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Formation of composites in equilibrium plasmas

JANUARY

F. J. Rogers
University of California Lawrence Livermore Laboratory, Livermore, Cqlifornia 94550

(Received 10 April 1978)

A generalized, multielectron version of the Planck-I. arkin convergent hydrogenic partition function is

presented. It is shown that compensation between bound and scattering states leads naturally to convergent

expressions for multielectron bound-state partition functions. The nature of the compensation is studied by
comparing a high-temperature expansion of the bound-state sum with .a perturbation expansion in the
coupling parameter Pe of the complete trace. The analytic form of high-order quantum perturbation terms
is determined from a parametrized pseudopotential method. Rigorous evaluation of low-order quantum
perturbation expressions is used to determine parameter values.

I. INTRODUCTION

Much of the current literature on equilibrium
plasmas is concerned with complete ionization.
Frequently the electrons are treated as being high-
ly degenerate, such that they form a nearly uni-
form background while the heavy ions are classi-
cal. This is appropriate to the conditions present
in the center of white dwarf stars. For less ex-
treme conditions the electron distribution may be
far from uniform and, for kT less than the binding
energy, composite particles will be formed. The
present work is primarily concerned with how the
formation of composite particles affects the statis-
tical mechanical methodology.

Since the grand partition function works with
physical clusters it is the natural starting place
for treating chemically reacting plasmas. Never-
theless, due to the long-range divergence in each
of the cluster coefficients, it is convenient to first
find a convergent expression for the Mayer S func-
tion,

s =-(z- z,)/ver,
where E and E, are the Helmholtz free energies
for the interacting and noninteracting system, re-
spectively. It was shown in a previous paper, '
hereafter referred to as I, 'that the grand canonical
partition function can be generated from deriva-
tives of S, i.e., a convergent activity (fugacity) ex-
pression for $ in the canonical formulism can be
used to generate a convergent grand canonical par-
tition function. The activity expression that is ob-
tained is not properly ordered to handle the forma-
tion of physical clusters and must first be reor-
ganized into a cluster expansion before progress
can be made. This is described in the sequel2 to I,
hereafter referred to as II, and elsewhere. ' The
resulting cluster expansion is still not properly
normalized since the formation of bound states for
kT & ~E, ~, the binding energy, lowers the order of

the cluster coefficients. For example, due to its
exponential temperature dependence the bound-
state part of the electron-ion second cluster coef-
ficient 5, enters the cluster expansion like a new
ideal particle, while the continuum-state part en-
ters like a real two-body interaction between elec-
trons and ions. Because of this it is necessary to
introduce an augmented set of activity variables
such that the leading term in the revised activity
series corresponds to the Saba ionization equilib-
rium equation. ' ' Scattering states only appear in
the interaction corrections of the properly ordered
activity series, i.e., proper treatment of bound
clusters requires the decomposition of the trace
into bound and scattering parts.

Since the sum over bound states for electron-ion
interactions diverges even the Saba, zero coupling,
limit presents some difficulties. It is obvious that
particles in large orbits are essentially free and
various mechanisms for limiting the bound-state
sum have been introduced. The renormalization
of the grand partition function just described works
with the complete trace„so that some latitude in
how one defines a composite particle is afforded.

. An improper decomposition will ultimately be rec-
tified through high-order terms. However, since
in general only a few low-order terms will be eval-
uated, a physically realistic decomposition must
be made. One of the main purposes of this paper
is to show that the well known compensation be-
tween bound and scattering states leads naturally
to a proper decomposition procedure. The result-
ing effective bound-state sum is convergent and
there is no need to invoke any cutoff criteria. The
other purpose of this paper is to study the general
form of the quantum perturbation expansion.

It has been shown, e in the semiclassical approxi-
mation, that the high-temperature expansion of the
two-body bound- state partition function involves
integrais over (-V/kT)"'~', s=o, 1, 2, etc. ,
which are completely compensated by similar
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terms in the scattering-state partition function.
Bolle and Smeesters~ have recently studied this
compensation using the theory' of time delay in
scattering. Due to the compensation the total par-
tition function only involves (-V/kT)"' and is ana-
lytically similar to the partition function for repul-
sive potentials. It will be shown that those terms
in the high-temperature expansion of the bound-
state sum that can be treated by integral approxi-
mation always compensate mith scattering terms.
It fo11oms that the divergent terms in'the high-tem-
perature bound-state expansion are always compen-
sated by the scattering- state contribution and
should not appear in the properly separated parts
of the trace. It mill be shown that this is a general
resu1t valid for all cluster coefficients. This mill .

be demonstrated for the Debye potential

V,„=g,$ e" /r,
where g, is the charge on species i and D is a
screening parameter. The Debye potential is es-
pecially well suited for this study, since (1) it ap-
proaches a Coulomb potential as D is increased
and (ii) a many-body summation of similar types
of diagrams, e.g. , the ring diagrams„and passing
to the limit D-~, replaces D with the Debye length
which is given by

semianalytic fits to screening-dependent terms in
the high-temperature expansion of the Boltzmann
sum for bound states are. obtained. Second, using
a pseudopotential procedure to extend the known
perturbation results for the complete two-body
trace, it is shown that terms involving fractional
pomers of D that arise in the high-temperature
bound-state expansion are not present in the com-
plete result, i.e., they have compensated mith
scattering terms. In Sec. DI the process is re-
peated for three-body states and" a convergent
bound-state partition function, resulting from com-
pensation with scattering states, is obtained. Anal-
ysis of the ring diagrams, for all orders, including
Fermi and Bose statistics is given. In addition,
explicit perturbation results for both the few-body
problem and the Coulomb problem are given
through sixth order in P$'. These results can be
applied to, either the density or the activity expan-
sions using expressions developed in I and II.

II. ANALYTIC PROPERTIES AND PERTURBATION
EXPANSION FOR THE SECOND CLUSTER COEFFICIENT

A. High-temperature bound-state expansion

Expansion of the bound-state part b,~ of the tmo-
particle cluster coefficient for electrons e and
point ions n in powers of p gives

where y, = p,. is the density of species i in the can-
onical formulism and

y, =e,. = (2s,. + 1)A., 'e "~ ~

is the activity of species i in the grand canonical
formulism. In Eq. (4) s& is the particle spin,

Z, = (2'�'/m,kr)".

kb (4s3/2g3 )
1 —q -Q (2I+ I)e Mg( Q ~ ps

nr m=0

where. 8 is the perturbation order,

v, =g (2l+1)E„',,/st,

(5a)

(Sb)

is the thermal de Broglie wavelength, and JLf, , is the
chemical potential.

This paper mill improve and extend some of the
results of I and II. In particular an improved meth-
od of separating the bound- and scattering-state
terms is established. An important result of this
analysis will be a pseudopotential procedure for
generating high-order perturbation terms for the
cluster coefficients of the Debye potential. Specific
results for the second and third cluster coefficients
are given —albeit with some degree of approxima-
tion. Furthermore, it is shown that with simple
substitutions in the fern-body expressions for the
Debye potential, it is possible to generate the cor-
responding many-body perturbation result for the
Coulomb limit.

In Sec. II the analytic properties of the second
cluster (virial) coefficient for the Debye potential
are studied. This is done in tmo steps. First,

k/(2p „k-T)'/' (5c)

is the thermal de Broglie mavelength divided by
v w in terms of the reduced mass g,&. Quantum
mechanical expressions for the co, are difficult to
obtain for general potential forms. Since we are
primarily interested in large orbit divergencies
the following simiclassical approximation is use-
ful6

28

w(2m+ 3)!! drr2( V)~+3/2 (5d)

The validity of Eq. (5d) depends on the form of the
potential. In the case of potentials that have a 1/r
singularity, e.g. , the Debye and Coulomb poten-
tials, only ~0 and m, converge as r-0. The func-
tional form of &u, (D) can, nevertheless, be ob-
tained by setting t/'=0 for z &e. The constants in
these expressions can be readily evaluated using a
perturbation expansion of the E„,(D), in powers of
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D ', for large D and numerical calcula, tions of the
energy levels for small D.

The first few , obtained by the procedure just
described are

a&0 8d 02/9(3v) i' —0.2289

(g /R —32d&/2/15(5v)&/& 0 4932

(u 2/R, =g(2)/2! —896/105(7vd)' +0 9769d '

(6c)

(6a)

(6b)

&,/R', = L(4) /3! —K(2)d '

where

512
105d(vd)' ' (6d}

R, =R'Z'/2g, a',„, a.„=k'/e'p, ,„,

d=ZD/a, =-(Pg, t„/2A, )D;
(6e)

t-(v) =g n ", C(2) = ~ v'
f1= 1

C(4)=~v', &( )=1.
(6f)

q,' =g (21+1)(e 's i- I+pE„,).
nl

It is important to note that there are additional
compensations in Q,

' that will prove to be impor-
tant in three-body terms, i.e., all the terms in-
volving fractional powers of ZD in Eqs. (6a)-(6d)

The fractional power terms in Eqs. (6a)-(6d) all
exist in the limit e -0 and were obtained directly
from Eq. (5d). The terms in f(s —2)/s! are the

for a Coulomb potential, which exist for s & 1.
The intermediate terms, starting at s = 3 and hav-
ing lower-order D dependence than the fractional
power terms, are easily determined from a per-
turbation expansion of the E„,(D). All terms having
a higher-order D dependence than the fractional
power term have been approximated by a single
term which was chosen to satisfy ar, -0 as D
-0.840a,„/Z, corresponding to the disappearance
of all bound states. s Equations (6a)-(6d) agree
very closely with the numerical results when D
)4a, /Z, but small oscillatory differences exist
for D &4a,„/Z.

&0 and w, diverge as D-~ due to large orbit
contributions. However, starting at s= 2 the e,
are largely determined by the ground-state term
as shown by the values of t (v). It has been shown'
that mo and the classical part of w„ i.e. , the term
in (ZD)'~', are exactly compensated by scattering-
state contributions. The only remaining diver-
gencies are in the scattering-state part of the par-
tition function. After compensation with the con-
tinuum the bound-state partition function takes the
so called Planck-Larkin form' "

compensate with scattering terms. This does not
significantly affect Eq. (7) since these remaining
terms -0 as D ~, even without explicitly intro-
ducing the compensation. However, the derivative
of Q,

' with respect to D occurs in the three-body
problem. ' To see that there are also compensa-
tions, similar to Eq. (7), that occur in the multi-
electron bound-state partition function, we need to
work out the general form of the perturbation ex-
pansion, as well as a multielectron generalization
of Eqs. (6a)-(6d).

b',
q =-2n(P), )q)D, b, q= 2m(.PF, , (~)'DW(e, g);

b'„=kv(ph;h, )'(lnyl;+D. ), y4& 1'
where

2 y ( 1/2

(8a)

(8b)

Cgg 2P]y y (8d}

D, = ln3 + 3 (ys —1) = 0.8872, yz = Eulere constant.

For m ~ 4 all the perturbation terms converge in
the Coulomb limit10, 14.

b„=2m(-P)"ys /m!,
where

ys „=v v x'„g(m 2)(t', g,-/2w„)"m! /r(m/2+1) .
(9b)

No rigorous quantum perturbation results for b„,
5„, , etc. are available.

The perturbation calculations are difficult and
some approximation procedure is necessary to elu-
cidate general properties of high-order diagrams.
A frequently used procedure is to introduce a
pseudopotential to account for quantum diffraction
effects for r (A, . One of the earliest such poten-
tials, and the easiest to work with, was suggested
by Glaubermann and Yukhnovskii" for a pure
Coulomb potential. It is given by

e-c~tr, &)/~ (10)

B. Weak-coupling perturbation expansion

The fact that the bound-state part of the second
cluster coefficient, Eq. (5a), compensates with the
scattering-state part can be verified from a per-
turbation expansion of the trace, i.e. , the complete
result is, in some respects, analytically dissimi-
lar to the bound and scattering parts.

Thus far only the first two orders of perturbation
theory for 5, have been completely worked out.
The higher-order ladder terms have only been ob-
tained in the limit y,'& =A, ,~/D-0. The terms for rn

& 4, where m is the perturbation order in powers
of pe', all diverge as D-~ and are given by" "
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where C is chosen to fit some known analytic re-
sult. Kelb has given a more complicated poten-
tial, "applicable to second order, that keeps the
first potential interaction classical but introduces
diffraction corrections in the second interaction
line. A pseudopotential of the form of Eq. (10) has
been used to study diffraction corrections to the
pair correlation function. "

Care must be taken in applying these pseudopo-
tentials, e.g. , only the classical part of the Kelb
potential is appropriate in first order, whereas
additional modifications are required when a third
interaction is turned on. Due to its analytic sim-
plicity, similarity with the Kelb potential, "and its
appearance in the work of Dunn and Broyles" a
pseudopotential similar to Eq. (10) will be used
here to study general analytic properties of the
Debye potential. With inclusion of Debye screening
Eq. (10) takes the form

U (~ D) ( ( (e-rlD e-Ct'/kg~)/~

C = C„(y,'~) =k„„~1 +Q a„„„(y,'. )"~~ (12a)

where pg indicates the numbers of particles involved
in the interaction, m is the perturbation order for
pg-particle interactions, and the A,„and g„,are
parameters.

In the case of 5',.&, for example, the parameter
values are determined by requiring

(12b)

Solving Eq. (12b} for h, , and the first few a„„
gives

The potential of Eq. (11) can only reproduce the
first-order result, b',

&
of Eq. (8a) if C =~, corres-

ponding to the fact that diffraction effects enter at
second order. Furthermore the 5',.

&
result of Eq.

(8a) cannot be obtained unless C-C(y,'&). The func-
tion C(y,'. &) that exactly reproduces a particular type
of perturbation term can be obtained by assuming,
for later use, the general form

In the limit y,'..& ~, C„-y&» i.e., U,ff 0 Ex-
plicit evaluations of b, for the third through sixth
order, in Pe', are given in Appendix A.

Equations (8b)-(8f) and (Al)-(A6) verify that
terms in the expansion of the bound-state part of
b,.j, that involve fractional powers of D, are com-
pensated by continuum-state terms, i.e., the per-
turbation expansion contains integral power terms
similar to those in Eqs. (Ga)-(6d), but no fractional
power terms. Equation (7) is, therefore, the ef-
fective bound-state part of the two-body trace. For
kT & ~E~I the perturbation expansion converges
fairly rapidly and there is no need to explicitly con-
sider bound states H.owever, for kT « ~E, ~, Q,

'

increases exponentially and completely dominates
the trace. The parametric density constraints on
the activity expansion of P/kT forces the bound-
state part of the two-body cluster term to be of the
size of the density of electron-ion composites. ""
As a result, this term enters the cluster expansion
as the activity of electron-ion composites, accord-
ing to

(13)

where z, , z„and z are the activities of com-
posites, electrons, and ions, respectively. In the
Coulomb problem, since X~ depends on the activity,
Q,

' is also a function of the activity. In order to
obtain an ordered expansion in the activity, for
which the long-range interaction of composite ions
is treated on the same basis as for bare ions, it is
necessary to Taylor expand Q,

' . This is described
in II. The leading screening correction to the
Coulomb energy levels is the same size for all lev-
els of a particular type of composite and has the
magnitude Ze'/X~ (or Ze'/D in the few-body case).
The low-order terms in an ordered activity expan-
sion effectively shift'the Debye energy levels, to
terms of order ~~', back to the Coulomb limit. For
strong coupling of the ion cores to the many-body
system, such that most bound states are effectively
in the continuum, the Ze'/A. ~ shift in the screened
energy levels is moderated by high-order terms.
A more complete treatment of these considerations
wi11 be given in subsequent work.

(12c)

(12d)

-(12e)

+(4a,"+8~)/k, „-—,', j/3 =0.002668.

k, , =6/W~,

a2, ,/k „-=a,' = (4/k', , ——,')/3 = -0.050 311,
~„/k„-=~ =(-4/k,', +8a,'/k„+-.' ~~}/3

=-0.000 158

~, ,/k, , =-~ = I4/k,',.—12a,/k'„

C. High-temperature scattering-state expansion

After separation of z, , the remaining part of the
two-body term, 2z, z b, comes almost entirely
from scattering states and enters the cluster ex-
pansion at second order in the activity. The scat-
texing contribution 'for two-body interactions is
given rigorously by the Beth-Uhlenbeck phase shift
integral" according to
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mg, s,s,'„=*,s, (4w'"x'„)(—g (@+1)f dp „' sxy( p*-imp.„ar)

=z, z„(4v'/'W', )I g (2I+1) dpp5, exp(-P'/2g, „ar)- &u, /nr
r

(14a)

(14b)

where 5, is the phase shift and p is the relative mo-
mentum. The coo and &, terms are subtracted from
the phase shifts to account for compensation with
bound states. Equation (14b) results from an inte-
gration by parts and use of Levinson's theorem.
When the pseudopotential of Eq. (11) is used a WKB
version of Eq. (14b) can be utilized. The WKB ex-
pression can be integrated by parts twice so that
to, /kT is also identically subtracted from the scat-
tering contribution. The scattering contribution
can, alternately, be obtained from the results of
this section; using Eq. (6a)-(6d), (8a)-(8c), and
(A1)-(A6) according to

2z.z.5,'.=2z, z„~ I' +5',„++2m(-p)"y. /m!

—4z' 'k', ~p" /
&o„/2 ~, (14c)

where e /2
=0 if m/2 is not an integer. Actually

Eq. (14c) is properly constructed only in the Cou-
lomb limit. In general, since according to Eq.
(6e), d = (-p $,$//28, „)D, the ~„/, s.hould be de-
composed and only the parts with the appropriate
dependence on the coupling parameter subtracted
at a given m.

The only bound-state contribution to Eqs. (14a)-
(14c) arises from a small quantum noncompensation
of.&u, in the 5, term. In the Coulomb problem the

b,' term in Eq. (14c) is canceled by electrical neu-
trality and the uncompensated part of the /P,„term
is separated out and appears in the ring sum. In
the large-D limit the scattering contributions for
m=4, 6, 8, etc. are of opposite sign and have &

the magnitude of the bound-state contributions.
However, as D is decreased bound states move in-
'to the continuum and the ~ ~, terms decrease more
rapidly in magnitude than the scattering terms.
For D ~0.840a,„/Z there are no bound states, so
that all the ~ ~, =0 and direct use of the perturba-
tion expansion is again appropriate. Because of
this Eq. (14c}is operationally easier to use than the
corresponding equation with the ~~~, decomposed.
Reorganization of the activity series as exempli-
fied by Eqs. (13) and (14a)-(14c), therefore, gives
a more general formulism which continuously ap-
proaches the original expansion at.high tempera-
ture or small values of the screening parameter.
In the Coulomb problem, in the temperature range
where composite particles form, small values of
the screening parameter correspond to high density.

HI. ANALYTIC PROPERTIES AND PERTURBATION
EXPANSION FOR HIGHER CLUSTER COEFFICIENTS

Section II has shown how to incorporate the form-
ation of one-electron composites into the cluster
expansion. This is appropriate for hydrogen but,
for high-g plasmas, many electron composites
may be formed. This section shows how to separ-
ate the higher cluster terms into. the appropriate,
effectively lower order, composite particle con-
tributions.

Quantum perturbation expansions for the third
add higher cluster coefficients are very difficult
to carry out in complete detail. "" However, with
some approximation at short distance a study of
the long-range divergencies can be made. In par-
ticular we can study the nature of the compensation
between bound and scattering states. The good re-
sults obtained with the effective potential in the
two-body problem seems to justify its use to eluci-
date the general analytic character for few-body
terms. The nature of the diffraction effects is
such, however, that a unique two-body pseudopo-
tential cannot give quantitatively exact results.
Following the format of Sec. II we first consider
the high-temperature bound-state expansion and
then work out the complete perturbation result to
show that terms involving fractional powers of D
are again missing.

A. Three-body bound&tate partition function

Calculations of two-electron bound-state energies
to obtain equations similar to (6a)-(6d) would re-
quire considerable effort. Since we are primarily
interested in compensation of large orbit diver-
gences in the bound-state partition function, a
semiclassical approach can be used to elucidate
qualitative features. A semiclassical approxima-
tion to the two-electron bound-state partition func-
tion, similar to Eq. (Sa), with the &o„expressed by
Eq. (5d}, is given in Appendix B. Expansion of the
exponential terms of the resultant expressions, Eq.
(B5), in u and and term by term integration gives
the following high- temperature expansion.

4T'
q z ~ ~2(2+8/2 +.~+5/2 +~ )

0

dpps & gi 3/2+ ~ gr 5/2+~
T

(15}
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=1 ' g 3 0

Ay l y N 2 l20 & N
fthm l 1& 2 l2 1 (16b)

where Ta is the temperature in Z Ry, g=-V/Ta,
and g'= V-'/T~. For a Debye interaction between
point charges, the potentials V and V' are given by
Eqs. (86) and (BV), respectively. The integral
over (gg'}'~' is the semiclassical equivalent of
Levinson's theorem, i.e., it gives the total number
of bound states. The integrals over g'~+' ' and
(g')'2 "~2 have obvious interpretations in terms of
the high-temperature expansion of the quantum
two-electron bound-state partition function [see
Eq. (81)]. The terms g, and y, lump together all
high-order terms that have only close distance di-
vergericies. All the terms in Eq. (15) can be shown
to involve the factors (ZD)'I" 2 and [(Z —1)D]'2" ',
except the integral over 'y,g„which diverges as D

Similar to Eqs. (6a}-(6d) there are fractional
power terms in the-integral over y,x, which-0 as
D-~. The extension of Eq. (15}to include an ar-
bitrary number of bound electrons is 'straightfoi-
ward.

Iri Secs. III Band IIIC we wi11 show that the diver-
gent large orbit terms of Eq. (15)are not presented in
the complete partition function. The corresponding
Planck-Larkin form of Eq. (81}resulting from
compensation of bound-state divergencies by con-
tinuum-state contributions is apparent. In order to
use Eq. (81) in actual applications it is necessary
to at least include Pauli principal effects and spin-
spin splitting of the energy levels. Including these
effects and averaging over electrostatic and spin-
orbit splitting gives the following generalization of
Eq. (15), resulting from compensation with the con-
tinuum:

g,',„=g(2l,+1) [exp(-pE„, } 1+pE„, ]-
nyly

xZ (2l2+ I )g, i, 2i2s
"2 2

x [exp(-p E„,„,~)-1+E„,„,+]
(16a)

subject to n, E, ~ g, E,; where E„...„...~ is the energy
relative to the n, l, state. For nonequivalent elec-
trons

and for equivalent

gn&on 20,0

=6/
gnarl n 21,0

electrons

g. o. 0 ~
X=o'

g„,,„2,, =9/a, a=(2l, +1)

(16d)

In Eq. (16a) we have subtracted out completely
those terms in the high-temperature expansion,
that have a large orbit divergence. This is only
valid semiclassically. Corrections due to noncom-
pensation,

'

resulting from quantum and statistical
effects in low-lying states similar to those for the
sum over pE„, in the two-body case, ~ can be deter-
mined from a rigorous quantum-statistical perturb-
ation treatment of the appropriate low-order
terms. ' These corrections will be small and can
with no loss of generality, be included with the in-
teractioris terms. 'The perturbation analysis of the
present work will be nonrelativistic, primarily
limited to Boltzmann particles, and only completely
rigorous for the ring diagrams.

B. Ana1ytic properties of the ring diagrams

The most divergent part of each of the multiply
connected parts of the b„, in the limit D-~, comes
from the ring terms. Diagrammatic procedures for
summing these diagrams were given by Montroll
and Ward." A more complete analysis has been
given by DeWitt. 23 Since the interest here concerns
the analytic properties of each of the 5„ for the
Debye potential, not just the many-body sum in the
Coulomb limit, a different approach is taken. By
working with the ring part of each 5„ it is possible
to show that the ring diagrams separate naturally
into a many-body part and a few-body part. To
show this we calculate each of the ring terms 5"„

explicitly and show that the divergence in those
terms that diverge at small k (large r) can be re-
moved by summing over similar terms in each b„,
whereas those terms that diverge at large k (small
r) can be added together for a given b„ to obtain a
finite result. For Boltzmann particles, the quan-
turn perturbation expression" for the 5„, when all
the particles on the ring are different, is

b"„= " 1'" =
2 2, dkk'u, ~u~ ~ ~ ~ u, L(&, 2vit)L(Zd~, 2nit) 'L(2P, 2sit),n — n v 0 t- -~

where

X'=W'k' a.=e/(2m kT)'~2=a /W
1

L(X(,2vit) = dv e p[-xA, (1 —vv}+2witv]
0

X &i'2
= (-1)'(2/g, ) exp(-X', /4+2vit) d(u exp((o'+ 2vit(o/X, ),

0

(1Va)

(1Vb)

(1Vc)
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and

u„= dr u„(r )e'"
0

(1Vd)

is the Fourier transform of the pair potential, and

z is the number of particles, designated by ijk
in the cluster. The t=0 component of Eq. (1Vc) in-
volves Erfi(X/2) so that L(x*,0) has the expansion

(-1)'L(X', 0) = ga, X ', a, = (18)

C. Quantum perturbation expansion of b3

In Sec. II we were able to extend the known ana-
lytic results by means of a parametrized pseudo-

The expansion of L(X', 2wit} is somewhat more
complicated. " The first few terms are

L(X', 2vit) =, , ) ~-,. ~
+ ~ ~ ~ . (19)

1 &X'& 3

Since the analysis is essentially -the same 'when

jjk ~ ~ are all the same, except the results can be
stated more concisely, we will generally work with
the one-component case.

Substitution of Eqs. (18) and (19) into Eq. (1Va)
shows that at each n there are pg- 2 terms, having
k dependence according to k, k, . . . , k ""
which arise solely from L(X, O). These terms are
all integrable and finite, whereas all terms with a
higher-order k dependence diverge individually as
k-~. When treated in total these large-k diver-
gent terms are convergerit. The convergent low-
order terms depend on the screening parimeter
according to D' ', D' ', . . . , D, respectively.
They therefore require a special treatment in the
limit D-~, i.e. , the Coulomb limit. Instead of
summing over higher-k terms at fixed m, the re-
moval of these divergences requires a summation
over all m at fixed 8. The'details and results of
the few-body and many-body summations ar'e given
in Appendix B.

potential adjusted at each order so as to exactly
reproduce rigorous results for the limit y,~-0.
Only one of the parameters of the pseudopotential
was allowed to be order dependent. The order-de-
pendent parameter. was found to change slowly with
increasing order, suggesting that reliable results
for high-order perturbation terms are obtained
even when y, &

&1. En the three-body case analytic
results are not availab. le and, furthermore, it, is
evident that in general each of the triad of two-
particle connections should involve a different. set
of parameters. This is an attempt to account for
the nonfactorizability. of the singly connected quan-
tum cluster. coefficients'4 which enters at order S4.

A.rigorous expression for the three-body ring
term for Boltzmann particles is given by Eq. (1Va).
Since the one-comyonent and many-component re-
sults are.analytically similar, only the one-. com-.

ponent case is considered. A result-similar to that
for b~2of Eq. (8a} is anticipated for the three-body
ring diagram, but has proved to be analytically dif-
ficult. This is due to the fact that the following
sum rule appIies at second order 4:

Q L'(X, 2wit) =L(2X, O} (20)
, t

whereas, at third order there is no similar result.
Nevertheless, the first two terms have been ob-
tained analytically, and very accurate evaluations
of the following two terms have been dett;rmined
from direct numerical calculation of Eq. (1Va).
The coefficients of the fifth to. the seventh terms
have also been determined within a few percent,
and the result, valid for y'=y&, & 1, is

h3 =(Pg) v D (3-~ y' +0.257479y' -0.166667y'

+0.0842y" —0.0346y' +0.00866y~).

(21)

The corresponding result obtained from the pseudo-
potential of Eq. (11}is

bg = (Pg }v D ([I —(y'/C) )/3 —16(y'/C) [&(I —y'/C) —(y'/C)/(1 +y'/C)]/[1 —(y'/C) ]] ~ (22)

Following the procedure leading to Eqs. (12a)-(12f)
and requiring Eq. (21) equal to Eq. (22) yields, for
the leading coefficients in Eq. (12a),

k3 3 4, a3, , = -0.1503, a„3., = 0.0233 ~ (23)

Since h„ is 18//& larger than h, [Eq. (12c)] it ap-
pears that using a fixed value for C in Eq. (10) will
not give the Coulomb ring sum very accurately. It
turns out, however, that keeping |"order indepen-
dent introduces compensating errors. Figure 1
shows S~/S~ vs y& from various calculations. The
solid curve is the numerical evaluation of Eq. (1Va)

obtained by Graboske and DeWitt" the dashed curve
is the much easier numerical evaluation of the ring
sum using the pseudopotential of Eq. (10) with C
=h ~ =6/v v, and the dotted curve is the small y,
expansion of Sec. III B and Appendix C. The pseu-
dopotential result is seen to be quite good and can
be expected to give reliable results for higher-
order many-body perturbation terms. If C is para-
metrized similar to Eq. (12a) even closer agree-
ment can be obtained.

There is also a contribution at third order com-
ing from the reducible, singly connected, diagram
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FIG. 3. Diagrams arising in the fourth through the
sixth order in the coupling parameter. Only the three
particle reducible diagrams are displayed.

FIG. I. Diffraction corrections to the ring sum. The
solid curve is the numerical evaluation of Ref. 29, the
dotted curve is the small y expansion of Sec. III 8, and
the dashed curve was obtained with the pseudopotential
of Zq. (10).

0 =5"+0 (25)

involves three different functions C(y&) reflecting
the different ways that quantum effects enter at
short distance. In an electrically neutral gas, re-
quired for stability in a plasma, all reducible
terms involving b,

' cancel out.
Continuing on to higher-order terms, we note

that those terms which diverge classically are of
particular interest, since compensation between
the bound- and scattering-state part of these terms
will have an important effect on how composite par-
ticles are formed in an equilibrium plasma. For
reasons already mentioned only the one-component
case is considered. The diagrams that contribute
at fourth-sixth order are shown in Fig. 3. These
diagrams come from b, —5,. Due to the large num-
ber of possibilities the reducible diagrams have
only been included for b, . Evaluation of the three-
particle reducible diagrams for fourth-sixthorder
are given in Appendix D.

In the limit D-~ the diagrams of Fig. 3 coming
from b~ all converge, but the diagrams coming
from 53 for m~6 all diverge. %'hen m&6 the only

FIG. 2. Third-order re-
ducible diagram.

of Fig. 2. The contribution to b, from this diagram
is given by

(24)

where b,
' and Q~ are given by Eq. (Bb). The com-

plete third-order term

irreducible diagrams in 5, that diverge are the ones
that have two lines coming in at one junction. Like-
wise, those reducible diagrams that have one, two,
or three interaction lines joining two particles di-
verge. Mayer" and Abe" have shown that those ir-
reducible diagrams in which at least three lines-
come in at each point are prototype diagrams,
which when summed over similar diagrams occur-
ring in higher Q„, replace D with A~in the Coulomb
limit, e.g. , the irreducible diagram for m=4 is a
member of the infinite set of diagrams shown. in
Fig. 4, which screens one rung of the three rang
ladder diagram (indicated by wavy line). The re-
ducible diagrams may be screened in a similar
way. For 5, all those reducible diagrams that are
not removed by electrical neutrality are necessari-
ly prototype diagrams. A generating procedure for
screening the reducible diagrams was given in I.
As a result of screening, the virial and cluster co-
efficients for a Coulomb gas are replaced with the
corresponding result for the Debye potential, but
with all those diagrams which are not prototypes
subtracted out. The above statements are only val-
id when y «1, otherwise, the many-body potential
takes a very complicated form. " If for simplicity,
and in view of Fig. 1, it is assumed that the pa-
rameters C„ in our order-dependent pseudopoten-
tial are all the same, the resultant screened poten-
tial becomes" '0

(26a)

y)) =rE(~/A. ~. (26b)

This is analytically of the same form as Eq. (11),
so that the many-body result can be obtained from
the few-body perturbation terms by simply replac-
ing 1/D- n, C- o.,A. ,&

and multiplying by the ap-
propriate power of 1/e. Further refinement can be
obtained by considering the order dependence of
the C„. The fact that terms involving square

FIG. 4. Set of diagrams that screen one rong of the
three rung ladder (or watermelon) diagram.
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roots arise in Eq. (26) is of no importance to the
few-body compensation since it results from can-
cellations in terms involving fractional powers of
the potential, prior to forming the many-body sum.

In order to use the results of this section in a
cluster expansion it is necessary to find gener-
alized forms of Eqs. (13) and (14a). Each n-body
cluster term involving j electrons must be separ-
ated into j parts having activity dependence of or-
der g- j. The diagrams of Fig. 3 can be associated
mith the proper bound electron-ion clusters by
counting the number of electron-ion connections
that have an even number of interaction lines.

IV. DISCUSSION

The different analytical behavior of the bound-
and scattering-state parts of the trace, for kT less
than the binding energy, requires a renormaliza-
tion of the activity series. Tightly bound clusters
clearly act like nem particles, mhereas, similar
clusters in highly excited states may more closely
resemble tmo-particle scattering events. Treating
these meakly bound clusters as particles can lead
to gross errors in the ideal gas limit. It was shown
in this paper that the analytic properties of the
trace leads to a natural separation into effective
bound- and scattering-state parts. This results
from a compensation of all those terms in the few-
particle bound-state sum, which have a large orbit
divergence, with scattering-state terms. Quantum
effects prevent complete compensation of the deep-
est bound states. This will effect the quantitative
details and requires additional investigation. It re-
mains to be shown that the-analytic properties pro-
duce a universal definition for composite particle
activities applicable even to.high-order scattering
events involving one or more of the tightly bound
clusters.

Vfe have. also greatly extended the known quantum
perturbation results; both for the fern-body prob-
lem and the closely related many-body problem.
The analysis involved a combination of rigorous
quantum statistical mechanics, semiclassical theo-
ry, and pseudopotential methods. The results are
qualitatively correct and there is reason to expect
that there are no gross errors in the quantitative
details. In the future me anticipate using extended
versions of the present work to evaluate high-order
terms in the Coulomb activity expansion developed
in II.

APPENDIX A: PERTURBATION EXPANSION OF THE
SECOND COEFFICIENT

The perturbation terms for the potential of Eq.
(11)can be obtained analytically in all orders, but
become unmieldy for high order. " The three and
four rung ladder terms are given by

I"„=2v(-P) y„(D, ~„/C)/ml,

mhere

(A1)

(A2)

(je), =($,$&)' lny, +3ln 2+y, t"

1+2yc j
(A3}
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»I l3 4 +4y inyo+Inl
I

1+—ln
C I 2" (32i 3 (I +y./3

3 e' ' '
)(,3e) y, ), e

+'I'+ I»I ' (-&I(+ )" '(
I

(A4)

and y, =y,'z/C. The leading terms for (())3 and g3
when y,'&& 1 are given by

Q3 —($,- $q)'I
i
[0.240 808 8 —3.398 Oly,' '

&&v&
—12.5y', (ln y, + 1.1235)), (

)3
Q3

—($,4) I ~
[0.11853V2- 1.44485y,

I

Equations (A1)-(A6} are sufficient to see the struc-
ture of high-order terms. The terms left out of
Eqs. (A5) and (A6) are similar to the logarithmic
terms of Eqs. (A3) and (A4). In the limit y&&

y, -1 and each g„-0. The sum over all P„ for a
fixed y,'z is nevertheless finite.

In the limit y&&-0

+ 11.9448y —36y', (ln y —1.0166V) ] .
(A6)

Q3
= ln y l g

+D

where

(A V)
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D,'=In(8/Iz„) =in(&w'iz) =0 8.600, (A8)

when h, —= h„. The pseudopotential Eq. (11) repro-
duces the limiting results of Eq. (AV) very well,
i.e., the logarithmic term is exactly the sarge and

D,'=0.969 D, [see Eq. (8d}]. Solving for the value
of h, , that satisfies D,'=D, gives

state n, l, and H signifies a one-electron composite
of mass m~=m, +m . It was shown in the Appendix
of II that, when (n, l, ) =(1,0), the states E,o„, can10@2l
be calculated, within a few percent, from the po-
tential

2

V„,(r) =- —[(Z -1)exp(-r/D) +exp(- Ze„,r)), (B2)
h, , =0.973h, z. (A 9)

The very small adjustment needed in the dominant
parameter h z suggests that even smaller changes
in the a„„are required to exactly reproduce the
third-order term for all y,', , i.e. , Eq. (A1) using
Eqs. (A4), (12d)-(12f), and (A9) is a very good ap-
proximation to b',

~
for a11 y,'~. Comparison of Eqs.

(A4)-(A6) with the small yf& limit results of Ebel-
ing, Eqs. (9a} and (9b), gives

ln(2 /3~) =1z5/2, 4 (A 10)

when h 4
= 0.951@2;

IK 0.2408(2)'I'(7/2)
v zi(3)5! (A 11)

APPENDIX B: SEMI CLASSICAL TWO-ELECTRON
BOUND-STATE PARTITION FUNCTIONS

The three-body bound-state problem is compli-
cated even in the semiclassical approximation, so
that additional approximation is made. We first
assume no lifting of .the m degeneracy, so that the
bound- state part of b„becomes

when!I, = 0.933h, ,;
0.1185(2)'I"(4)

v z g(4)6!

when h 6=0.921h 2. Equations (A10}-(A12) show
that the adjustment to h„required to exactly re-
cover the y&&-0 limit increases but at a decreasing
rate as m increases, i.e., the pseudopotential of
Eq. (11) should give a good approximation to the
first few b, ~

for all y,'y when the C2 ~ as defined by
Eqs. (12d}-(12f)and Eqs. (A10)-(A12). A useful
extension of Eqs. (8b) and (9a) to finite values of

y&z has, therefore, been obtained.

where

em
= 1.06V + 0.087/(ZD/e, „')' . (B3)

As ZD decreases the energy levels are weakened
until at D =D, =0.840 a,„/Z they have all moved into
the continuum. At D=D, the core electron screen-
ing is totally ineffective and Ze„,(ZD/a, „)-I/D.
For doubly excited" states it is assumed that e„l
scales with the radius (D-~) s„, of the innermost
occupied state, i.e.,

0 Eyp/Z(s i) (B4)

When (n, l, ) = (1, 0) the sum over the bound and scat-
tering states of the outermost electron can be re-
placed with WEB expressions exactly as in the two-
body case. The compensation is, therefore, essen-
tially the same except there will be some modifica-
tion at short distance due to uncertainty and Pauli
principle effects. In general, however, both elec-
trons can occupy high orbits and the divergence is
now much worse than in the two-body case. The
analysis of these states will be based on the fact
that the divergence of the Boltzmann sum is essen-
tially classical, such that, diffraction and quantum
statistical effects only enter the quantitative detail.

For doubly excited states the sum over (n, l, ), by
definition, excludes some of the low-lying states.
The semiclassical integration over these states
now starts, approximately, at the radius of the
highest-lying excluded state. If the sum over (n, l, }
is also replaced by an integral the following gen-
eralization of the one-electron semiclassical .

bound-state partition function is obtained (in a.u. )

1
Q = — dTT'e z'"

ee +2
0

"V{r)
x duv ue "i'z

0
bb -=Q ~ = g) exp( PE()-~ ~e~eH

= g (2l, + 1)exp(-PEn, l, )

x g (2I +1) where

dpi' e t { |P)
T

V {rgP)
x dtevu e i&z,

0
(B5)

'n2l2-+ili

x exp(-tiE„, „,),
(B1)

where i is any good set of quantum numbers

E„...„... is the energy of state n, l,n L2 relative to

(B6)

g=-V/Tz, g'=-V'/Tz, Tz=AT/Rz,

V(~)=-2e "/r,
y'(r, p) =-2((Z —1)e ~ -exp[-a, e(T)p]j/Zp,

(BV)

(B8)
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p =Zr/a, , ~= Zs/a, (B9)

The generalization of Eq. (1Va) to multielectron
terms is apparent. The quantitative accuracy of
these calculations is doubtful, but they should give
the correct analytic forms and that is sufficient for
the present arguments.

APPENDIX C: DIFFRACTION AND DEGENERACY

CORRECTIONS TO THE DESYE-HUCKEL TERM

Working first with the many-body part of the ring
diagrams, described in Sec. III B, and summing
sequentially the most divergent terms from each
b„, the next most divergent terms, etc. , gives

z"b"„&= dkk + k " z- j2(2v)3 n2 n v=3 n=v /l=l i =0

where

y, =A, ,/AD, AD = (4wp&'z)'~2,

z is the activity defined by Eq. (4),

zD =-I/[A. 'D(k'+ I/D')],

(C2)

(C3)

(C4)

To compare with the results of DeWitt 3 we need to
expand his Eq. (44) in powers of y25. This gives ex-
act agreement with A2 and A, but his a4 is incor-
rectly evaluated. s' The correct value is c4
= 0.141 534.

The few-body part of the ring sum is given by

(C15)

is the coefficient of the term (y'P2) in the expansion
of exp[(L(2F, 0) —1)], djz is the order of the factor
(I(X,O)- l}D producing the H„„c omp onent of the
coefficient, e.g. , Hs, , = a„P4, =~, H4 2

= 2a'„and
the a, are given by Eq. (18).

Each sum in Eq. (Cl) can be generated from de-
rivatives of the function

(C5)

according to

where

dk k2 ('=+"
+n 2n-3 (k2+ I/D2)nl( Q

and

2k2 s la
s=l

(C16)

G, =n, G, =na„G, =n[a, + (n- 1)a,/2], etc. ,

3' =8„lf+ —Q A„yz", r

v=3

where

S'„=I/12zzz3,

(C 6)

(C V)

(C17,)

are the parts of J. already used in the many-body
problem. Numerical evaluation of some of the A„'

gives

is the Debye-Huckel classical limit,

f =(I 6 +) D2 fD 6Dt ED XD/D,

v 2

(C8)

A2 =0.492 175, As =0.142 845,

A, =O.O46525, A, =O.O1671.
(C18}

Av I- Hv, p8v, p ~ (C9)

and

00 d~r
e ( I)vy2v z dkk2v 2v 2 v

Vvp g 8
0 du"

(C10}

A2 +I~S,l 8 t A +/~4, 1+ 2 184, 2 720
I 2

+4 a3~5, z + ala2 ~5 2 + aj85 3/3 35255

(C13)

(C14)

In the Coulomb limit (D-~) the first few e, „are
~v, 2=I'-2 ' (C 11)

8„,=(j -2)2--,', 8„,=(v- 3}'-~4D-~5; (C12)

so that

The A„' are numerically identical to the corres-
ponding coefficients given by Eq. (43) of DeWitt 33

We note that the two-body component of Eq. (ClV)
is of the form k'E/kT indicating that terms of this
type, as already mentioned, are not completely
compensated in the two-body trace.

.The results given for the ring terms are rigor-
ous for nonrelativistic Boltzmann particles, pro-
vided y, & 1.43, since the power series does not
converge for larger y, . It may be, however, that
the radius of convergence of the power series ex-
pansion is increased when similar terms coming
from nonring diagrams are included. For fer-
mions and bosons the L(ZP, 2nit) function is mod-
ified by degeneracy and exchange effects. Inclu-
sion of degeneracy givess4
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g(X'„2wit) =1.(Zd', 0), 2wikD)P, /, (e,)/$, (C19)

where $) is the operator d/de„p, /2(n, ) is a Fer-
mi or Bose integral, n, = I1,/kT, g = dy, /2(n8, .), and

&« is g/kT for the noninteracting system. For t
= 0 this gives

where
~e

f'(k) = drf(r)e'"',

(D1)

(D2)

Z(X'„0) =~ 'gn, 9' ...„,(~,)&'.
g=0

(C20)

Since the effect on a given type of term is the same
for all pg, the A„, become

+2 +I~ +-1/2 s
I

f(r ) =e 2 e eff —1 .

Expansion of f(k) in powers of the potential gives

3 $5 sy-8/284 ~1 2 (+15 sy-1/2) 84, 2

(C22)

f(k)=g f„
where the first few f& are given by

(D4)

Due to the fact that each term in the k expansion
involves a different 5 function, no simple result
similar to that for the A.„,emerges. Degeneracy
corrections to the A„' can, nevertheless, be de-
veloped by expanding the p„.

Cf1=-( wp(') k2+I/~2 —
k2 2,

ii

(D5)

APPEND/X 9: HIGH-ORDER PERTURBATION TERMS FOR 53

In transform space the irreducible part of 5, is
given by

+tan '
2a] (Ds)

4w(p)2)3 k & 3a'+k2 3k &(I/O+2a)2+k2f8-- „k, l(3/D2 „.+ —, II (2/D „)
O'D 2 'tI ~ kD I' 1 I ~ pD+3atan ' ————tan ' +3 Itan ' stan '

3a D 3 D+ a ~' 2+ aD II,D+ 2a] 1+2aD (DV)

4w(P4'}' 2, -82. /4 (DS)Jda 4t . 3

Due to the length of the f4 term it has been replaced
by an approximate form which is asymtotically
correct as k -0.

Since the reducible diagrams in Fig. 3 factor into
4(b2}' they can be readily evaluated with the results
of Sec. II. The irreducible diagram for m=4 is
given by

UAf(r, x„/g', ) . (D10)

0

In its most general form Eq. (D9) involves two dif-
ferent functions C(y') where C =g, (y') is appropriate
for f„and C =g2(y'} is appropriate for f,. The best
available estimate for g, and 82 are g, =C, ,, and g2
= C22. After an integration over r in f, Eq. (D9}be-
comes

k„=ds'(Pk*)'',f, dkdrkrsiskr

1 1
k*+g'/~ )

Integration of Eq. (D10}over k gives a result which
can be written in the form

A.
2

b4 4w2pg2ID3 48 + 8 '

+ 4d 3
S+ I/D' —g', /g14 g, ag

where

1

D(2g, +g2) 1/D+g1+

l +g,
(I/D+ 2g2

when g, =g2, 4, = p„where ttk3 is given by Eq. (A3).
The surviving reducible diagram for m=4 is

given by b43, =2(b', )', where b', is given by Eq. (Sb).
The many-body sum over the reducible diagrams,
involving two rings connected at one junction also
replaces D with Xo as D-~. This replacement
comes about in a somewhat different way than for
the reducible diagrams. As shown in I the sum
over these diagrams is given by the following op-
eration on g~:
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z (as„)' (D12)

where

E,(a}=I(D, D, a) —4I(D, E, a)+2I(D, 1/C, a)

(D13)

+I(E,E, a) —4I (E, 1/C, a)+I(1/C, 1/C, a),

where S„depends on the activity through Eq. (3}.
For m=5 the irreducible part of b3 has two topo-

logically distinct parts, as shown in Fig. 3. The
prototype diagram will be labeled Q„and the other
diagram will be labeled 5». Since b„ is topologic-
ally similar to 5. .. it can be evaluated in the same
way, with a result similar to Eq. (D11}, except $3- $4 and 43 —44. It is not displayed here, but 44
is a two parameter form of $4 which is given by
Eq. (A4). The prototype part of fs33is given by

I(p, v (o) =-'win[(g+ v)"'"/p" v'j . (D18)

8 88~ 8Z 5g A, g)z zez es ez
(D19)

where b23(&n) is approximated by Eqs. (A1) and (A3)
and the many-body substitutions for the potential
of Eq. (30a) described earlier

At sixth order there will be contributions from
prototype diagrams in b„b„and b~ whose corn-
plete analysis is too lengthy to be attempted in this
paper. For the present the analytic form of the
irreducible diagrams in 5, at sixth order is suffi-
cient. Labeling the symmetric prototype diagram
as b38, and the unsymmetric prototype diagram
b» and the remaining diagram g, , it is found
semianalytically that, for y' &1,

The many-body sum over the diagrams that screen
the surviving reducible terms, again using the
method of I gives

E =2/(1/D+ C),

(D14)

(D15)

~a

=-(P(2)'
~

—+2.793 66 ~ ln
23 2 aa49 2

-1.454 88V (D20)

I(p, v, &u) =
" d)'Btan '(pg/2) tan '(kv/2)

0 42+1 co2

(D16)

A complete analytic result for I(l2, v, &o) has not
been obtained. The main terms for small y' are
given by the following semianalytic result:

I(p, v, ~) = ,' vp ln f—(v/p)(1 792 154. + g/v

+Q Q2Q035e 4.887092/a/)j

(D17)

&3,3 &3.3/

36(4m2 rl-
2 y, ~2

=-(P5')'I
3 4 „c3

—l.6958 ln~ —
(
—2.3592

5 &Bi'

where for simplicity, the averages

CB (C3 3C2, 2C2, 3} a Cc (+3,3C2,4)

(D21)

(D22)

(D23)

Equation (D1V} is accurate everywhere to three
significant figures and to six sign. ificant figures
when g/v»1, «1, or 1. Also when u»{p, , v)

have been used. The only divergences in the high-
er-order terms of Q3 occur for diagrams of the
type b3, which diverge ax:1/A. ",)

3 y'.
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