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Energy spectra of certain randomly-stirrefi fluids
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The velocity correlations of an incompressible Quid governed by the Navier-Stokes equations are studied in

steady states maintained by random-white-noise stirring forces with varying spatial correlations. The
asymptotic properties of the long-wavelength fluctuations are deduced by field-renormalization-group

techniques. The results of Forster, Nelson, and Stephen are recovered for the random-force spectra these
authors discuss, and a Kolmogorov spectrum is obtained when the force correlations have equal strength at
all wave numbers, that is, when the force correlations behave as k " in d dimensions and d .y 2. Although

the derivation is valid to all orders in the anomalous dimension, it implicitly assumes that there is no
crossover in operator dimensionality.

INTRODUCTION

The large-distance, long-time behavior of velo-
city correlations generated by the Navier-Stokes
equations for various regular forcing functions has
been extensively studied with renormalization-
group methods by Forster, Nelson, and Stephen
(FNS).' The purpose of this comment is to discuss
the singular case of a random stirring force in
which equal weight is given to all wave vectors,
i.e., a force characterized by a noise correlation
essentially proportional to 4 ". We shall show that
this stirring force yields a Kolmogorov spectrum.
This derivation of the Kolmogorov spectrum de-
pends on a special noise force and does not address
the central issue of why such a spectrum, or one
that does not deviate greatly from it, is found in
experiments on strong turbulence. Nevertheless,
the model might provide a concrete starting point
for quantitatively studying discrepancies from the
Kolmogorov predictions, and how universally
they apply.

To avoid uninteresting infrared divergences, we
take a white-noise random force fwhose only
nonvanishing cumulant is, in momentum space,

(ff) =D,n' "(m'+ u')-
m, is a stirring length (infrared cutoff). We shaQ
focus our attention on the asymptotic domain in
which

pg && jg && jg

and will eventually let the ultraviolet cutoff A tend
to infinity. In this limit we shaQ see that for any
y & 4 (and d&2), the FNS result for the energy
spectral function may be generalized to

GENERATING FUNCTIONAL FOR NAVIER-STOKES
CORRELATIONS

The Navier-Stokes equation for an incompres-
sible fluid may be written

—v = v,V'v + A,~ ~ (v &)v~+f,Bt
(4)

where T ~ is a projection operator that eliminates
longitudinal components, and f is a noise source
whose only nonvanishing cumulant is transverse
and proportional to Eq. (l). The velocity correla-
tion functions may be generated' 4 as the Taylor
coefficients' of the quantity Z(f), defined by

Z(l) = JDv D8 exp(2[v, v]

+ jdrd'x f.(xt)v. (xt)),

Jd«d «,«. =«,V) «. Qi«.«.««V««
&t

+fV~ (flfg)'CV I (8)

More explicitly, the unperturbed propagators are

(fv~vg)0= [ t(d+ Vok ]-6~g ~

2a,y4-"
(v„v, ),= ' (m,'+ 8)-"2~.,(~),

~

-i(o+ vP'('

behavior. The conclusion holds only if there is no
crossover of operator dimensionality as y is varied
between 0 and 4.

The limiting case y = 4 yields the Kolmogorov
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and

(iv, v) = vo Es((d/ivo, k;go, A, mo)

(vv} =—C(k, ro) = (Do/vo}G~(oo/iv„k, g„A, m, },

(10)

From an inspection of the perturbation series, we
may conclude that the bare propagators take the
form

(v) Observe that (vv) is logarithmically divergent
for d=2 (this divergence is accounted for by Zv}
and convergent for d &2.
(vi) Observe, finally, that the A coupling (im-
posed by Galilean invariance) leads to the Ward
identity' '
(A(f)&!~,t, )C(~.i.)) =h v, (a(x,i,)C(x,i,)) i, &f &f,

with

4Dovo =go~' ~ (12)

= 0, otherwise,

where

a(f) = f d'xv. (xi)7.,(h V)v, (xi),

(23)

(24)

RENORMALIZED NAVIER-STOKES THEORY

The asymptotic behavior in region (2) may be
obtained by standard renormalization-group tech-
niques', we let A -, and look for the ultraviolet
behavior (with respect to m, ) of the correlation
functions. For this purpose, we write Eq. (6) in
terms of renormalized fields. This involves the
following steps:
(i) Count powers:

[v]=d- I+ 2y,

[v]=1-—,v,

[41=-'y

(13)

(14)

(15)

V=Z R&

v=z'"v /z,R

g = yp""z,z-'",
Vo= VZ„p

Do= DZ~,

(16)

(17)

(18)

(19)

(20)

where p, is an arbitrary wave vector (we could
use m„but it is less confusing to take p»m, ).
Qiventhat only five independent primitive diver-
gences exist, we may take

Z=1. (21)

(iv) Observe that the ar derivative of (ivv} does not
diverge, and therefore that

Z Z 1 (22)

The last equation shows that the coupling is margi-
nal for y=0.
(ii} Observe that for y= 0, Galilean invariance
assures that all other couplings are irrelevant
(see below).
(iii) Introduce one renormalisation function for
each type of vertex that can appear in Z; the
standard parametrization is

and B and C are operators constructed from v and
v. Equation (23) tells us in particular that the di-
vergence that appears in the truncated vertex
(v & z(v ~ V)v~} is the same as the one in (8/Bioo)
(ivv), or, in other words, that

'

Z. 1 (25)

C(k, (o) = (D/v')G~((o/iv, k, g, p, , m, ),
satisfies a renormalization group equation

(26}

8 9 8
p,—+ W —+2@ —qv+ q o)—C(k, (g) =0, (27)

9 p, ~g 840

with anomalous exponents given by the derivatives

8
q =p —InZ, .

~
(j =v, D)

ep,

for fixed values of the bare parameters. The
Wilson function

(28)

dg
W =p, —

dp

is obtained by differentiating Eq. (12) and using
Eqs. (18)-(25) and (28):

(30)W = -g(y+ gv —3t]„).

Solving Eq. (27) in the asymptotic region (2),

m,'«k', &u«&ir, (31}

we obtain the scaling form

C(k~) =k ' ~~"~ "&G„- —,p, g*, p, 0 . (32)
P, iV

Frequency integration leads to the equal-time
correlation function

ASYMPTOTIC BEHAVIOR

The renormalized form of the correlation func-
tion (11),

the k" derivative of (vv) diverges, but Z„accounts
for this divergence.

C(k) =k '
The corresponding spectral function is

(33)
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E(k}=k ""'" (34) [f,]= (p —1)(-'y - 2); (42)

The values g„and g~ are to be computed at the
infrared stable fixed point of Eq. (30); this ex-
cludes g~=0. Corrections in k/A to the scaling
form (32) are governed by the exponent

and (ii) time-dependent products

8
&,=g—(3'9p —'9a)

~
g=g+ ~

Sg
(36) where

(43)

g„=—,'y and ~„=y for small y.
In model B, y=4-d, Z~=1, and g~=0. We
therefore have

(36)

The above equations include the results of FNS for
the two models discussed in their paper: In model
A, y=2-d, the fluctuation dissipation relation
holds, and q~ = q„. From Eq. (30) we then obtain
(for d&2),

[f,l = V —I)(-'y - 3) (44)

These combinations all remain irrelevant for
values of y that are less then 4. When y = 4, the
mode-coupling term hog v Vv behaves as A'

([Q]=2), all counter terms of form (41}become
marginal, and the remaining terms are irrelevant.
Thus the Kolmogorov behavior for the spectral
function

g„=3y and ar„=y for small y. (3V) Er(k) =k '~'

and

g~= 0 to all orders in y,

q„= y/3,

&(k) =k

(38)

(39)

(4o)

These values do not depend upon how small the
parameter j is, since the %ard ice'nti4y that:guar-
antees Eq. (30) is an exact result. As y grows
and the noise correlations given by k' ' "become
more singular, the dimensionality of the field
operators changes.

In particular, as y=2, the dimension of v ap-
proaches zero and the counter terms that were
irrelevant threaten to become important. To ex-
tend the arguments to larger values of y, we. call
upon the limitations imposed by Galilean invar-
iance. These restrict the possible operators to
combinations of (i} time-independent products of
velocity operators

f,A .qg„„. = V v,Viva, V„e„,. . . . , (41)

where A is a dimensionless tensor and the dimen-
sion of f, is

INFRARED BEHAVIOR FOR SINGULAR NOISE
CORRELATIONS

In the region (31), when y is small and d &2, we
find

is approached as y approaches four from below, for
the region which is ultraviolet with respect to m, and
infrared with respect to A. This estimate for y
is based on the assumption that there is no cross-
over in the full (naive plus anomalous) dimension-
ality of the field operators.

At the Oji Seminar, Kyoto, July 1978, we learn-
ed that the result reported in this paper had also
been derived recently by F. Tanaka and T. Nakano.
'They also use the techniques of Refs. 2-4 and de-
duce the Ward identity described in step (vi}.

At+ough the result has been derived by two
groups, some questions remain. Specifically,
foi y& 3, the individual lowest-order terms in a
self-consistent perturbation expansion are in-
frared divergent. The divergences cancel in the
equation for the energy transfer. Whether diver-
gences in individual terms in such an equation
signify that a new operator becomes relevant for
y ~ 3 (implying a crossover in operator dimension-
ality at y = 3) and invalidates our conclusions for
3&y&4, requires further study.
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