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It is found that light undergoing double scattering in a fluid introduces a spurious curvature in the semilog
plot of the time-dependent correlation function versus time. The amount of curvature to be expected is
calculated as a function of the parameters of the experiment. This permits the correction of experimental
data by the subtraction of the double-scattering contribution. Alternatively, we express the results of our
calculation in frequency space by exhibiting the deviation to be expected from a Lorentzian spectrum. A
further description of the double scattering is given in terms of a continuous distribution of relaxation rates.
Also included, as'a by-product, is a brief treatment of the double-scattering correction for the equal-time
correlation function. Small-angle approximations, valid in the extreme critical region, lead to analytic results
which are found to be in good agreement with numerical computations of Bray and Chang. As in their work,
our calculations are limited to the 90° scattering geometry.

I. INTRODUCTION

A. Organization

With the steady increase in accuracy of experi-
ments studying the critical properties of fluids by
means of light scattering, it has become clear that
multiple scattering plays an important role. Only
in experiments of limited accuracy, restricted to
a qualitative study of the phenomena, can the com-
plication of multiple scattering be overlooked.
Even in cases where the fluid has been carefully
constituted so as to minimize the intensity of the
scattered light, such as the binary system 3-me-
thyl pentane-nitroethane, it has proved to be es-
sential to correct the data for double scattering.
This is because the interesting critical effects un-
der investigation are often rather subtle and de-
pend upon high experimental accuracy. For ex-
ample, the recent experimental determination by
Chang et al.! of the critical exponent 7 required an
accuracy of a small fraction of 1%. This was nec-
essary because 7 itself is only of the order of 3%.
Clearly, double scattering of the order of a few
percent could completely mask the effect being
studied. Fortunately Bray and Chang? found it pos-
sible to calculate the double-scattering intensity
to sufficient accuracy for the geometry and para-
meters of the experiment. The present paper is
an extension of the Bray-Chang work to dynamics,
i.e., to the time dependence of the double-scatter-
ed light intensity. :

One of the authors? has studied the effect of doub-
le scattering on linewidth measurements for the
hydrodynamic regime, where the rate of diffusion
has its normal quadratic dependence upon wave
number. It was noted, as a consequence of the

Y

Pythagorean theorem, that the double-scattered
light arriving in the backward direction has a line-
width independent of the two successive scatter-
ings. For this special case, no double-scattering
correction is required. But this result does not
apply in the critical region, which is the case of *
interest in this paper. The calculations of Soren-
sen ef al.,* are valid for the critical region but
their spherical geometry, like that of Oxtoby and
Gelbart,’ unfortunately does not match the rectan-
gular geometry of most experiments. The numer-
ical work of Beysens and Zalcer® does not suffer
from this latter shortcoming but their analytic des-
cription as a superposition of two discrete relaxa-
tion rates is not generally sufficiently accurate,
as explained below in Sec. V.

- Of special interest is the critical limit 2y — o,
where &, is the wave number of the light in the
scattering medium and £ is the correlation length
of the density or concentration fluctuations in a
simple or binary fluid, respectively. In terms of
the parameter a =(k,£)"! used by Bray and Chang,
this corresponds to & — 0. (The o used by Pugli-
elli and Ford’ to describe this critical tempera-
ture dependence of the turbidity is twice the in-
verse square of the Bray-Chang «.) In this ex-
treme critical, or “nonhydrodynamic, ” limit the
wave-number dependence of the diffusion is ex-
pected to be nearly cubic. An additional conse-
quence of the @ =0 limit, as noted by Perl and
Ferrell,? is a deviation from Lorentzian which is
predicted in the shape of the frequency spectrum
of the scattered light. Although small, this devia-
tion is of considerable theoretical interest, as it
offers a test of the theories of critical dynamics.
Experimental precision has now attained a level
where it will be possible to reveal such subtle
small effects also in the dynamics. But just as
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with the statics, it is essential to have a reliable
treatment of the effect of double scattering on the
frequency spectrum,

In order to focus this work we concentrate on
a =0, with finite @ studied in Appendix D. Al-
though o =0 obviously eliminates any study of tem-
perature dependence, there remains the interest-
ing question of frequency dependence, as mentioned
above. Results for the deviation of the double-
scattered light from Lorentzian are presented be-
low in Sec. V and are shown in Fig. 7. (Section V
also exhibits in Fig. 5 the full distribution of relax-
ation rates.) It is, however, more convenient to
work in time rather than in frequency space. This
involves, of course, the Fourier transform, so
that a Lorentzian spectrum transforms into an ex-
ponential function with a single decay rate. Let
I(7) represent the autocorrelation function of the
electric field at the detector. We will, by way of
abbreviation, refer to I(7) as the “correlation func-
tion,” or simply the “correlation.” I(0) represents
the time-averaged light intensity. It is the double-
scattering contribution to this quantity which was
calculated by Bray and Chang.? Now in the ab-
sence of a deviation from a Lorentzian, the plot of
Ini(7) vs T will be a straight line with a negative
slope equal to the relaxation rate. A deviation
from Lorentzian leads, on the other hand, to a
curved semilog plot. The various moments des-
cribing the deviation are characterized in Sec.
II, while Sec. III is devoted to a computation of
the second moment for both polarization possibil-
ities. The higher moments are taken into account
in Sec. IV by means of a “correction factor” on the
second moment. The results are plotted in Fig. 4,
where it will be noted that the correction factor
does not differ from unity in the range of interest
by more than 25%. Section V exhibits the double
scattering as a continuum superposition of decay
rates. The result is plotted in Fig. 5, while Fig.
7 shows the deviation from a Lorentzian spectrum
that ensues from the distribution of rates. While
both of these studies contribute to a deeper under-
standing of double scattering, they are not essen-
tial to the reader whose concern is primarily how
to apply an appropriate double-scattering correc-
tion to photon-counting data. Furthermore, Sec.
VI is restricted to I(0) and. has nothing to say about
dynamics. Its purpose is to make contact with the
work of Bray and Chang. By means of small-angle
appreximations, valid in the range o <1, where
double scattering is most important, we obtain
analytic expressions for the numerical results re-
ported by Bray and Chang. The comparison is
exhibited in Fig. 8.

From the above it will become apparent that the
reader who is concerned only with the main effect
of double scattering on dynamics may skip Secs.

IV-VI and confine himself to Secs. I and II and
IDA. Section IIIB is devoted to calculating a rela-
tively small correction which a reader, satisfied
with logarithmic accuracy, could well skip. Sim-
ilarly, Sec. IIIC deals with the less common case
of parallel polarization (for which no single scatt-
ering occurs). Therefore after III A, the reader
interested in the essentials could jump to Sec. VII,
where we summarize how the results of III A are
to be utilized. For the reader interested in furth-
er details we have provided the following four ap-
pendixes at the end of the paper: Appendix A—ba-
sic theory of double scattering including its spatial
coherence; Appendix B—exact evaluation of the in-
tegrals encountered in Sec. III (to justify the much
simpler treatment given there); Appendix C—ex-
tension of the correction factor of Sec. IV beyond
the “practical” range treated there (this correc-
tion factor improves the simple theory of Sec. III,
which, however, is adequate for many purposes);
and Appendix D—temperature dependence of the
double-scattering correction to the time-dependent
correlation function. -

B. Mathematical preliminaries

According to Ornstein-Zernike? theory the light
scattering intensity per unit length and per unit
solid angle is given by

1(9, ®) =B sin’®/[a? + (2 sin} 0)?] (1.1)

in the notation of Bray and Chang.? (B is a con-
stant of the medium, 6 the scattering angle, and
& the angle between the initial direction of polari-
zation and the direction of scattering.)

1(6,®,t) =18, ®)e T, 1.2)

where I'(6) is the relaxation rate for the specific
fluctuation from which single scattering is taking
place. As the angular dependence of I'(6) for a@ =0
is known from both theory and experiment to cor-
respond to the cube of the momentum transfer,

we can write

T'(9) =y, sin®s6. (1.3)

The proportionality constant is v, =kpT,./167, in
Kawasaki’s theory!® or in an alternative form!!
presented by one of the authors. (n,, T., and kg
are the viscosity, critical temperature, and Boltz-
mann’s constant, respectively.) But, the actual
value of v, not being relevant for our present pur-
poses, it is left as a free parameter. Setting a =0
in Eq. (1.1) gives the simplified expression for the
intensity for 1 polarization,

I() =B(4sin%*36)"!. (1.4)

As the deviations from Ornstein-Zernike theory
are known to be small [of O(n)], Eq. (1.4) is ade-
quate for computations of the double scattering
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within an accuracy of 10%—which will be our goal
in this paper.. To calculate the double-scattering
intensity, we specialize to the experimental ar-
rangement shown in Fig. 1, which is identical to
Fig. 1 of Bray and Chang.? The scattering volume
is a cylinder of radius 7, and height . As the
height will be taken to be very small, the simpli-
fied planar geometry as shown in Fig. 2 is valid

in first approximation. Therefore, 2 appears as a
simple multiplicative factor in the expression for
the intensity of the double-scattered light. (The
height dependence will be treated more accurately
at the ends of Secs. IIIB and IIIC, as well as in
Secs. VI and VII.) The effect of finite beam width
is studied in Appendix A. For the rest of our work
we assume that the light beam has negligible width
and is incident along the negative y axis and is po-
larized in the z or x direction, in the l- and li-po-
larization cases, respectively. The passage of the
light for a typical double-scattering event is indi-
cated by the double arrows in Fig. 2. The detector
is in the positive x direction. Because of the right-
angle geometry shown in Figs. 1 and 2 the single
scattering must take place at 90°. Equations (1.4)
and (1.3) therefore yield

I,=I(37) =3B, (1.5)
L,=TGm) =y,/2V2. (1.8)

——

— —aw

FIG. 1. Three-dimensional double-scattering geome-
try [after Bray and Chang (Ref. 2)]. The incident laser
light comes from the source at y =— and after being
scattered is incident upon the detector at x=+. The
width of the entrance window for the detector, Aw, is
taken to be infinitely thin. The height and radius of the
cylindrical sample of fluid are % and 7, respectively.
The single scattering takes place in the x-y plane, at
z2=0, The double scattering involves an initial scattering
somewhere along the y axis, followed by a second scat-
tering located somewhere in the rectangular slab shown
centered about the x-z plane.

Equation (1.6) provides a convénient rate unit for
our subsequent analysis. As can be seen from Fig.
2, the first scattering takes place at (0,y) and the
second at (x,0). The scattering angles are 6 and -
8’ =3m+86. It is evident from the geometry that

x=—7sinf, y=-vcoséh, (1.7
where
%2 +yi=72, : (1.8)

From Appendix A and Eq. (2.7) of Bray and Chang,?
we have for the intensity €}, of the double-scattered
light in the l-polarization case

70 70 h/2 o
ei,,:f dxf dy [ ag L0 MO, &) g
-r) -r) ~h/2 r

From the approximations indicated above we find

€5 —@frodxfod 1 1
"6 S, v Y 7 sin’S e sin’ G + 26).
(1.10)

The parallel-polarization case needs including in
the integrand the polarization factor sin®6 cos?6.
A derivation of Eq. (1.10) from Maxwell’s equa-
tions is presented in Appendix A. There, we also

AN

FIG. 2. Planar simplification of the three-dimensional
scattering geometry of Fig. 1, adequate for scatterings
in which the separation of the two scattering points,r; is
much greater than &, the height shown in Fig. 1. The
projection of the scattering in the x-y plane gives the
projected angles of scattering at & and 6’ =37+ 6 for
the first and second scatterings, respectively. The
double arrows show the course of the doubly scattered
light for a typical double-scattering event. As in Fig. 1,
7, is the diameter of the scattering region, which in
this case is a circle centered in the x-z plane.
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determine the spatial coherence of the doubly scat-
tered light and calculate the coherence areas A
and A, for single and double scattering, respec-
tively. Although A, <A,, the difference is not
great, provided that z is not much larger than the
width of the beam in the z direction. This differ-
ence needs to be taken into account when Ap, the
area of the photosensitive surface of the detector,
is comparable to Ap. For the limiting case of
Ap>Ags>Ap, the correction factor required by
Eq. (1.10), in order that it be properly normalized
relative to the single-scattering. intensity, ap-
proaches AD/As asymptotically. For a beam of
rectangular cross section with overall vertical
width 2wp, Ap/A,=2wp/h. The corresponding fac-
tors for a beam of circular cross section and for a
beam of Gaussian profile are given in Appendix A.
. For the time-dependent case we must modify the
above expression by including the decaying expon-
entials at each scattering point and thereby obtain

€5at)
hB2f f ayL 1 exp{—[l"(@)+1"(z7r+9)]t}

sin’30 sin’(37 +36)

(1.11)

Finally, it is useful to introduce the turbidity 7,
which is the total scattering intensity per unit
length and is given by the integral of I(9, ¢)) over
solid angle,’

s_fdm(e ) —wB((l+B)1 ‘lvg-f—l 2J")

(1.12)

where

B=(1+3za%). (1.13)
For a <1, Eq. (1.12) simplifies to

T = 3(21 % —2)=21B1n —2 (1.14)

s —21! nag- - = 4. n a—e—n} . .

The total light “lost,” or scattered out is

€out =477 B In(2/ae'’?) = 4mr BS(a), (1.15)
where

S(a) =1n(2/ae!’?) (1.16)

is a “scattering” function that expresses the criti-
cal dependence of €,,; on a. Equation (1.16) is
valid only in the range a << 1. Qutside this range we
have to return to Egs. (1.12) and (1.13) for a more
accurate expression for S(a). If necessary Eq.
(1.14) can be used to determine experimentally the
constant B, as T, can be measured at different
values of . We will assume that the turbidity is
small, which implies that the constant B will be
small as well. Also a small 7, allows us to do our
double-scattering integrals without worrying about

the damping due to turbidity which would be a sec-
ond-order effect. The smallness of B enables us
to define the dimensionless small parameter € by
the relation

€ =477,B. 1.17)

This will be useful in the subsequent sections. ¢
<1 is assumed throughout—otherwise triple scat-
tering and even higher-order multiple scattering
could not be neglected.

II. TIME-DEPENDENT CORRELATION FUNCTION

As we have seen above and in Appendix A the
time decay of the amplitude of the scattered light
can be decomposed into the two terms

I(t)=IeTs" + f dlp e To?

=Ie™" (1 +Il f dlpe~ar/ W’), (2.1)
S

where the first term on the right-hand side repre-
sents the simple exponential decay of the singly
scattered light, whereas the second term express-
ed by an integral is the decay of the double-scat-

- tered light according to various different relaxa-

tion times identified by the compound scattering
rate ', We have introduced for convenience the
dimensionless time measured in units of the sin-

~gle-scattering relaxation time by

T=T4t, . (22

and furthermore have introduced the difference
between the compound and single relaxation rate
by the relation

AT =T,-T,. 2.3)

The correlation is most conveniently studied in
terms of its logarithm, which becomes

InI(t) =Ilnl,— 7+In (1 +}1— [dIDe-Ar'/I‘s'r)
. s

—InI, - r+Il [atpesrirs. 2.4)
S

Here we have approximated the logarithm linear-
ly, which is permitted when the total intensity of

the double-scattered light is small. To make fur-
ther progress we expand the exponential function

as

@-AT/Ts7 _ Zﬂ:('l)"( )nq-"_ (2.5)

Thus we obtain the semilog plot for the correlation
in the form of the Taylor series

WnI(f) Inl, - 7 +¢ }‘; (-1)yC,7", (2.6)
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where € is defined by Eq. (1.17). The coefficients

are

_L (A_r.)
c,,_dsn! di, ) 2.7

The main effect comes from C,, which is computed
in Sec. III. This gives a concavity to the semilog
plot. The effect of the terms n = 3 is evaluated in
Sec. IV,

III. CONCAVE SEMILOG PLOT
A. Perpendicular polarization

in order to apply Egs. (2.6) and (2.7) it is nec-
essary to have a distribution for the differential
double-scattered intensity dI ,. According to the
discussion in Sec. I, the double scattering occurs
at the two points in the sample identified by the
Cartesian coordinates (0,y) and (x,0). As only one
variable of each pair differs from zero, it is con-
venient to combine them together into a single pair
and to make an effective polar-coordinate trans-
formation to 7 and 6, according to Eqs. (1.7) and
(1.8). We can immediately integrate out the radial
coordinate. Thus we find for the total double-scat-
tering intensity the following integral over angle:

B f 70 f’o 1 1
L_= 7
Jaz= 16 /., ), ¥ 7 smlesmGr+ 10)

Bh1 f deé
=16 " P sin? 30 sin’(13 +36) °

The integration over the radial coordinate extends
out to a maximum value of 7, sec8, or simply 7,
to logarithmic accuracy. Similarly the lower limit
for the integration is 3%, to logarithmic accuracy.
This yields the factor ln'y:ln(2'ro/h). An improve-
ment of the calculation beyond logarithmic accur-
acy is presented in Sec. III B.

Identifying the integrand as the desired distribu-
tion of double scattering with respect to the angle
8, we have for the distribution function

(3.1)

dly _hB® 1
= Y Sin’Le sin’(Cn +20)

dé 16 (3.2)

According to Eq. (2.7) we must divide this distri-
bution by the small quantity

el =2m7,B?, (3.3)
thus obtaining for the integrand that we require for
application of Eq. (2.7) the ratio

1a
e, de

Iy 1
T 167y sin’z60sin’(zT+36) °

(3.4)

As noted above, the first qualitative difference
produced by the double scattering occurs in the
quadratic term of Eq. (2.6). Thus it is of consid-

erable interest to obtain the coefficient of this
quadratic term which, according to Eq. (2.7) can
be written

In' 4
o g JACLTS (3.5)
where the integrand is defined as the function of
angle

(AT/T,)*
1611 sin’z 0 sin*(37 +36)

fu(6) = (3.6)

" In order to carry out the integration indicated in

Eq. (3.5) we require a specific expression for the

.numerator of Eq. (3.6). It is useful to study this

quantity in the vicinity of 6 =0 where it serves to
cancel the singularity occurring in the denomina-
tor. (Similar cancellationoccursin the vicinity of
0=-3m.) Two-step application of the relaxation
rate for single scattering yields

Tp=Ty(0) +T4(6 +37). (3.7
Substitution from Egs. (1.3) and (2.3) gives

AT'(6) =v,(|sin% 06| + [sm3(41r+ 0| -1/2v2).
(3.8)
The derivative of this expression evaluated at the
origin is
d

78 AI‘(B) %'ys sin’t7cosiw
=%ys sin®4nr
=3ir,. (3.9)
Therefore for small angles,
AT(9)/T, =36 (3.10)

so that the zero in the numerator does indeed can-
cel the zero in the denominator of Eq. (3.6). This
gives for the value of the function at the origin,

1 9

f(0) = 161r_n— 87 *

sinT7 (3.11)

£(6) is roughly constant, as seen in Fig. 3. There-
fore, the integral in Eq. (3.5) can be approximated
satisfactorily by setting f(6) everywhere equal to
its value at 6 =0. Factoring f(0) out of the inte-
gration gives

$r@1a0 ~,0) $ao=2,0)=7 (3.12)
[An exact evaluation of this integral in Appendix
B shows Eq. (3.12) to be sufficiently accurate, be-
ing an overestimate by only 5%.] Substituting this
result into Eq. (3.5) gives us finally the desired
expression solely in terms of the basic experi-
mental parameters of the problem, € and y as

eCit? =—g(1n'y,+ c)t/y. (3.13)
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40r

3or 271(6)

20

-1o0L

FIG. 3. Functions involved in the curvature calcula-
tion vs 6, the angle of the first scattering. I is the
relaxation rate for single scattering while AT'(0) is the
difference of the relaxation rates for double and single
scattering. The dashed line shows the “linear approxi-
mation” fit, while the remaining curve shows the func-
tion 27f (6) which appears in the integrand for the cur-

.vature. The linear approximation replaces f (6) by f (0)
(with a resulting error of 5%).

In Eq. (3.13) we have introduced a correction ¢ to
Iny, which we now proceed to calculate. In Sec.
OIB we find ¢, +¢; =0.13, by computing separate-
ly c,,;, the upper- and lower-cutoff contributions.
This is a small effect even for modest values of
Iny. Therefore the reader who is satisfied with
logarithmic accuracy could skip the entire Sec.
oIB.

B. Correction to the logarithm

The three-dimensional integration in Eq. (3.1)
was separated into an angular integration and an
integration over the radial and height variables,

7 and z, respectively. The planar geometry breaks
down when 7, the projection onto the x-y plane of
the separation of the points of scattering, becomes
smaller than z, the vertical separation of the two
points. We therefore cut off the radial integration
at the lower limit r = [z [, obtaining the result

h/2 Todr h/2 7
-h/2 12t 7 0 Z

=h(In27y/h +1) =h(lny +1),
(3.14)
which contributes 1 to c;.

Immediately following Eq. (3.1) we noted an im-
provement in the upper limit., The latter should
occur at ¥ =7 sec6 rather than simply 7,. There-
fore the integrand includes the additional term

Insecd =secfd—1-3(sec6—-1)%+...
=3(sec8-1)+3(1—-cosf) ++.--. (3.15)

The last way of writing the expansion is convenient
for calculating angle averages and agrees with the
Taylor series expansion, to second order. The re-

quired angular averages need only be taken over
one octant, in the interval 0 <8 <}w and yield the
numerical results

{(1 - cos#))=0.099 , (3.16)

{(sec6~1))=0.121. (3.17)

The correction to the upper cutoff is therefore
(Insec8) =c, =0.110. (3.18)

A natural cutoff at the lower end of the radial in-
tegration occurs as soon as we fake into account
properly the fact that the distance between the two
scattering points is given not simply by the projec-
tion in the plane but instead by the total distance

@2 +2)1/2, (3.19)
Introducing this change gives the radial integral

ordr 1 (70 d@?) 1 zl+r?
RTT2 4zl 2 zf

e~ 1n<'rﬂ/ |2 D

The introduction of the lower cutoff is thus put on
a firmer basis, justifying the appearance in Eq.
(3.14) of the quantity Invy/z. If this modification
were the only physical effect occurring in the
three-dimensional geometry, Eq. (3.14) and (3.18)
would be the final answer and we would conclude
that c=c¢; +c,=1.11,

There are, however, other complications which
enter into the three-dimensional double-scattering
situation, such as polarization. When the scatter-
ing takes place out of the x-y plane, the polariza-
tion vector for the intermediate radiation propa-
gating between the two scattering points is tilted
away from its initial direction (along the z axis)
and becomes

=% +y +z2)”2

(3.20)

Lk g A 2

g=-TFl+ oi+g (3.21)

The unit vectors 1, j, and K are directed along the
three Cartesian axes x, ¥, and z, respectively.
The first scattering is weakened by the square of
the cosine of the angle between the initial and in-
termediate polarization vectors, namely, 7%/R2,
The polarization factor entering into the second
scattering is more complicated. Including both
factors, we find

P(r%/z%, 0) = (r2/R¥)(1 - x%%/7r’R?)
=7*/R?- xzzz/R4 . (3.22)

Replacing x? by its angular averaged value, 1/27%,
gives

(P),:rz/RZ——z %2 /RA (3.23)
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We now turn to the modification of Eq.(3.6) re-
quired by the three-dimensional geometry. If 6
and 6’ are the first and second scattering angles in
this three-dimensional double-scattering situation,
then the function corresponding to Eq. (3.6) re-
quires, over and above its dependence on 6, an
additional dependence on the ratio 7%/z2 as defined
by

d (9521:;') (3.24)

The dependence of this function on © and ©’ makes
it inconvenient to use. Fortunately the function
has some simplifying features. First of all, for
r2>>22, we recover Eq. (3.6). We further recall
that f(6) is practically constant, and to a good ap-
proximation can be replaced by its 6 =0 value,
7(0)=9/87. In the other extreme, 7*><«z?, both
scatterings take place on the 2z axis and both scat-
tering angles are equal to 37. Equation (3.24) then
reduces to

£(6;0) =1/4r=2£(0), (3.25)

a factor % smaller than its other limiting value.
Between these limiting cases, it is reasonable to
do angle averaging, leaving us with a function of
only the one variable #%/z%. We, in fact, compute
the 6 average only to O(¥%/z?), thereby determining
the initial departure of Eq. (3.24) from Eq. (3.25).
This leads us to the interpolation formula

e
(3.26)

Y

Having approximated all of the correction factors
in the integrand of Eq. (3.1) by their angular aver-
ages, we can now carry out the integration over
the variable # =72/z%, It is convenient to compare
this integration with the “reference” integration of
Eq. (3.20). This gives for c;, the additional cor-
rection to the logarithm coming from the lower
cutoff, the difference

1 1‘(2’/32 1 /22
3L @ Y

f(O)f u+1(@>91§(%) 1)

(3.27)

(|sin3s0| + |sm3 o | —1/2v2)?
27 sin®z0sin’z6’

£0).

=f(0)c;.

Because the difference integrand gives a conver-
gent integral, it is permitted to set the upper limit
equal to ©, Elementary integration then yields

1 (" du u_ 1 u  u+l 1)]
“=32), T+ual\T+2 2 T+ uv s~

=-0.98.

(3.28)

The total correction to the logarithm is found by
collecting the contributions from Egs. (3.14),
(3.18), and (3.28), .

c=1+c¢c,+¢;=0.13, (3.29)

a result which has been quoted following Eq. (3.13).
C. Parallel polarization

As explained above, the differential cross sec-
tion for parallel polarization requires the inclusion
of the factor sin’6 cos? in the numerator of Eq.
(3.2), and consequently also in the numerator of
Eq. (3.6). We continue to approximate the angular
dependence of the double-scattering width by Eq.
(3.10), our so-called “linear approximation,” which
gives for the modified form of Eq. (3.6),

9 sin?6 cos?6
641r sin’30sin’(z7 +36) °

fu(@ )= (3.30)

The corresponding curvature correction is again
to be obtained from Eq. (3.5), but with £,(6) in
place of £,(6). If, as before, we approximate the
denominator of Eq. (3.14), by 62, then the only
angular dependence occurring in f,(8) is that intro-
duced by the polarization factor. It is convenient
to rewrite this in the form

sin%0 cos?6 =1 sin%26

1

=§—%bco.s49. (3.31)

Clearly, the last term vanishes in the integration
over angle, leaving the result

ffu(e)do ='§'%='§

Thus, with the above approximations, parallel po-
larization reduces the expected curvature by a
factor of §. The leading nonlinear term is conse-
quently

(3.32)

(3.33)

where ¢’ =0.67 is the correction to the logarithm
for parallel polarization. The evaluation is carried
out as above in Sec. III B for perpendicular polar-
ization. The contributions at the upper and lower
cutoffs are c¢;=0.18 and ¢{=-0.51, respectively,
giving ¢’ =1+c¢j+¢;=0.617.

Equation (3.17) solves the problem which we set
for ourselves in this subsection. It is, however,
instructive to apply an alternative approximation
which is based on the factorization

sin®6.cos?6 = (1 - cos?8)(1 - sin%6)
=(1 - cosb)(1 +cos)
X (1 - sinf)(1 +sind).

eCy72 =Ze(lny +¢") /v,

(3.34)

The denominator of Eq. (3.14), instead of being
written as a quadratic expression can be put into
the form
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sin?30 sin®(36 +17) =1(1 - cos6)(1 + siné).
(3.35)

Thus, the denominator conveniently cancels with
some of the factors of the numerator, leaving

s 2 2

sin“f cos“6 .

= 1- 6).
slesin?Cr +26) 4(1 + cosf)(1 - sinb)

(3.36)

Consequently, we are left with the greatly simpli-
fied expression

f1(6) =(9/16m)6%(1 + cos6)(1 - sinb). (3.37)

It is more important to note that this expréssion
can be expected to be a satisfactory approximation
to £,(6) only over one-half of the total range of
variation of 6, namely, -ir<s@<3g (see Sec. IVA),
Therefore, in evaluating the integral over the en-
tire interval of 27, we must include a factor of 2,
so that elementary integration gives

3r 9

/4 T J")
2 /s ﬁ,(g)d9=3—2(1+ﬁ'—4 2

(3.38)

This result differs only by 10% from that of Eq.
(3.32) and indicates that, to this accuracy, the
approximations being used are satisfactory for
our purpose.

IV. FURTHER NONLINEARITIES
A. Perpendicular polarization '

We have seen in Sec. II that the double scattering
produces a deviation from linear behavior of the
semilog plot of the correlation versus time, as
expressed by Eq. (2.4). It is convenient to separ-
ate out the last term of Eq. (2.4) into constant and
linear contributions. In other words, we consider
the first two terms of the expansion of the exponen-
tial function in the integrand on a separate footing
and define the remaining nonlinear contribution to
the logarithm of the correlation by

(InD)y, =~ fdl,, (e‘“‘““s*- 1 +‘3§-r) . (4.1)
IS r&
This puts Eq. (2.4) into the form
InI(f) =In1, +2- f di,
IS
- T(l +'1- deDE )+(ln1)nl' (4.2)
I, Ts

Thus we see that there is a double-scattering cor-
rection to the zero-time intercept of the semilog

plot of the correlation. More important, there is
also a double-scattering contribution to its slope,
as expressed by the second term of the right-hand
side of Eq. (4.2). We will return to this point in
Sec. VII where we find that this term turns out to
be negligibly small. Our interest in this section
is to study further details of the last term of
Eq. (4.2).

For this it is convenient to introduce, for the
moment, a modified time variable

?:%‘T. (4.3)

As in Sec. III, we again approximate the denomin-
ator of the integrand by an inverse square depen-
dence on 6:

1dly Ilnyl

7, 20 "€ el A (4.4)
As explained in Sec. III, this treatment is most
accurate in the vicinity of the origin. It becomes
inadequate as the second singularity of the right-
hand side of Eq. (3.4) is approached for 6 =— i7.
In the vicinity of this second singularity the zero
of Al"/l"s causes the same cancellation to occur
that takes place at the origin. Thus, the behavior
of the integrand in the right-hand side of Eq. (4.1)
is duplicated in the vicinity of —%7. Because of
this duplication, it is sufficient to carry out the
0 integration only over an interval of 7 rather than
27. The lower end of the range of integration is
placed halfway between the two singularities, so
that the range of integration is —ir<8 <27, In-
cluding the required factor of 2, we find

3r/4 (:] - _
(2, = 2 ) B 1+70)

Telny (4qx, . '
=— e”—-1+x). 4.5
Y Jai/4 ;2.( ) ( )
The indefinite integral encountered in Eq. (4.5) can
be simplified by an integration by parts, giving

ax, .. __l «_1y_
f}—z(e -14x)= x(e 1)-1

— [Ze=-). " (4.6)
The last term in Eq. (4.6) can be studied by means
of a Taylor series expansion which then permits
an identification with the integral exponential func-
tion. This identification for positive values of x
reads
dx, _, S ((D)E,
fx(e —1)_2 "Rl Y

k=1

=Ei(-x)-Ilnx -~ C, 4.7)

where C =0.577 is Euler’s constant. For negative
values of x the definition of the integral exponen-
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tial function differs somewhat, and has to be writ-
ten
d.
f -
x

=FEi(|x|)-1n|x| - C. (4.8)

Putting the integration limits from Eq. (4.5) into
the indefinite integrals of Eqgs. (4.7) and (4.8) gives
us finally the following explicit expression for the
logarithm of the correlation as a function of 7:

(InI)yy,
=e(lny/m){(4/3m)(1 - ¢
- 4/1'r(e"?'/‘1 -1)+7In3
EiGGn)]}. 4.9)

The Taylor series expansion for Eq. (4.9), apart
from the constant and linear terms, is equivalent
to that indicated already in Eq. (2.6). The leading
term, as expected, is quadratic in the time vari-
able and corresponds exactly to the curvature cal-
culation of Sec. III. Thus it is possible to define a
correction factor F(7), which expresses the devia-
tion of the function of Eq. (4.9) from a simple qua-
dratic dependence on the time variable, as

(InI)yy, = $e(iny/y) T2, (7).
Reinstating the original time variable 7 =37 and
substituting Eq. (4.9) into Eq. (4.10) gives

Fu(7) -12{—(1 e/ +37mg - (/o)

-5 [ (-5)-m

This correction factor is plotted in Fig. 4 for the
interval 0<7<2.,5. For small values of T, it first
drops linearly, then exhibits a minimum at 7=1.17,
followed by a subsequent slow rise. :

A tolerably good fit in the interval 0 s 7 < 2 5 is
provided by the parabola

F, =1-0.2827 +0.08372,

-3r?/4)

- T[Ei(=§77) -

(4.10)

(4.11)

(4.12)

This fit should not be confused with the Taylor
series expansion, which has the coefficients —0.393
and 0.219, and which exhibits a less-deep mini-
mum at a smaller value of 7. The discrepancy is
attributable to the higher-order terms, which Eq.
(4.12) effectively takes into account in an approxi-
mate way. For larger values of 7, Eq. (4.11) will
become inaccurate and will overestimate the cor-
rection factor, because of the approximations
used. Because of counting rate limitations, the
interval 0 <7< 2.5 can be expected to be adequate

o9 N
. ~N
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os}- AN L
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\\
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06 S~<
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FIG. 4. Correction factors for perpendicular (1) and
parallel (||) polarization vs delay time T (measured in
units of the single-scattering relaxation time). The
dashed line illustrates the result of imposing a two-6-
function fit on the continuum distribution of relaxation
rates.

for most practical applications. Some further as-
pects of the large-T behavior of F(T) are, however,
studied in Appendix C.

B. Parallel polarization

The calculation of the full time dependence of
the nonlinear part of the logarithm of the correla-
tion for parallel polarization is again based on Eq.
(4.1). The calculation goes through in a way simi-
lar to that shown above in Sec. IV A, for the per-
pendicular-polarization case. However, in order
to bring out the basic simplicity of the calculation,
we present it now in a somewhat different form.
We note, when we use the linear approximation,
the integrand of Eq. (4.1) can be written in the
form

el /Ts" 1 +AT/TyT=e"0~1+76

=(1/21)7%6% +-+-. (4.13)
Here we have made the Taylor series expansion
and have exhibited only the leading term. It is

only this term which is important at small values
of time and which, therefore, leads to the so-call-
ed curvature correction which was calculated in
Sec. IIC. Clearly, in order to obtain the correct.
time dependence for larger values of 7, we need to
replace in the curvature calculation the leading
term in the expansion of Eq. (4.13) by the full func-
tion which appears as the left-hand side of this
equation. Thus, we define a “corrected” integrand
for the calculation for:-the integral which appears
in Eq. (3.38) by including in the integrand the ratio
of the full function to its leading term. Substituting
from Eq. (3.37), this gives us for the integrand the
corrected function
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Fu(6,7) = (2/T26%)(e™™ - 1 +76) £,(6)

=§7%,(1 +cos6)(1 - sinf)(e™ -1 +76).
(4.14)

The integral of Eq. (3.38) is now the time-depen-

dent function
3r/4
Jm= [ dsru6, ). (4.15)
-7/ 4

For T<1 we must recover the curvature factor.
Therefore, according to the definition of the cor-
rection factor as defined in Sec. IV A [see, for ex-
ample, Eq. (4.10)], the correction factor for paral-
lel polarization must be expressed by the ratio of
Eq. (4.15) for finite times compared to its value
at 7=0. In other words,

Fy (1) =J(T)/J(0) =J(3/27)/J(0). (4.16)
Integration of Eq. (4.15) yields the explicit expres-
sion

9 ﬁ/4(l 7 JE?)

I = W{e Ftas s tiee

(1 7 V27 )
o T/ A -
€ (? +2(4 +78) 1+72

-w—[zﬁ- 4(%)2]?}. (.17

Substituting Eq. (4.17) into Eq. (4.16) and plotting
versus T gives us the upper curve in Fig. 4 (label-
ed by “I’). It will be seen that this correction fac-
tor does not dip as much as F, and becomes great-
er than unity for 7> 0.9.

V. DISTRIBUTION OF RELAXATION RATES

In the above work we have studied the distribu-
tion of the various contributions to the double scat-
tering as a function of the first angle of scattering
0. 1t is useful, however, to reformulate this dis-
tribution and to study it as a function of the total
relaxation rate for the double scattering. This is
possible because, for every value of 6, there cor-
responds a particular value of the net relaxation
rate resulting from the two scatterings that take
place. It is convenient to introduce the variable
w to describe the deviation of the double-scattering
relaxation rate from the single-scattering relaxa-
tion rate. By substitution from Eq. (3.8), we ob-
tain, consequently,

w =AT(8)/T, =2V2[ |sin®s0 | +sin®G7 +36) - 1/2V2].
(5.1)

According to Eq. (5.1) w ranges between w, = w(-3)
=-0.69 and w,=wjm) =3.48. In order to study the

distribution of the double-scattering intensity as a
function of w instead of 6, we need

dez(g%’)-ldw. (5.2)

The “Jacobian” of this transformation is conse~
quently obtained by substitution from Eq. (5.1) and
found to be

() =Z—‘;’ =32 [sin’:6 cos36 sgné
+sin®(36 +%7) cos(30 +3m)].
(5.3)
The differential double-scattering intensity is
given in Eq. (3.4). Substituting from Eq. (3.4) and

using Eqgs. (5.2) and (5.3) in order to eliminate 6
and replace it by w leads us to define a distribu-

tion function P(w) according to

Iny de
167y sin®z6sin*Gw+36) °

1
e—;;dl,,:z

=[(lny)/7]P(w) dw. (5.4)
A factor of 2 has been included to take account of
the twofold duplication of the interval w; < w < w,
which occurs when 6 runs through a full interval
of 27, Thus it follows that
1 1 1

P(w)=§;r w'(6) sin®0 sin’(z7 +36) °
In the right-hand side of Eq. (5.5) it is understood
that the variable 6 is determined from Eq. (5.1)
by inverting the functional relationship which is
defined there. It is useful to study Eq. (5.5) in the
vicinity of w=0. For this we need

w'(0)=% (5.6)
and

(5.5)

~30 . (5.7
Equations (5.6) and (5.7) are equivalent to Eqgs.
(3.9) and (3.10), respectively. With these linear
approximations, valid for lw l <1, we obtain by
substitution into Eq. (5.5)

P)sZ et L. (5.8)
This singularity dominates the behavior of the dis-
tribution of double-scattering relaxation rates and
is, in fact, a rather good approximation over most
of the range of variation of w. For example, at
6 =37 the derivative is

w'Em=2%, (5.9)

exactly the same value as at the origin [see Eq.
(5.6)]. The value of w at this angle is

w@m)=2V2, (5.10)
or 2.828. Equation (5.7) gives for the linear ap-
proximation w =37=2.36, or about 20% less than
the exact value. The exact value for the distribu-
tion function at this value of w is, according to
Eq. (5.5)
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P(2V2)=1/67 . (5.11)
This can be compared with the approximate value
of Eq. (5.8), which gives 3/167, or about 12%
greater than the exact value.

Equation (5.8) for the distribution of double-scat-
tering intensity versus w, as we have seen above,
is a satisfactory approximation over a wide range
of w. However, it is clear that the approximation
fails at the end points w; and w,. At these end
points the function w(8) exhibits extremum values
and therefore completely different approximations
are necessary to bring out the salient features of
the distribution in the vicinity of these end points.
It is sufficient for our purposes to use a quadratic
approximation of the form

w(6) =w; +3(6 + 17wy (5.12)
and
w(6) =w, +3(0 - $MPwy =w,— 337 - )| wy|.
(5.13)

The second derivatives are denoted by double
primes and we have taken the absolute value of the
second derivative at the upper limit because the
curvature is negative at that point. We note that,
because of the quadratic approximation in Eqgs.
(5.12) and-(5.13), the denominator of Eq. (5.5) has
a square-root singularity of the form

w'(0) =(6 +imw!=[2w{(w - w;)]!/? (5.14)

and
w'(0)=CGm-0)|wy | =[2]|wy | (w,— )]/ (5.15)

The remaining factors in the denominator are well
behaved at the end points and are

a1 1

sin®37=%(1 - cosin)?=2(2-v2)=0.0214 (5.16)

and
sin®¥r=2(1-cosim)?=1E +v2)=0.729. (5.17)

It is convenient to represent the above results in
the form

P(w) =b,/(w - w2 (5.18)

and

P(w)=by/(w, - w)!’? (5.19)

at the lower and upper end points, respectively.
Numerical values for w, and w, have been given
immediately following Eq. (5.1). The coefficients
are b; =0.825 and b,=0.031. Equations (5.18) and
(5.19) represent the singular behavior of the dis-
tribution function over certain small intervals,
Aw; and Aw,, respectively. We estimate the size
-of Awy,, by matching Egs. (5.18) and (5.19) to Eq.
(5.8). Using for the moment the end-point values
w,,, for approximating Eq. (5.8), we find

Aw!'z Z(%ﬂ'z)bizwtz . (5.20)

Substituting numerical values into Eq. (5.20) gives
Aw;=0.67 and Aw,=0.61. Closer examination,
however, reveals these numbers to be overesti-
mates, because of evaluating Eq. (5.8) at the end
points. More accurate matching of Eqs. (5.18) and
(5.19) to Eq. (5.8) yields Aw; =0.17 and Aw, =0.35.
Figure 5 is a schematic representation of P(w)
which exhibits its singularities at w =0, wy, and
w,. The intersections of the dashed lines illustrate
the matching procedure just described.

We want now to present an alternative calcula-
tion of the curvature coefficient of Sec. III by in-
tegrating over the distribution of relaxation rates,
as done by Koppel'? for describing multicomponent
diffusion. Because of the factor w?, the singular-
ity shown in Fig. 5 at w =0 disappears. In carry-
ing out this integration we want to devote particu-
lar attention to the contributions at the end points.
As explained above, these remaining singular con-
tributions are confined close to the end points so
that in these regions it is permitted to approximate
w? by its end-point values. The contribution of the
singular part of the distribution at the lower end
point becomes therefore

50

T Illllll

0.5

o]

0.05

0.0l

FIG. 5. P(w), the relaxation rate distribution for
double scattering, vs. w=AT/T,. The single scattering
occurs at w=0, also the location of the strong singular-
ity in the double scattering, as shown. As is evident, °
P(w) also has weaker singularities at the end points w;
=0,69 and w,=3.48. The widths Aw; and Aw, describe
the regions where the behavior of P (w) is dominated by
these end-point singularities. The é function at w,
=1,18 leads to the correction factor shown as the
dashed curve in Fig. 4.
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wirAwy w‘+Am
f dw w?P(w)= wlzf dw P(w)

(01 . w

_ w%bi f wlko dw
® (w - wi)“2

= 2w¥b1(Aw1)”2
= zwaQ’lP(wi + Awi)

=2Aw,(3/2m). (5.21)
A similar result holds at the upper end point. In
deriving Eq. (5.21) we have written the integration
in terms of the value of the distribution function at
the boundary of the integration interval, w; +Aw;.
The final step comes from the matching of Eq.
(5.18) to Eq. (5.8). Equation (5.21) signifies that
the singularity effectively doubles the contribution
of the narrow interval of width Aw;. This means
that we can ignore completely the end-point sin-
gularities if we compensate by increasing the total
interval of integration by Aw,; and Aw, at the lower
and upper ends, respectively. This gives

C =-1— wa dwsz(w)=l(w - Wy +Aw, +Aw )—3-
2 2 ” , P] 2 1 1 22,”

G/4m) _y 19,

=7.60 (5.22)

5% larger than the value of 1.07 obtained from nu-~
merical integration. The magnitude of this error
is comparable to that noted in Eq. (5.11) and is
consistent with the accuracy of the approximations
used.

The distribution of relaxation rates which has
been discussed above and which is exhibited in
Fig. 5 has a strong 5-function singularity at w =0
surrounded by a continuous distribution-between
the end points w; and w,. The exact shape of this
distribution is not directly accessible to experi-
mental investigation. The shape of the distribution
reveals itself through it various moments, The
first moment results in a change in slope of the
semilog plot of the intensity (see Fig. 6). The sec-
ond moment corresponds to the curvature of the
semilog plot. It is of interest to find the best fit
that can be obtained by shifting the location of the
strong central 6 function by an appropriate amount
away from w=0. Thus we try to fit the curved
semilog plot by choosing a suitable straight line
corresponding to a single exponential decay with a
particular decay rate. In the frequency spectrum
this would correspond to a pure Lorentzian shape.
As the curvature that we are dealing with is O(e),

FIG. 6. Logarithm of I(r), the time-dependent auto-
correlation function of the electric field vs delay time.
I(0) is the mean intensity of the light reaching the de-
tector. The curved semilog plot shown is a schematic
representation of the effect produced by the mixing of
the double-scattered light with the single-scattered
light, 7 is the delay time measured in units of the
single-scattering relaxation time, The dashed line
represents the best single-exponential least-squares
fit to I(r). This best fit produces a deviation plot with
zeros at 74 and 7 ,=0.14 and 1.19, respectively.

itb follows that we want to impose a fit on the func-
tion
1(t) =Ipe™"(1 — €C, T +€C,T%) (5.23)

with the “best-fit” choice of the simpler function

Ig (T, 8y, 8y) =Ipe™"[1 ~€5,C; +€(5;C; - Cy)7].
(5.24)

Inl; is the sum of InJ; and the n =0 term in Eq.
(2.6). The parameters 3, and §; will be chosen so
as to minimize the mean square deviation. The
deviation is given by the difference between Eqs.
(5.23) and (5.24),

I(T) = Igp =€Cplye™"(8) — 8,7 +T2). (5.25)

The minimization of the mean-square deviation

5 fo " ar[1(r) - Iy gt =0 (5.26)

is carried out with free variation of both parame-
ters. This yields two linear equations with the
solution

wlis o=

By =1, (5.27)

8 (5.28)

The deviation, although minimized for the time-
dependent correlation function itself, is more eas-
ily visualized in terms of the deviation in the semi-
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\

log plot. - This dev1at10n is represented by the para-

bola

lnI(T) - ].nIBF =€C2(60 - 617 + 1-2)

=€Cy(T= T )T = 7,) (5.29)
with the roots
Ty,,=1(42410)
=0.14,1.19. (5.30)

These roots are indicated schematically by the in-
tersections of the dashed line representing Inlgy
with the curved semilog plot in Fig. 6.

It is also of interest to study the deviation from
a pure Lorentzian in the frequency spectrum of
the double-scattered light. For this it is conven-
ient to return to the Taylor series expansion of Eq.
(2.6) and to write it more formally as

dw P(w)e 1+

0 w? 3 ) L1+w)7T
——fde(w)(l+w—— ?W+ e

w=0
=e"f P(w)dw +€ (—C1 2 +Cg‘—a-22- o -)e"" .
ax ox x=1

(5.31)

Here we have again introduced the moments of the
relaxation-rate distribution function, as well as
changing to the more convenient variable x =1 + w.
In terms of the frequency variable € (not to be
confused with the relaxation rates w and ), the
Fourier transform of a single exponential decay is

{e* Y er =L(2,X) = (x/7)/(x* + 2. (5.32)

Consequently the higher terms in Eq. (5.31), cor-
responding to distortions in the semxlog piot, have
the Fourier transforms

0 . -
e” =1—-Te
{ax } f-7e e
1 g1
Ta(R°+1)
(5.33)
and
izye-h } ={Tze-r}
ox x=1) FT T
a2 2 1392

BT W g

(5.34)

By applying Eqgs. (5.33) and (5.34) to Eq. {5.25) we
obtain the deviation as a function of frequency

{1(1) = Iy ptpr =€Col g™ A(R), (5.35)
where
8y + 5 25 2(1 - 3Q?)
A _— i 1
@ =1t - T Ty
o431 8 1 2(1-3w2))
=€Colom (21 N T LA T
(5.36)
with roots at
2,,,=0.39,1.90. (5.37)

A(R) is shown in Fig. 7. It should be noted, by
virtue of Parseval’s theorem, that {Igg}pr is the
Lorentzian that is the best fit also in frequency
space, in the least-mean-square sense, to {I(7)}pr.
In the above we have seen that it is impossible to
take into account the curvature of the semilog plot
by simply shifting the central 5 function. It is
therefore of interest to see to what extent the cur-
vature can be accounted for by using two 6 func-
tions. Some success in this direction has been re-
ported by Beysens ef al.® Such a representation of
the continuum distribution of Fig. 5 can, of course,
only be expected to be successful in a very limited
context, at the best. As we are dealing with a
strong 6 function at w =0 of O(1), we can shift it
so as to take into account a first moment of O(g).
The higher moments, however, thereby become of
higher order in €, and are negligible for our pres-
ent purposes. In order to have a distribution which
possesses higher moments, we need at least one
more § function of strength of O(e), shifted by
O(1). This will give contributions of O(e) to all
higher moments, described by two parameters:
the strength and position of the second 6 function.

0.8
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0.2+
A(Q)

0 1

-0.2+
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FIG. 7. Deviation of the spectrum of the double-scat-
tered light from the best-fit Lorentzian. The frequency
Q@ is measured in units of the single-scattering relaxa-
tion rate I';. The deviation A(R) is defined in Eq. (5.36).



Including the shift of the central § function, there
is therefore in this approach a total of three para-
meters at our disposal. These can be determined
by fitting to the first three moments. These mo-
ments correspond to the slope change and the cur-
vature of the semilog plot of Fig. 6, as well as the
initial slope of the plot of the correction factor in
Fig. 4. The correction factor is obtained immed-
iately from its basic definition and from Eq. (4.1).
The latter reduces to an integration over the 3
function indicated by the dot-dashed distribution at
wy=1.18 in Fig. 5. Thus, we obtain the explicit
expression

Fy(7) =2(e™0" = 1 + w)7)/(w,7)?

=1-tw,T+---, (5.38)

which has been included in Fig. 4 as the dashed
curve. It will be seen from this plot that, although
the initial slope has been fitted correctly, the be-
havior at larger values of 7 is completely different
from the correct behavior shown by the solid
curve. This indicates that representing the con-
tinuous distribution of the relaxation rates by only
two & functions, although providing a better fit than
simply one & function, is still too crude to describe
all of the important features of the double scatter-
ing. Adding one more d function, located at an ap-
propriate negative value of w would put two more
parameters at our disposal and give us a much
better fit to F, . Such a representation, however,
would seem to offer no advantage when, as in the
present case, the correct continuous distribution,
along with all of its moments, is already known.

VI. EQUAL-TIME CORRELATION FUNCTION

In this section we wish to make contact with the
work of Bray and Chang? by calculating the same
quantity which they did, namely, the total inten-
sity of double scattering. In our preceding work,
we have included the effect of dynamics and in our
integrations there has been no sensitivity to the
small angles. Therefore, we have been justified
in working exactly at the critical point where the
temperature parameter o = (kog)" has been set
equal to zero. Now, however, when we turn to the
intensity itself, we find that the extreme critical
limit of @ =0 leads to a divergent integral. We,
therefore, consider a finite but very small value of
a. The scattering tends to diverge when either
© =0 or ©’=0, in the notation of Sec., ITA. As
explained by Bray and Chang,? the coptribution
concentrated about ©' =0 is equal to the contribu-
tion about © =0. For that reason we can limit our
attention to integrating only in the vicinity of © =0
and multiplying the result by 2. The total intensity
of the double scattering for perpendicular polar-
ization is consequently
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R hi2 ordr 1
€n=B L de /s dz \ RTOT1al" (6.1)
In Eq. (6.1) we have made the small-angle ap-
proximation appropriate for @ <1, which enables
us to replace sinz© by 6. This also permits us
to extend the integration from —« to +. The no-
tation and the geometry is the same as that in Sec.
IO B, where we had to pay attention to the differ-
ence between R and 7, the separations of the two
scattering points in three-dimensions and in the

x-y plane, respectively. This difference plays

now, however, only a minor role, because of the
small-angle scattering. Making a series of small-
angle approximations, we transform the denomina-
tor of the integrand of Eq. (6.1) into

R?©?+R%a’= R0 +7%a’
~x? +22 + 720l

~ 7202 + 7202 422
2
~ (62 2) .2 2
(6 +a®) r +9-2—_;_—ay . (6.2)
Carrying out the radial integration and ignoring the

contribution of sec6~1, we find

f’omv 11 f’o vdr
o REOT+a? 08+a’ ), 7P +2Y /(6% +ad)

1 11’0(012+(92)”2
=ra2 ™ 1z

(6.3)

provided 7> h/2a or ya >1. Thus, with this ad-
ditional restriction, independent cutoffs to the
logarithm appear at both the upper and lower li-
mits, as they did in Sec. IIIA. The lower cutoff
comes about again because of the finite separation
in the z direction of the two scattering points. In-
tegrating out the z dependence in Eq. (6.3) gives
the intensity as a function of the angle in the plane

/2 "rdr 1
dz RY ¢ +al

~h/2 0

=§7—_—I:_-Eg—[1ny +3In(6® +a? +1]. (6.4)

For ©> &, we can approximate Eq. (6.4) by

(#/6%) Iny. This is the approximation that was used
in the first part of Sec. IIT A for the purpose of cal-
culating the concavity in the semilog plot of the
time-dependent correlation function. Later, in
Sec. IIIB, we calculated the correction to Iny
by including various contributions which are
important for the lower cutoff on the logarithmic
integration. It is of some interest to calculate the
correction to the logarithm by extending Eq. (6.4)
beyond its range of validity and using it for large
angles. Carrying out the integration over 1n| ] ] ,
we find a correction to Iny of 0.58 as compared



362 RICHARD A. FERRELL AND JAYANTA K. BHATTACHARJEE 19

with ¢=0.13 as calculated in III B, Besides the
large-angle error, other effects, such as polar-
ization factors different from unity, are respon-
sible for this difference.

We now want to calculate the total intensity by
carrying out the required integration over angle.
For this we need the definite integral

. f ‘r—21n<1 +2'2>“—1n2 (6.5)
Substituting Eqs. (6.5) and (6.4) into Eq. (6.1) yields

€in =1—'h—B—-(ln'y +1Ina +1n2 +1)
"”B (In2ay+1). - . . (6.6)

Equation (6.6) is identical to Eq. (3.25) of Bray and
Chang.? The dimensional factors disappear when
we consider, as they did, the ratio

. 1 1

=t _S(a)y—a(1n2a'y +1)7 (6.7)

where we have substituted from Eq. (1.16). If we
plot up this ratio we obtain curves such as shown
in Fig. 2 of Bray and Chang,? depending upon the
two variables o and y. It is useful, however, to
note that these various separate curves can be re-
duced to one “universal” curve if we plot instead
the quantity RS(a) =€,,/(el). This gives us the
function of only one variable

RS(a) =(1/ya)(In2ay +1). (6.8)

With somewhat more labor, we can remove the
restriction ya >1 and carry out the calculation for
arbitrary values of ya, provided only that y>1
and @ <1, This yields '

1 (1 +72a2)“2+'y
RS(G!)—,V ( 1(1 Tl 7T

57 sinh™ 1a> )

(6.9)

which will be seen to reduce to Eq. (6.8) in the
limit ya > 1, Equation (6.9) has been plotted vs.
ya as the solid curve in Fig. 8.

The remaining restrictions limit the applicabil-
ity of Eq. (6.9) to large values of ¥ and small val-
ues of a. The former restriction is not serious,
being compatible with the usual experiment ar-
rangement. We can make use of the numerical
calculations of Bray and Chang? to study the con-
sequences of the latter restriction. Using their
results, as exhibited in their Fig. 2, we have de-
termined the deviation from “universality” for the
two choices ¥ =15 and y=50. These deviations are
shown by the dashed curves in Fig. 8. They cor-
respond to a 50% reduction in the value of RS at
va =8 and ya =27 for y=15 and y =50, respec-

0 1 1 R ]
102 0™ | 10 102
ra

FIG. 8. Double-scattering intensity function RS vs
Ya. R=€,,/€,y, the ratio of the scattering-in to the
scattering-out intensities. The scattering function S (o)
describes the temperature variation of the turbidity,
or alternatively of €,,, and is defined in Eq. (1.15).
= (kot)" 1, where k is the wave number of the scattered
light and ¢ is the temperature-dependent correlation
length., Small-angle approximations are permitted for
a <1, and lead to the universal function of Y ¢ shown as
the solid curve. Y=27y/h, where 7 and k are the radius
and height of the scattering volume, respectively. The
dashed curves are obtained from the numerical comput-
ations of Bray and Chang (Ref. 2) and indicate the devia-
tion from the universal function resulting from finite
values of a, where the small-angle approximations
break down.

tively. Thus the deviation sets in at = 0.5, as
expected. But in this range, although the percen-
tage error in RS is large, the actual magnitude is
small because R itself has become small. For this
reason, we conclude that the universal function of
Eq. (6.9) provides a convenient analytic as well as
sufficiently accurate formula for RS for the entire
range of a and for all values of ¥ no smaller than
15.

VII. SUMMARY

In the above we have found that the effect of doub-
le scattering is to cause the time dependence of
the correlation function to be described by

InI=1InI = (1 +€C)T +€C,T*F(T). (7.1)

In Sec. III and Appendix B, we have evaluated the
moments of C; and C, in the extreme critical re-
gion by setting @ =0. In Appendix D, we have
studied the variation of the curvature with @ and
this is exhibited in Fig. 9. In the case of 1 polar-
ization the numerical coefficients (see Secs. IIIA
and III B and Appendix B are

Ci==0.1Ty"(Iny - 2.2), (7.2)
Ci=1.12y(lny +0.13). (7.3)

Similar results for Il polarization are given in Sec.
IIIC. The correction factors for L and !l polariza-
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05 HYDRODYNAMIC
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FIG. 9. Temperature dependence of the curvature for
L and || polarization vs a=(k¢t)"!; where %, is the wave
number of the scattered light and ¢ is the correlation

. length.

tions are calculated in Secs. IVA and IV B, re-
spectively, and are plotted versus 7 in Fig. 4. The
difference between I; and the single-scattering in-
tensity I, comes from the double scattering. This
contribution has been calculated by Bray and
Chang? and has also been reviewed by us in Sec.
VI. We have noted there that the use of small-
angle approximations, valid in the extreme critical
regime o™l =k £ >1, greatly simplifies the cal-
culation and leads to analytic results, as exhibited
in Fig,. 8.

The time variable 7 is measured in units of the
reciprocal of the relaxation rate for pure single
scattering at 90°. The factor 1 +€C, in Eq. (7.1)
coupled with the numerical value for C; given in
Eq. (7.2) yields a change in the initial slope of the
semilog plot of Fig. 6. On the other hand, the best
fit of I(7) to a single exponential-decay function is
shown by the dashed line in Fig. 6. The slope of
this line corresponds to a coefficient 1 +€(C;

- §,C,) for the term of In/(7) which is linear in 7.
In Sec. V we found 5, =%, so that the slope of the
best-fit line is described by

1+€(Cy = 5,Cy) =1.6Tey™ (Iny - 0.11).

This correction factor should be divided into the
best-fit slope in order to correct the latter for
double scattering, and thereby convert it into the
relaxation rate for pure single scattering, uncon-
taminated by double scattering. For example, for
the parameter choice ¥ =50 and € =0.10, this cor-
rection amounts to a 1.3% increase in the rate;

as remarked in Appendix B the dominant contribu-
tion comes from the curvature.

The above procedure is sufficient if the goal is
to obtain a corrected value for the relaxation rate.
But as discussed in Sec. I, there is theoretical
reason to expect that even the single scattering
will have a slight deviation from pure Lorentzian
behavior. Experiments intending to reveal this de-

viation will require a comparison of Eq. (5.29) with
the observed deviation of InI(7) from the best
straight line. Any disparity in this comparison
will then be attributable to the single scattering.
A more accurate and systematic approach, how-
ever, might avoid the assumption of an underlying
straight semilog plot. Avoiding the best-fit ap-
proach, which tacitly ignores the expected fre-
quency dependence, one could return to Eq. (7.1)
and process the experimental data by subtracting
the € terms. Any residual curvature remaining in
the semilog plot would then be a quantitative mea-
sure of true non-Lorentzian behavior of the single
scattering.

APPENDIX A: SPATIAL COHERENCE OF DOUBLY
SCATTERED LIGHT

The amplitude and intensity of the light incidént
at space-time point 1 on the photosensitive surface
of the detector are E(1) and

J(1)=EQ)*EQ), (A1)

respectively. With the usual Gaussian assumption
for the fluctuations we consequently find for the
correlation of the currents produced at two differ-
ent points on the detector

(J@)I) =P+ |12, 1) |2, (A2)

where the angular brackets denote the ensemble
average over the scattering system. The second
term in Eq. (A2) involves the correlation function
for the electric field:

12, 1) =(EQ)*E(1))

=1,(2,1) +1p(2,1). (A3)

The division of the intensity function into single-
and double-scattering contributions is justified by
the fact that the optical-path lengths for these two
different modes of scattering differ by many wave-
lengths. There is therefore no interference be-
tween these two contributions. Let us first study
the intensity function for the singly scattered light,
which depends upon the electric field.

E,(l):%e“k*)'i""o”) fd3,rs('1’-, ti)eiil'; . - (A4)
(]

A is a coupling constant connecting the Maxwell
field with the concentration (or density) fluctuation
s(F,t,), and is proportional to the polarizability of
the molecules of the scattering medium. It con-
nection with the constant B of Eq. (1.1) will be
established presently. 7, is the distance from the
center of the scattering medium to point 1 of the
detector. We assume that this distance is large
compared with the dimensions of the scattering re-
gion. In this case the results are not sensitive to
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the precise value of the prefactor 7;'. Therefore,
in all subsequent work we replace #{* by d™, where
d is the distance between the center of the scatter-
ing region and the center of the detector. Further-
more, for the sake of simplicity, we assume that
the photosensitive surface of the detector lies in
the y-z plane, perpendicular to the line connecting
the two centers. The general case is easily treated
by only minor modifications. k&, and w, are the
wave number (in the medium) and the frequency of
the incident light, respectively. K, is the differ-
ence between the initial and final wave numbers.
The incident electric field has unit amplitude. %,
is the arrival time of the light at point 1 of the de-
tector. As we are interested in critical scattering,
which occurs on a very much slowed-down time
scale, we neglect the time of propagation from the
scattering point to the detector. The integration
is over the entire volume contributing to the single
scattering, as denoted by the subscript s. Refer-
ence to Fig. 1 shows that this volume is defined in
the y direction by the width of the exit slit Aw and
in the x and z directions by the beam dimensions.
In the problem under consideration the phase of
the two separate terms in Eq. (A3) happens to be
equal, which permits us to deal only with the ab-
solute value of the correlation function. The phase
factor appearing in front of the integral of Eq. (A4)
thereby disappears and we find for the single-scat-
tering correlation the double integral

J‘J'd{irld;i,relfi-(;-:l)
s ”s

7\2
@, 0l=7

X(EF, L)@ 1)|.  (a5)

This integral in principle involves a six-dimen-
sional integration over both three-dimensional
variables T and ¥/, each extending over the entire
single-scattering region. The integration, howev-
er, is greatly simplified by the ensemble average,
which defines the correlation function for the fluid

G(-f'—-f',tm) = <S(-f',t2)sﬁ,t1)>, (A6)

where ¢y =ty —-1%,. For a correlation length small
compared with the dimensions of the scattering
region the variable ¥’ is confined to a value rela-
tively close to that of the variable T. Its integra-
tion can therefore be carried out without reference
to the boundaries of the scattering region and
yields the Fourier transform of the correlation
function

g (&, ty) = f dre®IGE, 1,,). (A7)

The final integration yields
1,2,1) = (\/ag (&, )V, | £sF20) |, (A8)

where V is the effective volume of the single-scat-

tering region. The form factor determining the
effect of spatial coherence!® at the detector surf-
ace is

fs(fzi)=f,1— fdareikold;m’;a('f), (A9)
S S

where Ty =T, - T; and a(f) is the beam amplitude.
The normalization of f(0) =1 requires V,=

f d* a(¥). Equation (A9) results from the fact that
the momentum transfer for light arriving at two
different points in the detector is slightly differ-
ent. The difference is a vector lying entirely in
the yz- plane and is equal to the angle of “tilt”,
7y,/d, times the wave number k,. In the case of a
point detector, f,(0)=1, and Eq. (A8) reduces to
a form which can be compared directly with Eq.
(1.1). For this we need the Ornstein-Zernike ex-
pression for the equal-time correlation function,

, C C/kd
g(kyo)—k2+£-z —a2+4sin2%9 ’

(A10)

where C is a particular constant of the fluid. In
the case of a binary liquid it is a proportionality
constant that occurs in the derivative of the con-
centration difference with respect to osmotic pres-
sure. Multiplying by d? to obtain the scattering in-
tensity per unit area and dividing by V, to get the
total amount of scattering per unit length (normal-
ized to unit incident flux integrated across the
beam) puts Eq. (A8) into the same form as Eq.
(1.1) and enables us to identify the constant of pro-
portionality occurring in Eq. (1.1) as '

B=XC/R: . (A11)

Therefore the factor A% which is being used in this
analysis can be replaced, if desired by k%B/C.

For the sake of definiteness we now present a
few well-known expressions for f,. The form fac-
tor that results from a simple rectangular-beam
profile of overall vertical width 2wg is

frect(y,. zp) = sin(kgAw/2d)yy; sinlkgws/d)zy
s VIRWT (pAw/2d)yy  (kgwp/d)zy

(A12)

More common is a beam of circular cross section.
For a beam of sharp profile and diameter 2wg, a
=1 over the cross section and the form factor is
found from an appropriate integration in the x-z
plane (perpendicular to the beam axis) to be

fch.(y z )=Sin(kQAW/2d)y21 2J1(k0WBZzI/d)
s Vo (Ropw/2d)yy  (Rgwp/d)zy °

(A13)

where J; is the Bessel function. More realistic is
a beam profile without any sharp boundary. As-
suming a Gaussian falloff of the field strength
away from the axis according to a = exp[- (x® +22)/
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wi], we find

0,2 = Si(rile(kA;u; 2/;)(;)3) 2L o~ teyyken/ 207
0 2 .
(A14)

Because the slit width Aw plays the same role
throughout, all three of the above expressions
have the same y,; factor. Equation (A12) has an
especially simple physical interpretation. Its de-
pendence on y,, and z, is identical to the y-z de-
pendence (in the plane of the detector)of the Fraun-
nhofer diffraction pattern produced by a slit of
width Aw and height 2wg, located along the x axis
a distance d from the detector, and illuminated by
plane parallel light propagating in the x direction.
The y and z dimensions of this diffraction pattern
(i.e., distances between diffraction minima) are
4nkild/Aw and 2mk;'d/w 5, respectively.

We now calculate the double scattering in a way
similar to that done for the single scattering.
Making the various approximations described
above, we have for the doubly scattered electric
field at point 1

>\2
Ep(1) =7e“k°'1'w°t‘ )

St By r e e
% [ dr d'ye‘ko-l?-rl

x et F iR T 0 4 )s(F,t,).  (A15)

Proceeding now to calculate the intensity function
for the double scattering leads to a fourfold inte-
gration over four different three-dimensional vari-
ables. In addition to the T and ¥’ occurring in Eq.
(A15), we have two more points to integrate over,
say, T and T'. The integrand contains the product
of the four concentration (or density) fluctuations
at these four points. But for a scattering region
large compared with the correlation length, a con-
tribution proportional to the square of the volume
can come only from the pairwise factored form**

(@, 1,)s(F, t)s(F, 1,)s (F, 1)
=@, t)sF, 1)) s F, t)s (F, 1,))

:G(-I:" - -f,, tzl)G(%— -f, tzi) .

(A16)

[A similar argument justifies the Gaussian assump-
tion used in deriving Eq. (A2).] Equation (A16) en-
ables us ir_{lmediately to dispose of the integrations
over both ¥’ and ¥. The former brings in E’, the
momentum transfer at the first scattering and the
latter brings in Kk the momentum transfer at the

second scattering. The correlation function for
double scattering is therefore the double integral

[1p(2,1)]

A ar'dr - > -
= [ f ‘ffjt“‘ﬂ‘zg(k', ty)g (K, ty) pr(l‘zx) l,
(A17)

where the form factor for double scattering de-
pends only upon the last scattering according to

fD=Lf A o/ Dy F
VD D

With the given geometry the region of the second
scattering is a tube along the x axis of constant
rectangular cross section. fp is consequently in-
dependent of x, which has permitted us to take it
outside the integral. Equation (A18) is formally
identical to Eq. (A9) for single scattering. They
differ only in the region of the integration, which
is now no longer limited by the beam dimension.
The greater depth of the double-scattering region
in the x direction is of no consequence, while the
slit width in the y direction remains completely
unchanged. The change in the z boundaries does,
however, produce a modification. The overall
height of the double-scattering region is % (see
Fig. 1), which yields for the double-scattering
form factor

(A18)

Foasz )__sin(kko/Zd)yzl sin(kyh/2d)z 5
PR R  (Rgbw/2d)y g (koh/2d)z

(A19)

Just as in the discussion above of Eq. (A12), Eq.
(A19) corresponds to a diffraction pattern at the
detector whose y and z dimensions are 4wk;'d/Aw
and 4mk;ld/h, respectively. Only when the detec-
tor dimensions are comparable to or greater than
these does Eq. (A19) need to be taken into account.
In general a numerical integration will have to be
carried out. But the problem simplifies when the
detector dimensions become much greater. Then
all that we need from Eq. (A19) is the coherence
area

27\? d?
Ap= ( -15;) Awh °
The corresponding single-scattering coherence
area from Eq. (A12) is

ATt = (27/Rg)2dY/ 20uw g | (A21)

Therefore the correction factor in the large detec-
tor limit by which the double-scattering contribu-
tion to the correlation has to be renormalized rel-
ative to the single scattering, is

AD/Agec‘: = 2w3/h .

(A20)

(A22)
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The corresponding factors for the circular and
Gaussian beams are

Ap/AST =3 1 (ws/h) (A23)
and
Ap/AS =VEim wy/h), (A24)

respectively. As these three models for the beam
profile represent successive reductions of the
beam dimensions, the corresponding coherence
areas which appear in the denominators of the left-
hand sides of Eqs. (A22)-(A24) become successive-
ly larger. Consequently, the numerical coeffi-
cients appearing in the right-hand sides are in de-
scending monotonic order. In actual practice, the
height % is not greatly in excess of the beam width
2wg, so that the double-scattering normalization
factors coming from Egs. (A20)-(A24) do not re-
sult in a drastic reduction, even in the extreme-
large-detector limit.!

sin?%6 sin*(3r+36) 1
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APPENDIX B: CURVATURE AND SLOPE OF THE
SEMILOG PLOT

We present here an exact evaluation of the second
moment

1y
2T y

J‘._—
9=

Xfar/4 (|sin®s6] + |sindG7+40)| - 1/2V2 )2 de
/s sin%; 6 sin’(i7 +36)
=(1/2m)(Iny/y)I,,

where

/4 |sin%s 6| + [sin’Gm +36|- 1/2V2)¢de
e/ sin’30 sin’(z7 +%6)

(B1) .

In Sec. III, we calculated this integral by exploiting
the virtual constancy of the integrand over the
range of integration. That yielded I =(3)7. It is
convenient to expand the numerator and write

1 1. .sin(37+56)

3r/4 (
L =L/4 a8 sin(3m +36) T sin’ke

. v/
+[ d62sin/2[sin(x +%6)+sin(§1r—%9)]+f
o /

S T ( 1 1
_J‘o deJi sinz 0 sin®(zm +%9)+sin2(%1r—%9))

The advantage of writing the right-hand rule of
Eq. (B1) in this form is the fact that the indefinite
integral of each term can be evaluated. However,
it is clear that some of the terms have a singu-
larity at 6 =0, although the entire expression is
well behaved. So, in integrating the terms which
have such a singularity, we go from —3w to.—e and
from e to 37, where 0<e< 1., When all such terms
are added, the parts which diverge as e— 0 cancel,
so that we can set € =0 and get a finite number for
the integral.” Using the following results,

fde sin’36
Sin?(am +56)
=3(6 +cos) - 3 tan(47 - 36) — In(1 +sind),

fde sin4(:%11 +36)
sin“z 6

=%(6 +sinf) — 3 cot36 + In(1 - cos#),

B sin’f6sin’Gr +36) V2

sin’36

4
d62 sin3 6 sin(3m +56)

’ /4 g9 sinz6
T Ty .
e/ V2 sin’Gm+30) (B2)

1
fde sin’30 sin’ (G +36)
=4[In(1 +sin6) - In(1 - cos#)

— tan(§7 - 36) - cot30],

sin(7+56) ( 1, 1 )
fd@w =v2{Intan}6 _S_IK%—G- ,

sin36
P72 S
sin“(zm +30)

_ 111 1 )
_ﬁ(lntanz(4ﬂ+29)+Sin(zw+zg) ’

along with certain elementary trigonometric iden-
tities and integrals, we get



Ip=m+3V2 +7/2V2 + 2 In(tangm)
=7[1 +3V2/m +1/2V2 +(2/7) In(}tanm)]

~2,14m7, (B3)
This gives
c;_1:721 2.147=1.07 2 (B4)

which is 5% smaller than the value obtained from
the linear approximation of Sec, III. :

In studying the correction to the slope we find
that the linear approximation is not sufficiently
accurate. This can be understood from the plot of
AI‘(G)/I‘, in Fig. 3. The first moment depends
upon a principal-value integration which is espec-
ially sensitive to the curvature at 6 =0. Further-
more the linear approximation neglects the “bulge”
at larger values of 6. Therefore it is necessary to
employ the above list of indefinite integrals to
evaluate

Iny 1
l —
= over

XPJ‘:"”‘ |sin®36| + |sin®46 +in |- 1/2V2

e /4 sin’3 0 sin’(zm +36)
ln'y

=€ T s ~(B5)
where
I —p fa'“ |sin®46| + [sin’Gn +46)| —=1/2V2
! /4 sin%3 0 sin®(z7 +36) .

—F (f'“ sing6dg (/" _sing6do
e\ J,  sinf(zm-30) " J, Sin? (X7 +%6)

3r/4
+f sinG7 +36)

sin' —9 —sinkp 6

1 ]‘3?/4 1
" 3V8 Jae e sinz(%ﬂ+§9))'
(B6)
Here the principal-value integration has been re-

placed by Fp, a “finite part” evaluation as explain-
ed above. This yields

I, =2V2 (In tan 7 - 1/sin}7), (B7)
leading to
Ci=-0.17ey (Iny - 2.2), (B8)

where we have included an approximate calculation
of the correction to the logarithm along the lines
of Sec. IIIA. Numerical evaluation of this result
reveals it to be a very small effect. For example,
€=0.10 and ¥ =50 gives eC}{=6X10", in marked
contrast to the second moment which is more than
an order of magnitude larger.
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The evaluation of the corresponding integrals for
parallel polarization is simplified by the cancella-
tion of the denominator by the polarization factor,
as seen in Eq. (3.36). In this case the linear ap-
proximation proves to be reliable within the de-
sired accuracy.

APPENDIX C: LARGE-r NONLINEARITY

Here we present an alternative approach to Sec.
IV A. The result obtained there is satisfactory for
normal applications, but breaks down for very
large values of 7. The advantage of the method
that we now present is that it can be used in the
range 7>>1. We define a function G,(7) by

(InI)y, =G,(7)e(Iny)/7. (c1)

Using Egs. (4.1), (3.4), and (3.6), we get

d G.L(T) fdof(e)e-AI'/I‘ T

=f(0)f dae e-AI‘/I‘s'r

___9__ fde e-Ar/rs'r
8w

9 /4 /
=G ; dr e"“ PST. (Cz)
/4

'If we now use the linear approximation for AT'/T',

to do the integration over angles in Eq. (B2) and
then integrate twice over the time variable with the
initial conditions G,(0) =dG,/dt|,=0, we recover
Eq. (4.9). ‘

The hnear approximation for AI‘/ T's is good over
0< 6 <%n, but is not very accurate in the range
~37T<0<0. AT/T, is negative in this range. Be-

~ cause AI‘/ T's occurs in the integrand as exp(-‘rAI‘/

T,), any error in AT/ T’ in the range where it is
negative becomes magnified for 7> 1. Therefore,
we must find a better representation for Al"/ T in
the interval —37 <0 <0, This is provided by a
parabolic approximation centered at 6 =- 7. It
is convenient to define an angle ¢ by the relation

¢ =06+1m. (C3)

A good fit is given in the two separate intervals by

—-0.69 +1.26¢* for —3T1<6<0
or 0<¢p<im (Cc4)
36/2 for 0<6<3nm.

AT/T, =

With this approximation, Eq. (B2) becomes



368

9

dzl___
art ~ 4

E ]

(f o.esr-t.zemz do
0
3r/4
+f
0

The second integration in the right-hand side of
Eq. (C5) is trivial, while the first can be express-
ed in terms of the error function. The two further
integrations required for obtaining G,(T) can be

e3/2qp ) (C5)
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function, we will be satisfied here to restrict our-
selves to the asymptotic range 7> 1. In this case
the integrand of the first integral on the right-hand
side of Eq. (C5) falls off very rapidly. This per-
mits replacing the upper limit by infinity, giving

deL___Q_ l( P )1/2 269 +3(1 e-sr'rls)
“dr T4r |2 \1.26 v 3\7" "7 /]

reduced to one integration. But in order to avoid (C6)
the numerical task of integrating over the error Integrating twice yields
J
1 1/2 1 T 0697 VT
JL(‘r)_.—(—z-(1 ) [(-r+1 38) 7 = dT - 555 %87
2 97 ( "T)] 8 1 eorrss
+-§ { [ln 3 +C-1-Ei 9 g + or (1 e ) +K0 +K1T, (C?)

where K,,; are constants of integration and C (Eul-
er’s constant) =0.577. The remaining integral is a
Dawson function. Imposing the boundary conditions
on G, and its first derivative at 7=0 would require
=K,;=0." This, however, makes tacit use of Eq.

(C6) for small values of 7, outside the range of
validity of this equation. Therefore, it is necess-

~ary to use the results from Sec. IV A. for specify-
ing the boundary conditions at some intermediate
compromise value of 7, say, 7; =2.5. This value
of T corresponds to where the curve in Fig. 4 for
F, stops. The resulting values of G,(7) for 7>7;
lead to a correction factor defined by

Fy(1)=4G,(1)/7% (c8)

This function provides the appropriate extrapola-
tion of Fig. 4 into the region 7> 7;. Without this
modified treatment, Eq. (4.11) would give an ex-
trapolation which rises much too rapidly, for 7
> 7;, for reasons explained above.

APPENDIX D: TEMPERATURE DEPENDENCE OF
THE CURVATURE

The curvature is given in the extreme hydrody-
namic region by the integral of Eq. (3.5) where the
integrand, using the linear approximation, can be
replaced by its value at 6 =0 as exhibited in Eq.
(3.11). This procedure holds in the extreme non-
hydrodynamic limit, @ = 0. When a takes on small
but finite values, the denominator of f,(6) is the
first to be modified and in the vicinity of 6 =0,
f1(0) therefore acquires the correction factor

6%/(a?+6%) =1 - a%/(a® +6%). (D1)

The negative term in the right-hand side of Eq.
(C1) introduces a kind of “hole” in the integrand,
whose effective width is given by the integration

a?de

LT (03)

Here the use of small-angle approximations has
permitted us to extend the limits of integration to
infinity. In fact, however, there is a similar hole
centered at 6 == 37 so that the total effective width
of the holes is 2ma out of a total interval of 2.
Consequently, in the nearly extreme critical range,
the curvature coefficient acquires the temperature
dependence

C3(@) =C3(0)(1 - a).

We now turn to the hydrodynamic regime of a
>1, where Egs. (1.1) and (1.5) lose their angular
dependence and become

1(6) =I,=B/a?

(D3)

(D4)

Similarly, the distribution of the double-scattered
intensity for perpendicular polarization loses its
angular dependence and, instead of Eq. (3.2), ac-
quires the constant value

L

dlj hB?
: -202 =ar Iny.

(D5)
Consequently, the angular distribution that appears
in the integration for the curvature coefficient, in-
stead of having the angular dependence of Eq. (3.4),
becomes the angle-independent dimensionless quan-

tity

1 dBi, 1 Iny
el a6 " 2mat y (D6)



19 DOUBLE-SCATTERING CORRECTION FOR THE CRITICAL... 369

The new equation replacing Eq. (3.6) for the inte-
grand is, therefore, obtained from Eq. (D6) by in-
cluding the appropriate factor from the dynamics
and assumes the form

£.(0) =(1/2ma®)(AT/T,)%. (D7)

Here the dynamics has to be modified in the hy-
drodynamic region. In place of Eq. (1.3) we have
a quadratic dependence on wave number as des-
cribed by

I'(6) =¥, sin’396, (D8)
where the coefficient has a different value from the

coefficient y, in Eq. (1.3). Substituting Eq. (D8) in-
to the general form for AT gives us

(AT/T,)?=2(1 +sinf - cos6 — sinf cosd).  (D9)

Consequently, in the integration over angle, all of
the terms except the first one in Eq. (C9) disap-
pear, leaving

$r@ao=2 . (D10)

Substituting now into Eq. (3.5) we have, for the
temperature dependence of the curvature coeffic-
ient in the extreme hydrodynamic region

3(@) =(1/a?)(Iny)/y

=C3(0)(8/9a?). (D11)

A convenient Padé-type fit to the temperature de-
pendence of the curvature coefficient which inter-
polates between the hydrodynamic and extreme
nonhydrodynamic regions is

3(@) =CL(0)/(1 +a +%-a2), (D12)

as illustrated in Fig. 9. As is evident, the curva-
ture rapidly becomes weaker as o increases. This
is simply a consequence of the strong drop in
double-scattering intensity when the system is
taken away from the critical point. Consequently,
curvature is observable mainly in the nonhydro-
dynamic regime.

The temperature dependence of the curvature
for parallel polarization is different because the
polarization factor sin®6 cos?6 already produces
“holes” at 8 =0 and —37. Consequently the cor-
rection factor of Eq. (C1) has little effect and there
is no linear dependence of Chy(a) on & in the vicin-
ity of & =0. The appropriate Padé-type interpola-
tion formula is therefore

Cay@) =C3(0)/(1 +30a?) . (D13)
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