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Molecular statistical description of nematics in terms of the random-phase approximation
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A calculation of the Maier-Saupe model is given in terms of the random-phase approximation. The
influence of the range of the intermolecular potential is analyzed. Notably, attention is paid to short-range-
order effects in the isotropic phase. It appears that light-scattering data can be understood using a short-
range potential.

I. INTRODUCTION

Short-range-order effects in the isotropic phase
of nematics and cholesterics have been extensively
discussed by de Gennes. ' The starting point of
his discussion is the Landau expansion of the free
energy; the next point is the equipartition. theorem
in order to obtain the temperature dependence of
the relevant Quctuations. This phenomenological
approach gives a satisfactory description of both
the ordered and disordered state of nematics.

In order to gain insight into the type of interac-
tion that produces the first-order nematic-iso-
tropic transition, Maier and Saupe' developed a
molecular model based upon anisotropic disper-
sion for'ces. According to their theory, the origin
of nematic order is due to the interaction between
the anisotropic polarizabilities of the molecules;
the molecules themselves are considered to be
spherica1. Taking into account the liquid charac-
ter of nematics, they arrived at the following Ham-
iltonian:

H=-- Q J(R,,)P, (ag a(),

where i, and aj are unit vectors pointing in the di-
rection of the long axis of the molecules i and j
being situated at R, and Rj. The coupling constant
Z(A,-,.), B,z = IR,. —R~ j, denotes the interaction
strength between these molecules and P, is the
second Legendre polynomial. Maier and Saupe
solved their model in the molecular-field appro..i-
mation (MFA) and obtained. a qualitatively correct
temperature dependence of the order parameter.

The physical interpretation of the coupling con-
stant J (R;~) ln terms of a111sotroplc poiarizabllltles
of spherical molecules should not be taken seri-
ousjy, as shown-by Qelbart and Gelbart. ' They
demonstxated that the orientationa1 dependence of
the intermolecular interaction originates mainly

II. RANDOM-PHASE APPROXIMATION

In order to apply the RPA the origj. nal Hamilto-
nian (1.1) is split up into two parts

e„=-,.'-VZ(O)S'-Z(0)SP P, (a,.), (2.1a)

(2.1b)

from the coupling between iqotropic attractions
and anisotropic hard-'core repulsions. Neverthe-
less; the form of the interaction seems relevant
for the discussion of the behavior of nematics.

A proper description of the behavior of nematics
in the isotropic phase can not be given in the MFA,
because this approximation neglects the fluctua-
tions. In order to discuss the local order in the
isotropic phase, a nearest-neighbor lattice ver-
sion of the Maier-Saupe model was calculated re-
cently by means of a cluster variation method"
and a Bethe-Peierls approximation. "Because
these approximations calculate only the nearest-
neighbor-correlation function, expressions for the
relevant Quctuations, which describe pretransi-
tional effects, e.g. , the scattering of light, cannot
be obtained directly. In that case approximate
summations have to be carried out. '

It is the purpose of this paper to give an approx-
imate solution of the Maier-Saupe model in terms
of the random-phase approximation (RPA), a meth-
od well known in the field of magnetism. ' The ad-
vantage of this method is that it is applicable to
both long- and short-range potentials and that it is
directly based upon the fluctuations, i.e., it pro-
vides a link with the treatment of de Gennes.
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and

Q, (R;) =P.( ..) -S,Q.(R,) =-.'~2( ',.—;,),
Q, (R,) = )] 2 a,.„a;„Q,(R,.)

= ]) 2 a,.„a,.„Q,(R,) = Mga, ,a,.„

J(0) = g J(R,.~) .

N denotes the total number of molecules. Obvious-
ly the functions Q„(R,) are related with the five
spherical harmonics 1',„(a,.) {m=-2,... , 2) in a
simple way. It follows easily that the Helmholtz
free energy E can be written

—PE = —PE, + ln(exp(- PV)), , (2.2)

the vectors q are determined by the boundary con-
ditions. In the case of a Maier-Saupe model on a
simple-cubic lattice the vectors q belong to the
first Brillouin zone and the Fourier components
Q„(q) are independent, for we have only N compo-
nents. If we deal with a liquid, however, we have
an infinite number of Fourier components Q„(q)
and only N of them can be taken to be independent.
In the following we select the independent compo-
nents according to the Debye procedure, a quite
natural choice, and the influence of the remaining
ones is neglected.

Realizing that the q = 0 mode already appears in
p0 as far as the anisotropic phase is concerned,
the fluctuation term reads

with

—pFO = —2Np J (0)S'+NlnZO,

(A), = [Tr exp(-PH, ) ] ' TrA exp(-(8H,),
Zo = Tr exp(-PH())

(2.2a)

(2.2b)

V=-- ~ J(q)Q]t(q)Q] (q),
] ~ I

2 q&P

with

J(q) =g J(R,,) exp(iq R,.~) .

(2.5)

(2 6)

d(cos8) exp[P J'(0)SP,(cos8)] . (2.2c)

Cluster-variation methods treat S as a variation
parameter. After decoupling the fluctuation term
(exp(-PV)), into clusters the parameter S is de-
termined by minimizing the free energy & with re-
spect to variations of S.

The RPA takes a different point of view and con-
siders S still to be determined by the requirement
of translational invariance, i.e., S is the long-
range order parameter satisfying the well-known
self-consistency relation

S =(P,(cos8)), . (2.3)

The criterion of the lowest free-energy selects
the solution of S that corresponds to thermodyna-
mic equilibrium. If we neglect the fluctuations we
simply obtain the Maier-Saupe result.

In order to calculate the free energy in the RPA
we put

Q„(R,-) = Z Q„(q) exp(-~q R;);
q

The prime in the summation appearing in expres-
sion (2.5) denotes that we have to exclude the q = 0
term in the nematic phase. The RPA assumes
that each Fourier component Q„(q) fluctuates in-
dependently, except the q and -q terms that fluctu-
ate in the same way. This means

»&exp(-PV)&. = —~ »&exp[A J(q)g(q)Q {q)l)
1 M'

q, P

+ Q ln(exp[ 2PJ(0)Qq~(0)Qq(0)]), (2."I)

where the q-mode spectrum is cut off on a spheri-
cal surface of radius q~ and the q =0 term only ap-
pears in the isotropic phase. It holds

eD = (6~'p)"',

where p =N/V denotes the density of the system
with volume V.

ln the unperturbed isotropic phase (i.e. , without
fluctuations) the distribution of Q„(q) is Gaussian
with (Q„(q)),= 0 and (Q~ Q„(q)), = -,'. This means

. (ezp[pd(q)()ee(q)pe(q)]} f dx*ezp[—[5 —pd(q)]x*] f dx ezp( —5x') = [) --. pd(q)]
0 . 0

(exp]i dd(5)(),'(5)q, (5)]) fdxezp[l[ 5- -Pd( )5l 'x ]f d* zp(--,'*')= [) - ] Pd(5)l ".
0 0

{2.9a)

(2.9b)

Using expression (2.9) the RpA gives rise to the
following free energy in the isotropic phase (S = 0): I"; = — + Z in[1 ——', PJ(q)], (2.10)
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where the sum on q is limited to the Debye sphere.
The expectation value of Q~t(q)Q„q in the per-
turbed isotropic phase, &Q~t(q)Q„(q)&, can be cal-
culated in an analogous way. It holds

&q„'(q)q (q)& = [5-PJ(q)l '
i.e., the fluctuation &Q~t(0)Q„(0)& diverges at AT,*
=-:J(0)

In order to determine T, we have to calculate
the free energy of the nematic phase. In the un-
perturbed nematic phase, i.e., without fluctua-
tions, the distribution'of Q„(q) is also Gaussian
with &Q& (q)), = 0 and &Q&t (q) Q„(q)&,= —,

' o'„, where

o,' = —,
' —15/2pZ(0) + 2S —5S',

(2.11)

(2.12a)

a,'=o', =~-5/4PZ(0) -as,
cr' = v', = 5/P J'(0) .

(2.12b)

(2.12c)

Then the RPA gives the following expression for
the free energy of the nematic phase:

5 I
= &o+— in[1 ——,

'
PJ'(q)o'& ], (2.13)

=1 q

while the expectation value of Qt&(q)Q„(q) in the
perturbed nematic phase equals

&Qw(q)@p(q)& =ay[5 —PJ(q)ap] '.
The transition temperature T, and the jump of

the order parameter S, at T, are obtained by
simultaneously solving the self-consistency equa-
tion for the order parameter S (2.3) and the equa-
tion I'„, -E; =0. It follows directly that, in con-
trast to the case of second-order phase transi-
tions, the fluctuations already influence the loca-
tion of T„only T,* remains unaltered. This shift
of T, depends on the range of the interaction be-
tween the molecules. Although the shift is rather

III. EFFECT OF THE RANGE OF THE POTENTIAL

The influence of the range of the potential on the
ratio (T, —T,*)/T, can be quite suitably studied by
using the Kac potential"

J R, ,J(R,,)=, exp-
4n'b R;~

(3.1)

The parameter 5 is a measure for the range of the
potential and J is a coupling constant. In the limit
b -~ this potential is a molecular-field potential
and the original Maier-Saupe result is exact; the
short-range character of the potential increases
with decreasing b. It holds, using (2.6),

J(q) =pJ/[1+ (bq)'], (3.2)

with q = tq I. Changing summations into integra-
tions via

V f 'a,

we obtain

small the ratio (T, —T,*)/T, can be changed dras-
tically. This fact is of interest because there is
quite a discrepancy between the theoretical and
experimental values. Experimentally this ratio
is 0.003 for MBBA,' while theory predicts a value
of 0.092 in the MFA and, at the best, 0.028 in the
two-site cluster approximation, as far as the
nearest neighbor Maier-Saupe model is concerned.
Data of Monte Carlo simulations, however, indi-
cate that this cluster variation method also over-
estimates the value of (T, —T,*)(T,considerably. "
In the following we will study the effect of the range
of the potential on the ratio (T, —T~)/T, .

(3.3)

After some numerical calculations we find that
(T, —T,*)(T„where ksT,*=-5 pZ, decreases with de-
creasing b, while S, increases. The ratio (T,
—T,*)/T, can be made arbitrarily small, if the pa-
rameter b is suitably chosen; in that case T, is
approximately equal to T~ and S, approaches S(T,*)
=0.615. The exact data are given in Table I, where
we have expressed b in terms of a.n average inter-
molecular distance a defined by aq~= (6n')'~'.

An important quantity in the isotr'opic phase is
the correlation length $. Small q values of

&Q~(q)Q„(q)& correspond to the behavior of

&Q&(R, )Q&(R&)& for large values of R,&
Approx. i-

mating the Kac potential by

J(q) =pJ(1—b'q')

we obtain for large values of R, ~

(3.4)

&Qq(R;)Qq(R, )& = (4vPp'b'JR;, ) 'exp(-ft;)/$),
(3.5)

where the correlation length g is given by
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TABLE I. Ratio 1 —T,*/T, and the values of the order
parameter 8, at I'=7.'~. The parameter b has been ex-
pressed in units of an average intermolecular distance
a=p '~'

i-T+/T, Sc

5

3
2

~ 1.9
1.8
1.7
1.6

0.092
0.084
0.080
0.070
0.040
0.034
0.027
0.018
0.008

0.429
0.459
0.473
0.500
0.560
0.570
0.581
0.593
0.607

g = 5[T/T+ 1]-'/' .-
It follows directly that

(3.6)

(3.7a)

(3.7b)

diverges at T= T,* in one and two dimensions for
short-range potentials. Therefore the RPA al-
ready excludes nematic order in one and two di-
mensions. A mathematically rigorous proof of
that statement has been given by Vuillermot and
Homerio. ".

Light scattering in the isotropic phase due to
fluctuations of the polarizability tensor can be
easily calculated, using expression (3.5). Neg-
lecting the dependence of the intensity I on the
scattering wave vector the expressions for the in-
tensity of the outgoing light with polarization pa-
rallel (I~~) and perpendicular (I~) to the polariza-
tion of the incident light are

have I~ =+I~. Substitution of (3.5) into (3.V) gives
us roughly the following temperature-dependent
behavior of the intensities:

(3.8)

This behavior has been verified experimentany by
Stinson and Litster. '

IV. CONCLUSION

The RPA is a convenient and simple method to
calculate the properhes, notably the short-range-
order effects, of molecular statistical models of
nematics. In particular, the pretransitional effects
are easy to calculate. The method is applicable
to smectics as well. It has, however, one slight
disadvantage. The order parameter is calculated
using the MFA. This means that, in general, T„
T,*, and the jump in the order parameter are too
high and that the method breaks down if the range
of the potential becomes too small (5 &1.55). In
that case, the contribution of the fluctuations can
no longer be treated as a perturbation of the mo-
lecular field. A possible way to improve this sit-
uation is to use the spherical constraint. " How-

ever, a consistent way of using this constraint is
not clear to us, as far as the nematic phase is
concerned. The properties of the isotropic phase
can be calculated using this constraint. The main
result is that the spherical constraint brings down

T,* considerably.
Our calculations show that a short-range inter-

molecular potential is needed in order to under-
stand the experiments of Stinson and Litster in
terms of the Maier-Saupe model. Clearly the
structure of the molecules is reflected in the
range of the potential, i.e., the parameter b. In
particular, it might be expected that b is roughly
proportional to the length minus the width of the
molecule. It would be of interest to investigate
the correlation between 1- T,*/T, and molecular
properties.

where ) is the wavelength of the incident light and
d +, are the longitudinal and

transverse molecular polarizabilities, respective-
ly. The index i runs over aQ molecules of the
sample. Because (Q,(5,)Q, (%,.)) =(Q,(%,)Q,(%,)) we
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