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Liquid structure of the simple alkali metals from a Srst-principles pseudoyotential calculation
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First-principles fully nonlocal pseudopotentials which predict good phonon spectra and elastic shear
constants for Li, Na, and K were used to obtain the effective ion-ion pair potentials at the melting-point
density. The pair potential U(r) was used to make a Monte Carlo determination of the static structure
factor S(q) and pair-correlation function g(r) for liquid alkali metals. The results for Na and K compare
well with the experimental data of Greenfield and Wiser.

I. INTRODUCTION

The pair-correlation function g(r} and the struc-
ture factor S(q) have been calculated for Li, Na,
and K at their melting points. This was accomp-
lished by the computer simulation technique
known as the Monte Carlo method. The Monte
Carlo method (MC) required as input the density
of the liquid metal and the effective interaction
between the ions in the liquid metal. This interac-
tion was approximated by a two-body pair poten-
tial IJ(r) which was computed from a fully nonlocal
Harrison first-principles (HFP) pseudopotential.
The calculation of the pseudopotentials for the
three alkali metals used only the lattice constant
and atomic number as experimental input, and had
no adjustable parameters. These potentials had
previously been used with good success to calcu-
late the phonon spectra and elastic shear constants
for Li, Na, and K.

The Monte Carlo calculation was used to deter-.
mine the pa, ir-correlation function g(r) out to 19
Bohr units (BU). Although the MC technique can
be used to extend g(r) to all r values, this would
require excessive computer time and becomes
impractical. The Percus-Yevick theory provides
a convenient asymptotic limit for g(r) in the re-
gion where the MC calculation becomes imprac-
tical. ' A simple analytical expression suggested
by liquid-meta, l theory was used to extend the MC
calculations of g(r) for r &19 BU.

The liquid structure factor S(q) was determined
by Fourier transformation of g(r). At low q where
the Fourier method becomes inaccurate a suggest-
ion of Fowler's' was used to calculate S(q). At
low q, the structure factor was calculated directly
by the MC technique using the definition of S(q).
It was found that the MC calculation of S(q) at low

q is considerably more accurate than the trans-
form method.

A brief discussion of the nonlocal pseudopoten-
tial formalism used to calculate the pair potential

is given in Sec. O. In Sec. III we present the de-
tails and results of the Monte Carlo calculations
for the three alkali metals.

U(r)= + —',
~

E(q)e"'d'q.

S* is the effective valence of the ion as predicted
by pseudopotential theory, ' 0, is the volume per
ion, and E(q} is the so-called energy wave-num-
ber characteristic. The first term in Eq. (1) rep-
resents the direct Coulombic interaction between
the ions while the second term is due to the mod-
erating or "screening" influence of the conduction
electrons. The function E(q) is explicitly given by

2Q, i' (kl w I k+ q)(k+ ji wl kQ

(2v)' ~ (S'/2m)(k' —
i k+ q i ')

~Q q' i (k+ ji w"
I k} I

'
2 4ve' [1 -G(q}] (2)

The pseudopotential matrix element (kI w
I
k+ q) is

separable into bare, av~, and screening, sv", con-
tributions:

&"
I "I"+&)=«I w'I "+&)+&"

I
w-I "+@.

The function G(q) accounts for the many-body interac-
tions between the electrons in the conduction elec-
tron gas. The matrix element of zp" is local and
therefore depends only on the magnitude of the
momentum transfer q. 'The matrix element of
w' is nonlocal and depends on

I
kI as well as the

angle between k and k+ g. 'The nonlocal bare
pseudopotential matrix element taken between
plane-wave states Ik} is

II. PAIR POTENTIAL AND PSEUDOPOTENTIAL

The effective ion-ion pair potential U(r) wa, s cal-
cula. ted from the following equation:
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In Eq. (4), v' is the crystalline potential due to
the charges within a primitive unit cell, nl) is
the core-electron wave function for the state des-
cribed by the principle and angular quantum num-
bers n and l, and E„, is the energy eigenvalue of
this localized core-electron state. P is the pro-
jection operator

which, when operating upon a plane-wave state
~k), finds those components of

~
k) which are not

orthogonal to the core-electron wave functions.
The explicit k dependence of the bare pseudopoten-
tial matrix element is contained in the second and
third terms of Eq. (4) which we will collectively
denote as (k+gw" ~k). For nonlocal pseudopoten
tials, the matrix element of the screening poten-
tial is given by

gY+ q ~

N&s
~
k)

(I'/2m ) (k' - [k+ q ~

')

response function c(q) is given by

~(q) = I+ [I- &(q)l[~ (q) —1]

where e"(q) is the free-electron or Hartree-dielec-
tric constant. '

The calculation of the pair potential in Eq. (1)
requires the evaluation of the bare pseudopotential
matrix element, which in turn requires one to
know the potential@ in the primitive unit cell, the lo-
cali'zed core states

~
nl), and their energy eigen-

values E„,.
A. Corewlectron states

The core-electron states were approximated
by the wave function and eigenvalues of the free
ion. The core functions are given by

~nt) = Z„,(r) I"",(e, y)/r, (8)

where F, are spherical harmonics and P„, are
solutions to the radial part of the Schrodinger
equation. The radial part P„, of the free-ion wave
function was computed from the Herman-Skillman
atomic structure program. ' Using Eq. (8) the
"orthogonality coefficients" (k~nl) in Eq. (4) are
explicitly

where e(q) is the dielectric response function for
the interacting conduction-electron gas. In local
pseudopotential calculations the k.dependence of
the matrix element (k+ q ivs ~k) is ignored or as-
sumed to be small which greatly simplifies the
evaluation of the k-dependent integrals in Eqs.
(2) and (6) for E(q) and (k+ q ~

ao"
~
k), respectively.

In the local approximation these integrals are an-
alytic but if the full nonlocality is taken into ac-
count one must, in general, numerically evaluate
the resulting two-dimensional integrals in Eqs. (2)
and (6). For the calculation reported here, as in
previous work, we have used the ally nonlocal pseu-
dopotential since the use of the local approximation
makes changes in E(q) that considerably alter
calculations of phonon spectra and elastic shear
constants for even so simple a metal as Na. To
illustrate this point local and nonlocal results
for the. phonon spectra of Na are shown in Fig. 1.
Although dispersion curves are given only for the
(001) direction, similar differences are found for
other symmetry directions.

For the interacting electron gas, the dielectric

(k
~
nf) =— j,(Iir)P„,(r)r dr,
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FIG. 1. Phonon dispersion curves for Na. Dashed
curve is predicted by a local pseudopotential and the
solid curve by the fully nonlocal form of the same po-
tential. Experimental data is from Wood et aE. (Ref. 23).
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where j,(x) is a spherical Bessel function. It is
necessary to consider carefully the choice of
crystalline eigenvalues for the core states, E„„
because the ionic values are, in general, not ac-
curate representations of the crystalline core
energies. These will be shifted in energy (i.e.,
the so-called "core shift") due to interactions
between the core-electron charge density and the
crystalline potential. In our calculations, the
shift of the core-electron energy is obtained by
computing the energy change per core electron
caused by the interaction of the core charge with
the single orthogonalized plane-wave charge den-
sity.
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B. Crystalline potential

The crystal potential V'(r) for the solid metal
was approximated by a linear sum of spherically
s'ymmetric potentials:
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Flo. 2. Ion-ion pair potentials for liquid Li, Na, and
K used in the Monte Carlo calculation.

(10)

where r, is a lattice vector and v'(r) is the poten-
tial centered at a lattice site due to the charges
within that primitive unit cell. The potential v'(r)
is composed of (i) the nuclear Coulomb potential,
(ii} the Coulomb potential of the core-electron
charge density (obtained from the Herman-Skill-
man core-wave functions), (iii) the conduction-
eore exchange interaction, and (iv) the conduction-
electron potential which consists of screening
and orthogonalization hole potentials. The con-
duction-core exchange interaction was approxi-
mated by a local exchange potential suggested by
Lindgren. ' The screening contribution to the con-
duction-electron potential, given by Eq. (6), uses
the G(q) function of Singwi et aL' to include ex-
change and correlation effects of the conduction
electrons. The orthogonalization hole was treated
"exactly" and has been discussed in detail else-
where. " The above consistent treatment for v'
'gives good results for phonon spectra and elastic
shear constants for Na and K." The construction
of the pseudopotential for Li used the same pseudo-
potential formalism. However, best results for
phonon spectra and elastic constants were obtained
with a crystal potential that used a Hartree-dielec-
tric function and the Kohn-Sham conduction-core
exchange approximation. " The reason for the
different treatment of Li (i..e., choice of conduc-
tion screening and exchange} is not fully under-
stood although Li, compared to other alkalis, has
often exhibited anomalous behavior in the calcu-
lation of atomic and electronic properties. ""

The pair potentials for Li, 'Na, and K were cal-
culated using Eq. (1) with an F(q) evaluated for the

density at the melting points of these materials. '~

The resulting ion-ion potentials for the liquid
metals are shown in Fig. 2. These are the U(r)'s
that were used in the Monte Carlo determinations
of the liquid structure for Li, Na, and K.

HI. MONTE CARLO CALCULATION FOR S(q)

Wood'~ gives an excellent discussion of the Mon-
te Carlo techniques so we will only describe the
essential feature of our calculation for S(q) and
g(r). The Monte Carlo calculations for the simple
alkalis were performed for systems composed of
216 particles and included approximately 100 000
configurations in the Markov chain. Systems of
125 particles were also studied and no significant
differences were observed between the g(r)'s cal-
culated for systems of 125 and 216 particles.
More configurations couM have been included in
our averages but it was not deemed necessary to
do so. The g(r) results were quite stable (i.e., had
converged) before 100000 configurations had been
generated and further averaging would not have
changed g(r) by any significant amount. Though
it is difficult to estimate the reliability of the
Monte Carlo results because one is observing
fluctuations about a mean, we estimate that g(r)
is accurate to 3% and S(q) where it is calculated
directly [Eq. (14}]to 10%%uo. lt should be noted that
the Monte Carlo calculatron does not determine
g(r} per se, but instead the calculation was used
to determined G(r), the cumulative distribution
function which represents the total number of
particles within a distance r of the origin given
that there is a particle at the origin. G(r) was
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evaluated using procedures suggested by %ood'4
and Brush et al.~ The radial distribution function

g(r) is obtained from G(r) using the relation

g(r) = (1/4IIr n, )G (r)/r, 2.0—

Na

where II, is the average number density. g(r) rep-
resents the probability density for two particles
being a distance r apart. The "particle" (i.e. , Li,
Na, and K atoms) were initially arrayed in a sim-
ple "crystalline" structure. About 10000 config-
urations were gen. crated, so the particles would
evolve to configurations more representative of
liquid systems. The calculation for g(r) was not
started until after these 10 000 configurations had
evolved the system to a more likely liquid
structure. The "minimum image convention"
was used in our calculations to reduce the amount
of computer time required to calculate the ensem-
ble average liquid structure. ' ~' Consequently the
Monte Carlo results for g(r) were defined over the
finite range 0 &r &I,/2 where i. is the edge size
of the cubic cell containing the particles. At larg-
er r, g(r) was approximated by the simple analyti-
cal expression

g(r) =1+8 cos(2k~r+ ItI)/r',

which is an asymptotic prediction of the Percus-
Yevick theory. ' The variables B and p were cho-
sen so that there was a smooth transition between
the exact Monte Carlo portion of the g(r) curves
and the analytical portion predicted by Eci. (12).

The pair correlation curves for Li, Na, and K
are shown in Figs. 3-5, respectively. The solid
parts of the curves are the Monte Carlo results
while the dotted parts are the approximated an-
alytical extension. Using the g(r) curves i.n Figs.
3-5, the static structure factors S(q) were cal-
culate/ from
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FIG. 4. Radial distribution curve for Na. Dashed
and solid portions have the same significance as in Fig.
3.

S(q)=)re f e'""[q(r) —1]d r.

The results for Na and K, shown in Pigs. 4 and 5,
respectively, are compared with the experimental
data of Greenfield et al." At low q (i.e. , below

2k') the Fourier transformmethod of Eq. (13) for
obtaining S(q) is not very accurate. This is a con-
sequence of the fact that at low q, S(q) is sensitive
to the large-r behavior of g(r) which we have
approximated by Eq. (12). March' has given a
justification. for the asymptotic form of the cor-
relation. function. The asymptotic extension of

g(r) makes a 5%,-10' increase in the height of
the main peak of S(q). At higher q (beyond the
main peak) the g(r) extension makes progressively
less difference in S(q). We should note that al-
though the g(r) extension affected the heights of
the maxima and minima in S(q) it did not affect
their position. At very low q where S(q) becomes
«1, Eq. (13) yields poor results because g(r) is
not known with enough accuracy for large r. One
could consider larger systems in. the Monte Carlo
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FIG. 3. Radial distribution curve for Li. Monte Car-
lo results are the solid part of the curve. The approxi-
mate analytical extension (dashed line) was computed
from Eq. (12).
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FIG. 5. Radial distribution curve for K. Dashed and
solid portions have the same significance as in Fig. 3.
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FIG. 6. S(q) curve for liquid Li. Solid curve com-
puted from g(~) curve using Eq. (13). The low-q portion
of the curve (X) was computed from Eq. (14).
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FIG. 8. S@)curve for liquid K. Experimental data is
from Greenfield et al. (Bef. 17).

calculations and obtain exact results for g (r) at
large x but this very rapidly becomes impractical.
Therefore, we have employed a method suggested
by Fowler' which circumvents the problem of the
Fourier transform convergence by calculating
S(q) directly from its definition.

S(e)=—. (P exp[(t( (r, -rr)jN Rg
(14)
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FIG. 7. S@)curve for liquid Na. Experimental data is
from Greenfield et al. (Bef. 17).

N is the number of particles in our system (i.e. ,
216 or 125), r, and r~ are their coordinates, and

()„denotes an ensemble average. Because of the
periodic boundary conditions the Cartesian co-
ordinates of q are restricted to values that are
integer multiples of 2v/L. Although Eq. (14) gives

more accurate values for S(q) at low q than does
Eq. (].3), the resolution with respect to j is lim-
ited.

Since, to our knowledge, there does not exist
published tabulated experimental data for S(q) for
Li, we can only compare our results with the pub-
lished curve of Ruppersberg and Egger" at 300 C
(see Fig. 6). Although the S(q) curve for Li ap-
pears in good qualitative agreement when we com-
pare minima and maxima positions and heights,
the nature of the published experimental data pre-
vents accurate quantitative comparison.

In summary, the ion-ion pair potentials for the
liquid metals Li, Na, and K were computed from
a fully non1. ocal first-principles pseudopotential.
They predict S(q)'s for Na and K that are in good
agreement (see Figs. 7 and 6) with the data of
Greenfield et al."and are comparable with the
results of Powler, Murphy, ' and Murphy and
Klein. ' Fowler used a pair potential obtained
from in Ashcroft type model pseudopotential cal-
culation. On the other hand the potentials used by
Murphy and Murphy and Klein were based on cal-
culations by Duesbury and Taylor" and Basinski
et a/." In the latter calculations the nonlocality
of the matrix elements were included but only in
the sense of being "averaged over the Fermi
sphere. " The calculations for Li are in good qual-
itative agreement with existing experimental data.
Our results as well as those of Murphy, ' Murphy
and Klein, and Fowler, ' are qualitatively similar
for the liquid-metal structure. This seems to
stem from the fact that all the pair potentials used
in the above calculations are similar (i.e., a
strong core repulsion, a potential minimum, and
an oscillatory tail). It is evident that the li(luid
structure does not seem. too sensitive to the de-
tails of the pair potential. However, we note that
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the pseudopotential formalism used in the present
work has also been used to calculate elastic shear
constants and phonon spectra for the solid phases
of these alkali metals that were in good to excel-
lent agreement with experiment. Moreover, pre-
liminary calculations of the phonon spectra and
elastic shear constants of rubidium using a, pseudo-
potential formalism identical to that discussed for
Na and K, have also yielded excellent results.
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