound state, noted for the
zero-range model in Sec. III, persists for finite
ranges in both separable models at least to F val-
ues of 0.25. No second bound state has been sought
in the Lenna, rd-Jones trimer calculations but this
suggests one might be present there.
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12

m=1
m=2.
L-J(12,6)

A =s([g(0)]'- [f(o)]')

-2m' dk kg0 — Ogk
0

is zero. For A&O the dimer is bound; there is at
most one bound two-body state for this model.

The two-variable Faddeev equation, Eq. (8), now
reduces to a pair of coupled one-variable equa-
tions. The steps in the reduction are straight-
forward. The off-shell f matrix, Eq. (5), for the
model Eq. (28) is available in closed form. ' With
the definition of one-variable functions Q,. analo-
gous to Eq. (15),

0 0.05 0.1 0.15 0.2 0,25 0.3 0.35 0.4

FIG. 2. Batio of trimer and dimer ground-state en-
ergies E3/Et as a function of coupling constant for
three models. The lines m=1 and m=2 are smooth
curves drawn through results for the ground-state en-
ergy of three bosons in two dimensions interacting with
the one-term attractive separable potentials, Eq. (25).
The LJ (12,6) points are taken from variational cal-
culations for a Lennard-Jones (12,6) pair potential

- model. For a discussion of the shape dependence shown
here and a statement of how the coupling constant F
is related to the conventional Lennard-Jones couplirig
constant, see Sec. IV of the text.

P,(2) = JdPf(IP+-'*. 2!)P(P,P),

e,(q}=Jl dpg(lp+-'ql)y(p, q),

(30)

the coupled integral equations are written in a
matrix form

Pg()i)= Q JdPK;;(k, P)P,.(P), i=1, 2
j=1

where the matrix kernel is

(31)

Z„(k, p) =2k, ~(k, p)/f), (-s ——,'P')(s+P'+k'+k p) .
(32)

V. SEARCH FOR AN EFIMOV EFFECT

In three dimensions, Amado and Noble4 treated
the Efimov effect' by analyzing the Faddeev equa-
tion for a one-term attractive separable potential.
At the threshold for dimer binding the eigenvalue
spectrum of the zero angular momentum projec-
tion of the Faddeev kernel had an accumulation
point at a value larger than 1. Further analysis
showed that this accumulation point implied the
existence of an infinity of bound trimer states.
For three identical bosons in two dimensions, we
show here that the kernel does not generally de-
velop such an accumulation point at the threshold
for dimer binding. As a result the infinity of
Efimov-type states then does not occur.

In two dimensions, the one-term attractive sep-
arable potential has a bound dimer at all values
of the coupling constant. To examine the spectrum
of the trimer near the dimer threshold we use a
two-term separable potential for which the dimer
threshold occurs at a finite coupling constant:

&k I VIT') =g(k) g(k'} —f(k}f (k'). (28)

The form factors f(k) and g(k) are assumed to be
smooth real functions~4 which are square inte-
grable, but are otherwise general. The threshold
condition for a bound dimer is that the quantity A
defined by

The components k, &
and 6 are given in Appendix

A; here we list the properties of these functions
which enter in the discussion of a possible Efimov
effect.

The asymptotic behavior of the function d at
small argument is

)22(-x)~Aln(1/z)+B, x 0, (33)

where A is defined in Eq. (29) and B is a positive
constant. The dimer thresholds which we discuss
correspond to A = 0 and B&0. The case A = jp = 0
has not been excluded as a possible occurrence
for some model; the twofold condition A =jr=0
would reflect a strong specialization of the model
in place of the general models of Efimov's treat-
ment. '

The matrix k,.~(%, p) has zero determinant. Fur
ther for zero arguments and zero energy s its
trace is proportional to A.:

k~i(0, 0) +ka, (02 0) = -A/w . (34)

These features have the consequence, in the treat-
ment outlined in Appendix A, that the small-argu-
ment portion of the Faddeev kernel, which becomes
singular at the dimer threshold in three dimen-
sions, has zero strength at the dimer threshold
in two dimensions.

The zero angular momentum projection of Eq.
(31) is
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d "(.d) L=f dddK.' (d, d)d,"(d),
0

where as in Eq. (17)
2r

KIP(k, p) =
J deK)g(k, p) ~

0

(35)

(36)

unlikely for a long-range effective interaction to
appear at the dimer threshold in two dimensions.

VI. CONCLUSIONS

For the discussion of possible accumulation
points of the spectrum of the Faddeev kernel we
define

K (s) T s'K P f llddK[) (I) 'I's ) '

i
(37)

K, (s) TTK'"K='"' gf =(sdP[K!,"(d,d))*. ($8)

For a one-term attractive separable potential in
three dimensions, Amado and Noble4 show that
the quantity corresponding to R2 is finite except
in the special case that there is a zero-energy
dimer, infinite scattering length in the two-body
problem. At the dimer threshold, both g~ and K2
are logarithmically divergent for small s from
contributions of the low-momentum portion of the
kernel, an infrared divergence. In Efimov's treat-
ment' this corresponds to an effective long-range
interaction among the three bosons at the reso-
nance.

For the two-term separable model, Eq. (28), in
two dimensions K2 is finite for s~0 short of the
threshold (A&0). At the threshold A =0, A, is
logarithmically divergent for small s, with the
singular contribution coming from small momenta.
For A&0, &, is logarithmically divergent at small
s. Thus, short of the dimer threshold the only
possible accumulation point which can occur in the
spectrum of the kernel is at zero. The nature of
the spectrum for A =0 is left open.

We establish, in Appendix A, that the spectrum
of the Faddeev kernel has no finite nonzero ac-
cumulation point even. at the dimer threshold. The
first iterate of the kernel, K' ", is shown to be
compact for s=0 in the limit that A goes to zero.
The compactness rests on the relation Eq. (34),
with 8 of Eq. (33) being positive. The weak low-
energy scattering for the "resonant" pair poten-
tial in two dimensions also follows from the rela-
tion Eq. (34).

The Efimov type of pathology at the dimmer thresh-
old does not occur with the same generality in two
dimensions as in three dimensions. We have not
established that it never occurs for any potential
model at threshold; however, Eq. (33) and the
qualitative relation Eq. (34) do not appear to be
special features of the two-term separable poten-
tial. The contrast that the resonant two-body in-
teraction scatters strongly in three dimensions
and wetly in two dimensions makes it appear

APPENDIX A: FADDEEV KERNEL FOR THE TWO-TERM
SEPARABLE POTENTIAL

The components k,.&
and 4 of the Faddeev kernel

in Eq. (32) of the text are defined with functions
o., P, y and a notation

Sp =, S+gP (Al)

(x- )x=- )fsd[ )s( /) d* )(/+dx),

d(-x)=)+f d)s[K(d)]*/(d'sx),
I

T(- ) f d)sd(!I)/(a)/(I )'+ (A2)

by

The binding of boson trimers is a mathematically
more regular phenomenon in two dimensions than
in three dimensions, judging from the absence of
two special cases, the Thomas and the Efimov ef-
fects.

In three dimensions the Efimov pathology of an
infinity of bound states for a finite number of par-
ticles interacting with finite-range pair potentials
occurs only ' for the trimer. Our work places a
further restriction on the generality of this path-
ology: We do not find it for the boson trimer in
two dimensions for a range of potential models.
We believe that the reasons for the absence of the
Efimov phenomenon in our results are quite gen-
eral and that it would require rather contrived
potential models to obtain the phenomenon.

The absence of a Thomas effect for the boson
trimer in two dimensions permits construction of
a zero-range-force formalism for the trimer
binding energy. General trends in the binding of
Lennard-Jones trimers of small effective coupling
constant in two dimensions are reQected in a mod-
el calculation with a one-term separable potential
with finite-range form factors. With parameters
for 4He atoms, though, the trimer binding does
show shape dependence of the potential rather than
the simple limiting behavior of a zero-range ap-
proximation.

One of us (L.W. B.) was supported in part by the
NSF under Grant No. DMR 74-19826.
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~(-;)=[r (-;)]'-~(-;)e(-;)
&» =P(-s,)f(15+4k l)f

(1k+apl�

)

-r(-s,)f(Ip+kk I)g(lk+kp I),
r „=a(-s,)f(lp+-', kl)g(lk+2pl)

-r(-s&)f (lp+ k l)f(l&+l.pl),
&„=P( s~-) g(lp +'kI) f(1%+—',pl)

-r(-s~) g(1 p+-'k I)g(lk+ ap I),
~..= a(-~, )g(1 p+2k I)

g(1k+apl�)

-r(- )g(lp+-'k l)f(1k+ lp I)

(As)

(A4)

A first indication of the role of the weak low-
energy scattering at the two dimensional "reso-
nance" can be seen in the trace K~ of Eq. (3V):

~ (,) 2 d- [h»(P, P)+4.(P, P)]
b, (-s~)(s ~ sp') (A5)

K,',"=S„+
with

s,, =e,,(0, 0) G(u, p)

(Ae)

(AV)

Short of the dimer threshold (A&0) the small-
momentum contribution in Eq. (A5) is finite ex-
cept at s =0. At the threshold, the small argu-
ment approximations presented in Eqs. (33) and
(34) show that the small-momentum contributions
remain finite even at s =0.

For positive s (s&0), the Green's-function factor
in Eq. (32) is nonsingular and the kernel is com-
pact for A ~0. For negative A, with a dimer of
energy E, = -s„ the kernel is noncompact for
s s, . This appears to be the same type of singu-
larity as the one in Eq. (23) for s = s„which does
not signal a finite accumulation point in the spec-
trum of the Faddeev kernel. The remaining ques-
tion is the nature of the spectrum of the kernel
for the case A =s=0, for which the Hi&bert-Schmidt
norm Eq. (38) is infinite.

We now outline the treatment of the kernel as a
function of the parameter A (A &0) for the case
s =0. The first iterate of the kernel, K"", is
shown to be compact even in the limit A 0, so
that the kernel Z"' has no nonzero finite accumu-
lation point in its spectrum even for the case A = s
=0.

The singular contribution to the Hilbert-Schmidt
norm k, (0), Eq. (38), comes from the small-mo-
mentum dependence of the kernel K„, which we

now isolate in the form

and the singular "scalar" part of the kernel

G(k, p) = 2v/a(-'p') [(&'+p')' —&'p']"'. (AS)

The Hilbert-Schmidt norm for the first iterate is

X'(0) =Trx'"Z"'A""Z"'t. (A9)

Tr G'Gt2 ~(Tr GG&)' (All)

with

A2

TrGGt=v dx(l/x) [A(-43x)] '
0

A [(1+&)'-~1 ', (»2)
0

where A is a large-momentum cutoff implicit in
the separation used in Eq. (A6). For small posi-
tive values of A we find a proportionality

' Tr GGt 0"-1/A . (Als)

The trace of the matrix factor in Eq. (A10) is

Tr k ' k ~' = (0» +k»)' Tr k kt, (A14)

where we have used the fact that the matrix k„(0,0)
has zero determinant. Hence, using Eq. (34) the
term shown in Eq. (Alo) is finite even for A 0
and the kernel g' ' has no nonzero finite accumu-
lation point in its spectrum for s&0 and A &0.

This argument ean be generalized to many-term
separable potentials. The small-argument behavi-
or of the function h(-x), governing the dimer
binding, is again of the form in Eq. (33). The
matrix k,,- again has the special form

k);(0, 6) =a) b~, (A15)

which assures that it has at most one nonzero
eigenvalue. The strength of the singular scalar
kernel in Eq. (A5) is proportional to the zero-
energy on-shell t matrix, which vanishes at reso-
nance; the corresponding statement for the many-
term potential would lead to the matrix k,z having
only zero eigenvalues at resonance and a net finite
value for the norm g', .

By power-counting in the small-momentum por-
tions of the multiple integrals implicit in Eq. (AQ),
we find the norm is finite if the "singular piece"

As Tr S2S1'2 (Trkmkt&) Tr G2Gt2 (Alo)

is finite.
The contribution of the scalar kernel Q in Eq.

(Alo) is bounded by
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