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New bounds for Van der Waals coef6cients
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New upper and lower bounds for Van der %aals coefficients using even and odd oscillator-strength sum
rules are derived.

About ten years ago Langhoff and Karplus' ' and
Gordon' for the first time reported methods for
determining upper and lower bounds for Van der
Waals coefficients. These bounds were con-
structed by using in the Casimir-Polder integral
formula' approximate dynamic polarizabilities that
are upper or lower bounds to the exact dynamic
polarizabilities at imaginary frequencies. These
bounded dynamic polarizabilities were obtained by
recognizing that the series expansion of n(i P} in
positive powers of $' is a series of Stieltjes (the
expansion coefficients being the even moments
of the oscillator strength distribution} and subse-

,quent use of results from the theory of Pade
approxiinants' ' or Gaussian integration theory.
It has been shown that the two methods are equiva-
lent. '

The fact that the above procedures only use even
oscillator-strength sum rules was considered to
be an advantage at the time since for the dipole
case these sum rules can be obtained from optical
refractivity data. ' However, at the present time
it becomes increasingly feasible to calculate both
even and odd oscillator-strength- sum rules rather
accurately. ' Further, for the calculation of higher—
order dispersion forces the necessary experimen-
tal data are difficult to obtain and one has to resort
to theoretical information anyway. So for these
cases the even sum rules do not occupy a favored
position. Therefore the question arises whether
it is possible to construct bounds on the Van der
Waals coefficients using both even and odd sum
rules. '

An elegant method for doing this has been
worked out by Alexander. ' His procedure does
not require the intermediate construction of an
approximate polarizability and the upper and lower
bounds are expressed directly in even and odd
oscillator-strength sum rules and the smaller of
the lowest excitation frequencies of the interacting
species. However, the bounds provided by this
method are not optimal. Further, Langhoff' has
devised bounds on Van der Waals coefficients using
the oscillator-strength sum rules S(2),S(1),S(0),
S(-1),S(-2) and the lowest resonance frequency
401.

In this paper we present a method rather simi-
lar in spirit to those of Langhoff and Karplus' '

and Gordon' to obtain bounds on the Van der Waals
coefficients from both even and odd oscillator-
strength-sum rules. The starting point of our
procedure is again the Casimir-Polder formula
in which the dispersion interaction is expressed
as an integral over imaginary frequencies of the
appropriate dynamic polarizabilities of the inter-
acting species. For example, the Van der Waals
coefficient for the leading term of the dispersion
interaction between two spherically symmetric
atoms A and S,
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can be written
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Here n(ig) is the dynamic dipole polarizability

n(ig) =
"

d|/I(u)

p u + (2)
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We now construct an approximate oscillator-
strength distribution

n

dq(u)=Q f,5(u —u, )du,
)=1

(4)

where the weights f, and positions u,. are deter-
mined by the condition that dg(u) reproduces 2n
oscillator -strength sum rules

dt/1(u}u" = d((u)u"= S(k),
0 0

0= -q, -q —1, . . . , -q —2n+1, (5)

where" q= -2, -1,0, 1,2, 3, . . . andyg=1, 2, 3, . . .
From the results mentioned in Ref. 12 it follows

that this problem lias a solution with all f, and u,
real and positive. At this point we would like to
emphasize that the approximate polarizabilities
c~(i$) that one obtains by substituting d7/i( )inu(2)

where dg(u) is the oscillator-strength density be-
tween u and u+ du. Substituting the dynamic polar-
izability given by (2) in (1), one obtains
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are neither upper nor lower bounds to the exact
polarizability at imaginary frequencies. Still it
is possible to show that the approximate Van der
Waals coefficients

1
Vpg —' d pQ . d g5

are upper and lower bounds depending on which
sum rules are used for the construction of the ap-
proximate oscillator -strength densities. Indeed
the approximate oscillator -strength densities can
be divided into two groups, where group I com-
prises the cases q= -2, 0, 2, 3,4, . . . ,n=1, 2,
3, . . . and q = -l, n = 1 and group II the remaining
cases q= -1,n=2, 3,4, . . . and q= l, n=1, 2.3,
4, . . . , such that the Van der Waals coefficients
calculated with approximate oscillator-strength
densities that belong to group I are lower bounds,
whereas those calculated with group H are upper
bounds. The way we will demonstrate this is
rather similar to the method Wheeler and Gordon"
use to obtain bounds for averages using moments.

The upper bound obtained by Langhoff'0 using
the oscillator-strength sum rules S(1),S(0),S(-1),
and S(-2) is just a special case of group II, name-
ly, q = -1 and n =2.

Introducing the variables x= I/u and y = I/v the
approximate Van der %aals coefficients takes the
form

3 — — x y
~LB 2 de(x) des(y) ( )0 0 x+y

where the approximate oscillator-strength densi-
ties now satisfy the relations

n

E,(x) -E,„,,(x)=, '
[ (x-x, )'E,""'(C),

where if x& 0, then g&0.
A tedious but straightforward calculation shows

that for q and n values belonging to group I E,'"'(f)
~ 0 for f & 0 and that for group II E,'"'(g) ~ 0 for
f &0.

In view of (11) this means that for group I

OO 2 4/7

&p(x) „+ ~ dp(x)x'&, „,,(x), a &0 (12)
0

and that for group II the opposite inequality holds.
For both groups the following equalities hold:

4.5

3

d xx'= d xx'=8 -k,
0 0

k=q, q+ I, . . . , q+2n —1 (8)

and places weight at the positions

1/I „x, I/g„. . . , x„ 1/I„.
It will appear that it is sufficient to show that for
approximate oscillator-strength densities that be-
long to group I the following inequality holds:

d x ~ d x —,a&0, (9)

and that for group II the opposite inequality ap-
plies. In order to prove (9) we consider the (2n
—1) degree Hermite interpolating polynomial
P. ..(x) for the function E,(x) = x 2 "/(x+ c) which
is constructed such that

&..-,.( )=E.(,), E.'„,„(,)=E,'(, )

i = 1,2, . . . ,n. (10)

It is well known'~ that

0.5 %.0
l I I

1.5 ~$ 2.0 2.5

FIG. 1. Dynamic dipole polarizabibty for the hydro-
gen atom at imaginary frequencies. -.-, exact value
[M. Karplus and H. J.Kolker, J.Chem. Pbys. 39, 1493
Q.963)];——,approximate dynamic polarizabQity that
satisfies 8(-1) ance 8(-2) (results in an upper bound for
the Van der Waals coefficient); ~ ~ ~, approximate dyna-
mic polarizability that satisfies 8(-2) and S(-3) (re-
sults in a lower bound for the Van der Waals coefficient).
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TABLE I. Dipole-dipole dispersion interaction coefficients between two hydrogen atoms.

This work
Lower Upper

Q'= 2 Q'= 1
Alexander (Ref. 9)
Lower Upper

Laxghof'f and
Karplus {B,ef. 2)

Lower Upper
[n, n —1)~ [n, n-lg

6.358
6.496
6.499

6.750
6.505
6.499

6.289
6.473
6.494

6.525
6.503

6.249
6.470
6.493

7.159
6.540
6.506

dy(x)x'Z „,,(x) = dP(x)x'Z „,,(x)
0

2
p

x'
dy„(x)—x+y

dy„(x)
x'

x+31

The first equality relies on the fact that the exact
and approximate oscillator-strength densities have
the same moments 8( —k), k =q, q+ 1, . . . , q+2n
-1 and the second equality is due to the fact that
at the n points x»x». . . , x„where dP(x) places
weight the functionx'P, „,,(x) and x' j(x+ a) coin-
cide. Combining (12) and (13) one obtains the re-
sult expressed by (9). Using this result together
with Fubini's theorem on multiple integrals one
can write for group I

so oo

ay„(x)x' dy, (y)
p p X+/

p d pxx d

Van der Waals coefficients are themselves not
upper or lower bounds for the exact polarizability
at imaginary frequencies. This figure should be
compared to Fig. 1 of Ref. 2.

In Table I we present some results for the di-
pole-dipole Van der Vials coefficient between
hydrogen atoms. The first column gives the lower
bounds obtained using dynamic polarizabilities
that satisfy the sum rules S(-2),S(-3), . . . ,
S(-1—2n) and the second column gives the upper
bounds obtained by using dynamic polar izabxlities
that satisfythe sum rules 8(-1),S(-2), . . . ,S(-2n).
For the sake of comparison we have added bounds
obtained by Alexander' using exactly the same sum
rules as we do and in addition the lowest excitation
energy. Further, we have also included in Table I
the lower and upper bounds provided by the Pads
approximants [n, n —1] and fn, n —1]s introduced
by Langhoff and Karplus. ' The [n, n —1] approxi-
mant reproduces the 2n even sum rules 8(-2),
8(4), . . . , S(-4n) and the [n, n —1]8 approximant
reproduces the 2n even sum rules S(0),S(—2), . . . ,
S(-4n+2). From this table we conclude that the
convergence of the bounding procedures presented
here is quite good.

Using the same kind of reasoning one obtains the
opposite inequality for group II.

In Fig. 1 we illustrate that the approximate po-
larizabilities we use here to obtain bounds on the
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