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A relatively simple variational wave function is proposed for the ground state of two particles bound by a
static screened Coulomb potential. It is shown that it gives eigenvalues of high accuracy in the low- and
medium-screening regions, and of fair accuracy in the high-screening region.

I. INTRODUCTION

The energy eigenvalues for a particle bound
in a static screened Coulomb potential,

V(r)= —e2e~ " /7, (1)

where a is a screening parameter, have been
calculated by a variety of methods.!"®> While

no error estimates are quoted in these papers,

it would appear that the calculated values are of four -
significant-figure accuracy, except when a is
very small, in which case the accuracy is greater.

In a previous paper,? the authors showed that
by using Hulthén-type wave functions, with a
single parameter, one can get energy eigenvalues
for s states of comparable accuracy to those ob-
tained by Rogers et al.! by numerical methods.
Greene and Aldrich® have extended this approach
by using solutions to a Hulthén-like effective po-
tential as variational trial functions for calculat-
ing the energy levels of the nonzero angular mo-
mentum states. Roussel and O’Connell* have
pointed out the advantages of the variational meth-
od over the numerical-integration technique used
in Ref. 1.

In this paper we present a relatively simple vari-
ational wave function for the ground state of two
particles bound by the potential (1), and we show
by error bound calculations that the results ob-
tained by this wave function are of high accuracy,
except when the screening parameter is very large.

We shall use atomic units, where the unit of
length is a,=7%2/me? and the unit of energy is equal
to —me*/n®. Also 6=aa,, adimensionless screen-
ing parameter.

The proposed wave function is

e=1)=a,¢,+a,0,, (2)
where )
.= (l/u)[ v(4v? - uz)]”z[e"(""‘ 12)r _ p~vsn /2)r]
and
B =21 2pe"r
Here u, v, and 1 are variational parameters. ¢,

and ¢, are, respectively, a 1s-state Hulthén type
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two-parameter wave function and a one-parameter
hydrogen-type wave function. In variational cal-
culations, of practical importance is the economy
of parameters necessary to achieve a given ac-
curacy of the eigenvalues. Our aim was to obtain
a wave function which has the right qualitative
shape and involves a minimum number of para-
meters. The choice of the wave function was fur-
ther constrained by the requirement that it should
be simple enough so that it may be possible to cal-
culate the quantity (HH). Several wave functions
were tried, only the best one is reported here.

II. RESULTS AND DISCUSSION

The optimized values of the parameters are
shown in columns 2—4 and the corresponding en-
ergies in column 5 of Table I. Values of 6 below
0.1 are not considered, because in this region,
to seven-significant-figure accuracy, the results
obtained by the variational function (2) are iden-
tical to those obtained by the one-parameter wave
function proposed in Ref. 2.

In the variation method, the energy obtained is
an upper bound to the true ground-state energy.
However, one does not know how far the calculated
value is from the exact value. Methods for ob-
taining a lower bound have also been developed.
Three of the best known ones are due to Temple,’
Weinstein,® and Stevenson and Crawford.®° If
one could obtain the two bounds within a narrow
interval, one has succeeded in bracketing the
true eigenvalue. Among the three lower bound
formulas, the Temple one is usually considered
to be the best. It is given by

B - S0 (3
where

= [ yayar,
and

@my= [ @yyar.
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TABLE I. Optimized values of parameters p, v, and 7 in the wave function (2), corre-
sponding energy eigenvalues, and Temple’s Iower bounds.

Screening
parameter Parameters
9 7 v n (H) Ey

0.1 0.226 68 1.01998 1.06880 0,407 0580 0.407 058 0
0.2 0.478 58 1.04677 117708 0.3268085 0.326808 5
0.25 . 0.603 51 1.06197" 1.23209 0.2909196 0.290919 6
0.3 0.714 26 -1,07218 1,27339 0.257 638 6 0.257638 6
0.4 0.916 68 1.08592 1.34013 0.1983761 0.198 376 2
0.5 1.108 97 1.096 95 1.40074 0.1481170 0.148117 6
0.6 1.293 22 1.10598 1.456 90 0.1061359 0,1061379
0.7 1.47082 1.113 46 1.50970 0.0718335 0.0718395
0.8 1.64278 1.11972 1.55990 0.0447043 0.0447201
0.9 1.80986 1.12501 1.608 09 0,0243142 0,024354 6
1.0 1.972 66 1.12951 1.654 68 0.0102858 0,0103928
1.05 2.053 42 1.13191 1.678 27 0,0055520 0.0057334
1,10 2,131 66 1.13336 1.70001 0.002287 2 0.0026495
1.15 2.20972 1.13501 1.72214 0.0004559 0,0014709

Here E, is the exact energy of the first excited
state of the same symmetry. In column 6 of Table
I we show the lower bounds obtained from Temple’s
formula. For E, we have used the values given

by Rogers ef al.!; in some cases, interpolated val-
ues were used, interpolation being made for the
difference [E(Rogers) — E(variational)]. We may
note here that all the calculations reported in

this paper were carried out in “double precision”
and the energy minimum was determined correct
at least to the eighth decimal place.'*

It will be noticed from Table I that for 56<0.3,
the lower bounds calculated from the formula of
Temple are identical to the variationally calculated
energies to seven significant figures and thus the
latter are accurate to that extent. Though E, is
known only to four-figure accuracy, its impre-
ciseness affects the lower bound in the Temple
case only beyond seven significant figures as the
second term.in Eq. (3) is quite small, so long as
the 2s state is bound. The 2s state becomes un-
bound for 6> 0.3103 and above this value of 9,
the Temple bound becomes increasingly less use-
ful as a practical tool. For 6>0.3, a comparison
of our results with those of Rogers et al.! and the
lower bounds from the Temple formula leads us
to estimate the accuracy of our values as follows:
(accuracy given in number of significant figures):
6=0.3-0.5, accuracy six; 6=0.5-0.7, accuracy
five; 6=0.7-1.0, accuracy four; 56>1.0, accuracy
three. i

The accuracy of a wave function itself is usually
measured by the Eckart criterion,'? according to
which the overlap

S= <zl)amrrox ! zpexa.ct) . (4)
has the lower bound given by
Sz = (Ez - (H»/(Ez "E1) ’ (5)

where E, is the energy of the ground state. In our
case the right-hand side of the inequality (5) is
equal to 1 (to four-figure accuracy) for 6 <0.25
which shows that the wave function (3) is a very
good approximation to the exact wave function, for
such values of 6.

In conclusion, we find that the wave function (3)

"proposed here gives eigenvalues of high to fair ac-

curacy, depending on the value of 6. The present
investigation also serves to emphasize the need
for improving on Temple’s lower bound formula
or developing a better one for a situation where
the next excited state of the same symmetry is
unbound. Also, for such a situation, development
of a practically useful criterion for the accuracy
of a wave function would be desirable.
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