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Kinetic modehng of the self-structure factor for gases
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A method for optimizing usual kinetic modeling techniques for determination of the dynamic structure
factor from a given kinetic equation is investigated. The procedure has the potential to significantly reduce
the calculational effort, thereby permitting future study of more complex kinetic equations currently being

developed for dense gases. The exact low-density kinetic equation with step potential interaction including
finite-collision-time effects is derived for calculation of the self-structure factor and used to illustrate and test
the kinetic modeling.

I. INTRODUCTION

The classical dynamic-structure factor S(k, (o}
is a directly measurable property of fluids in gen-
eral (via neutron or light scattering} and provides
one of the most detailed views of the dynamics of
fluctuations in equilibrium fluids. The measure-
ment of S(k, (o) not only provides information about
the properties of fluids, but also serves as a guid-
ance for and test of theoretical models and approx-
imation schemes for the statistical-mechanical
description of fluids. In particular, an active sub-
ject of theoretical studies is the collision operator
(or memory function) M that characterizes the lin-
ear kinetic equation governing tbe dynamics of the
equilibrium fluctuations. For detailed comparison
of theory and experiment two distinct problems
may be identified. The first is an analysis of the
many-body problem to determine an accurate ap-
proximate form of the collision operator appropri-
ate for the fluid and state conditions being con-
sidered. A great deal of attention has been given
to this problem in recent years2. indicating the ap-
plicability of kinetic theory methods to liquids as
well as gases. Tbe second problem is a more
technical and purely mathematical question of bow
to compute S(k, (o), once the kinetic equation has
been determined, without substantial loss of ac-
curacy. Clearly, an unambiguous test of a pro-
posed kinetic theory by comparison with measured
S(k, (o) requires that the errors induced by the sec-
ond problem be small compared to the first. Pres-
ently, the most accurate studies of this kinds are
limited to simple gases (primarily hard spheres}
and use a "kinetic-modeling" procedure that at-
tempts to estim'ate the eigenfunctions of the colli-
sion operator and calculate as many eigenvalues
(diagonal matrix elements} as possible to converge
to an accurate determination of S(k, (o). These cal-
culations typically require -30 matrix elements of

where E(k, &o} is given by

E(k, (o) =- (1,h). (1.2)

The scalar product of two functions of v is defined
by

(a, b) —= fdrb (v)av (v )b (v )

and P(v) is the Maxwell-Boltzmann distribution.
Also, in (1.2), h(k, (o, v) is the solution to a for-
mally exact kinetic equation (Fourier-Laplace
transformed with respect to space and time) of the
form~

(-i(o+ik v-M)h=S(k)+rtc(k)ik v(l, h). (1.4)

Here S(k} is the static structure factor, c(k)
=(S- 1)/S is the Fourier-transformed direct cor-
relation function, n is the number density, andI is the 0- m-dependent collision operator. Equa-
tion (1.4) may be solved to give S(k, (o),

the collision operator for errors estimated to be
less than about 2%. Use of simple and tractable
models with few matrix elements leads to quali-
tatively correct results, but large errors -10/p.
The objective here4 is to study the possibility of
optimizing these kinetic models to obtain relative-
ly good accuracy (a few percent}, but maintaining
the simplicity of needing only a few (well-chosen)'
matrix elements. No consideration will be given
to the problem of determining tbe collision opera-
tor itself, except for a simple example to illus-
trate tbe procedure. Specifically, the exact low-
density kinetic equation for the self-structure fac-
tor is derived using a step-potential interaction.
Finite force range and collision time effects are
discussed, along with the Boltzmann limit.

Tbe scattering function is determined from the
density-density correlation function E(k, (o) through

S(k, (o) =2ReE(k, (o),
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S(k, (o) I(k, (o)
S(k) 1 —nc(k}[1+Aui(k, &u)]

with

I(k, (u)=(1,Rl), R-=( i-(o+ik v -M) ' . (1.6)

For simple atomic fluids there are quite good the-
ories for S(k) and c(k), and we shall consider such
equilibrium properties as known. The essential
dynamical properties of the fluid are contained in
the collision operator M, occuring through the
function I(k, &o) and further attention may be focus-
ed on calculation of the latter, assuming a given
form for M. There are several approaches to
such a calculation based mainly on constructing
a solution to (1.4) by modeling the collision oper-
ator or constructing an appropriate variational
principle. However, if attention is restricted only
to the computation of S(k, u&) rather than attempting
first an accurate construction of h(k, ((), v) the
problem may be somewhat simpler, although less
general. Briefly, two categories of approxima-
tions may be identified.

a. Spectral decomposition of M. These models
will be called BGK models (Bhatnagar, Gross, and
Krook} or Gross-Jackson models. ~ Essentially,
the operator is assumed to have a resolution of
the identity so that a spectral decomposition is
possible, e.g. ,

MN() -=(go, M(j)))).
(1.6)

Here {(j) }represents an arbitrary complete set of
functions and P are the associated projection op-
erators. A kinetic model of order A then consists
of approximating (1.8) by taking

M~))= ($~„M$()) =X.ff6~g, c(, p~A

so that

M =(PM(P + Z„(1-a ) -=M„. (1.10)

Here (J'=Z",P . Thus M -is taken to be exact in
some N —1 dimensional subspace and completely
degenerate in the orthogonal complement to that
subspace. With such a model, the correlation
function may be determined from a system of N

i

where the P~ are projection operators onto (pos-
sibly improper) eigenfunetions of M and X~ are the
corresponding eigenvalues. These eigenfunctions
are not generally known so that a modified proce-
dure is usually described, e.g. ,

(f Mg) = Q Q (4, &()l(f, ().)(('a, )()

or, more eompactl, y,

0 = ([1 R' 'g], —6f )+ (5g, [1—R 'f]). (1.12)

Since the variations are arbitrary, this requires

f, =R1, g, =R'1 (1.13}

at the extremum. (It is also possible to show that
g, =ff.} Furthermore, the functional at extremum
is equal to I(k, &o},

s,(k, &o) =I(k, &o). (1.14)

Thus a parametrized trial function f with g =f ~

may be adjusted to minimize S[f,g], to give the
"best" solution to Eqs. (1.13) within the class of
chosen trial functions, and hence a good estimate
of I(k, &a}. The weaknesses of the variational prin-
ciple are the need for a good trial solution and
lack of systematic way to improve the accuracy.

In the next section we reconsider the Qross-
Jackson type of kinetic models with the objective
of using low-order (small N) Gross-Jackson solu-
tions as trial functions which are then optimized
to give an accurate estimate of S(k, &o}. The ap-
proach is somewhat similar in spirit to the vari-
ational principle just described although simpler
in construction.

II. OPTIMIZATION OF KINETIC MODELS

The Gross- Jackson kinetic models, even for
small W, are such that they reproduce the small
((), k limit (hydrodynamics or collisional range)
and the large &u, k limits (free particles}. A qual-
itative interpolation through the transition region
is also provided. However the N =2 Gross- Jack-

coupled linear equations, once the ((j)„M(j)))) have
been computed. As mentioned, typically N & 30
for present calculations. The probable reason for
needing such large Ã lies in the complexity of the
true spectrum of M, which may be expected to
have a point spectrum near the origin with a con-
tinuum extending from some finite value to infin-
ity. How accurately the latter is represented by
the above for given A is not clear. More accuracy,
and presumably convergence, is attained by in-
creasing N.

b. Variationaf principfe. There are standard
methods for solving linear operator equations, ap-
proximately, by minimizing an appropriate func-
tional. For determination of I(k, v) such a func-
tional is

&[f,g]= (1 f)+-(g 1)-(g» 'f)

and where R is defined in Eq. (1.6). Consider the
variation of 8 through variation of f and g:

6s=(1, 6f)+(6g, 1)- (6g, R 'f)- (g, R '6f).

Setting this variation equal to zero gives the re-
quirements .
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son model, for example, overestimates the non-
Gaussian contribution to S,(k, &o} by a factor of 4.9
The. failure to get quantitatively accurate results
in the transition region may be understood as fol-
lows. The resolvent operator R of Eq. (1.6) is es-
sentially the inverse of the sum of a free stream-
ing contribution ik v and a collisional contribution

The kinetic model treats ik v exactly, but re-
places M by its projection into a smaQ subspace
plus a degenerate approximation in the orthogonal
subspace. In practice, the complete set of func-
tions defining the kinetic modeling are orthogonal
polynomials in v, so that for smally the only in-
formation about M enters the model through low-
order polynomial matrix elements of M,

Here

AM -=M —Mg,

R=-(-ko+ik v-M) '

R»-=(-ie+ik v-M„) ',
(2 4)

(1,R„AMR1) =0, (2 5)

leaving I(k, &o) given exactly by the kinetic model

and M» is tPe order Ii kinetic modeling operator,
except with ~~ replaced by a free parameter
X(k, ~). The optimization consists of improving
the kinetic model by choosing X(k, (o) to "minimize"
the second term in Eq. (2.3). In principle, X(k &o)

may be chosen to make this term vanish,

Moz- (v",M v ); n (u, e ~ P. I(k, &o}=I»(k, &o). (2.6)

or in terms of the function I(k, ur},

I(k, (o) = (1,a) + (a~, M a) + ~ ~ ~,
a =—Bol .

(2.2)

The second term in (2.2) is, in general, not at all
well approximated by projection into a low-order
polynomial subspace since the function u is not
well approximated in such a manner. In summary,
the problem of accurate kinetic-modeling centers
substantially on the proper representation of the
coupling in 8 between the ik. v and M contributions.

Nevertheless, the fact that the low-order Gross-
Jackson kinetic models interpolate between the
correct limits suggests that the general behavior
of the function is essentially correct and simply
needs to be properly parametrized. An obvious
choice for parametrization is the degenerate eigen-
value in the order W kinetic model. Generally X&-=(P», Mg»), but this choice itself is arbitrary. In-.
stead, it may be possible to choos.e X~ to optimize
the kinetic model for calculating 8(k, &o). To see
how this might be done, consider the correlation
function and write it as

I(k, ~}=(1,RI)
= (1,R»1) + (I,R»AMR 1)

=I»(k, &u) + (1,R»AMR I). (2.3)

For vanishing ik. v the resolvent operator may be
accurately determined from such low-order matrix
elements (as is well known from the calculation of
transport coefficients}. However, ' in the transition
region ik. v is of the same order of magnitude as
the contribution of the collision operator and this
additional velocity dependence of R effectively
means that the domain of M is more severely test-
ed. For example, near the free-particle limit 8
may be expanded as

R =R OR+/MR 0+~ ~, RQ =(-14P+ ik. v-) ' (2.l)

This procedure departs considerably in spirit from
the original kinetic modeling, since the condition
determining X(k, &o) is only guaranteeing an accur-
ate value for I(k, e), and not necessarily a good,
solution to the kinetic equation. Indeed, if a dif-
ferent correlation function were desired the cor-
responding condition similar to (2.5) would pre-
sumably give different values for X(k, u). Also,
the practicality of this method rests on the as-
sumption that reasonable and tractable approxi-
mations may be found for (2.5). The latter may
be written more explicitly as

A(k, (o) =(1,RM»~RI)/(, IR»[1-6']Rl), (2.V)

where
'

(2.8)

i.e., X(k, ru} is given in terms of that part of M
which acts in the subspace for which the kinetic
model is not exact. The expression (2.V) is the
basis for our optimization of low-order Gross-
Jackson models, and several observations may
be niade. Equation (2.V) is only an implicit ex-
pression for X (since R» on the right side depends
on X) and it is not clear that unique or even reason-
able solutions to this nonlinear integral equation
exist. Furthermore, the presence of R in (2.V)

means, as just noted, that a practical approxima-
tion scheme is required to obtain an explicit form
for this integral equation. Finally, X can no longer
be associated in any simple or approximate way
with a point in the spectrum of M, even if the g
defining the kinetic model are eigenfunctions. It
has been assumed that the order W of the kinetic
model is chosen sufficiently large to give the
proper qualitative behavior over the full range of
k, or values. In practice, this means the proper-
ties of M implied by the conservation laws must
be retained to represent the transition to the hy-
drodynamic limit. For a simple fluid the kinetic
model should be of order N ~ 6. For determination
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of the self-structure factor (coherent neutron scat-
tering) there is only one conservation law so that
the kinetic model need only be of order N» 2. In
both cases N is sufficiently small that an analytical
determination of I„(k,&o), and hence S(k, w}, is
possible in terms of X(k, to).

Since the kinetic model is qualitatively correct
it may be expected that X(k, u&) should be a smooth
function of k, &o, relative to I(k, &a}. Therefore, a
simple and reasonable approximation scheme for
the evaluabon of X from Eq. (2.V) is to expand R
about the kinetic model resolvent operator

8 =R„+R„AMR,+" (2.9)

I=(1,RN1) +(1,RN4MRN1) + ~ ~ ~ (2.11)

Retaining only the leading term gives as a first
approximation for X the equation

X(k, co) = (1,RppM R/1)/(1, R/[1 —6']Rppi) + ~ ~ ~

(2.10)

The expansion (2.10) is not simply an expansion of
~ in powers of 4M since the resolvent operators
RN on the right-hand side of (2~ 10}also are func-
tionals of AM through their dependence on X. Ac-
tually the expansion results from considering X as
a functional of AM and & itself [Eq. (2.V)], and ex-
panding in powers of 4M holding X constant. Trun-
cation of the expansion (2.10}corresponds to a
"renormalization" of the corresponding expansion
for I. To see this, consider the expansion of I in
powers of 4M holding X constant,

first correction to the order-N kinetic model),

(1,RghMRgl) =0 (2.12)

or

~ = (1»~MiRar 1)/(1 R~[1 —5']Barf ), (2.13)

ar =0=(1,R~[1- g]B~AMRN1}
8X

which is just the leading term in the expansi. on of
X, Eq. (2.10). ln practice, it does not appear use-
ful to attempt calculation beyond the form given by
the leading term. It should be noted that even with
truncation at the leading term, the expression
(2.13) may still be made arbitrarily accurate by
increasing the order of the kinetic model, ¹ In
summary, our proposed optimization of the order-
N Gross- Jackson kinetic model for determination
of S(k, &o) consists of equations (1.5) and (2.6), with
X(k, (u} determined approximately from (2.13).

Before studying the determination of X(k, (u} from
Eq. {2.13), it is interesting to see the form of &

that would result from application of the variation-
al principle. Assuming for the trial function f, the
solution to the order-h kinetic model, the func-
tional (1.11},becomes

S[f S]=2(1 RN1) - (1»NR 'Rarl)

= (1,Rgl) + (1,R„AMRN1 ). (2.14)

Minimization of the functional by variation of ~ re-
quires ~ satisfy

The convergence of this perturbation expansion
may be improved by requiring the second term on
the right-hand side of (2.11) to vanish (i.e., the or

+ {1,R„~R„[1—6]B„1)

)
1((1 R~M R~[1 —6']B~l) + {1RN[1 —6']RNM R~l}

~(1,R.[1-~]R.[1-~]R.1) (2.15)

According to the variational principle, this result
for X is now to be used in {2.14) to give an esti-
mate for I(k, &o):

I,~(k, (o) ='(1,R~l) + (1,R~rVfRgl) (2.16)

This result differs from the above optimization
scheme in two important respects. First the vari-
ational expression for &, Eq. (2.15) is similar to,
but somewhat more complicated than that of Eq.
(2.13). Additionally, the variational estimate of I
is not simply given by the Gross- Jackson form for
I, but requires also evaluation of the second term
on the right-hand side of (2.16). Indeed the differ-
ence between the variational- method and the above
described optimization scheme is that the latter
requires. that X be determined from the condition
that the second term on the right-hand side of Eq. S,(k, tu) =2ReI,(k, ru), (2.1V)

(2;16) vanish, while the variational method deter-
mines a value for this term such as to yield an
extremum. There is no obvious way to determine
which of these two estimates of I is more accurate
(a determination which may in fact change with
k, &o}. However, we choose not to pursue the vari
ational method due to the significantly greater cal-
culational effort required.

To study the utility and accuracy of the optimi-
sation scheme defined by equations {1.5), {2.6),
and (2.13), the remainder of our investigations
here will be limited to the somewhat simpler px'ob-
lem of calculating the self-structure factor
S,(k, ar), determined from a kinetic equation like
(1.4) with S(k}=1, c(k) =0, and a different colli-
sion operator denoted M„
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I,(k, v) =(1,R,1),

R,(k, v) =(-i&u+ik v —M,} ' .
(2.18)

(2.19)

0~v~~(G*,M,G)
2A, [1+zP(z)+-,'P~(z)] ' (2.31)

The above optimization scheme now applies to I,
with only the replacement everywhere of M by M, .
To be more explicit, a specific choice of N should
be made to define the Gross- Jackson model to be
optimized. Since the objective here is to reduce
the calculational effort the smallest value of N
will be chosen, consistent with. the above mentioned
requirement that the conservation laws be accur-
ately retained. For self-correlations there is only
one conservation law, conservation of mass, re-
flected by the property

(1,M,h) =(h, M,1) =0 (2.20)

M, 0P+A—(i —P),
where I' is the projection operator onto 1,

Ph =1(l,h) .

(2.21)

(2.22)

The optimized Gross-Jackson estimate of S,(k,v)
is then defined by

S,(k, &o) =2Re(1, R,l),
R2=(-iu& —A+ik. v+AP) ',

with X determined from

(1,R2M+21)
(-1,Rgi —P~-1) '

(2.23)

(2.24}

(2.25)

The effect of the projection operator may be eval-
uated using the identity

B2 —Q —QXPA2 (2.26)

with

for arbitrary h (i.e., the function 1 is an eigenfunc-
tion of M, and its adjoint with zero eigenvalue).
The lowest-order kinetic model incorporating
(2.20) is N =2,

where Q(z) is the complex plasma dispersion func-
tion,

oy a)2

4(z) =- ~ dP— (2.32)

limA(x, y) =~(k v, M,k v),
Vp

A
~ ~ ~where k is a unit vector in the direction of k, and

the corresponding limit on the y dependence (if
any) of M, is also implied. The right-hand side of
(2.35} is just the usual value A2 assigned to the
Gross-Jackson model when Sonine or Hermite
polynomials are used as the complete set of func-
tions, the first two of which are chosen to be

tj', (v) =1,' )1),(v) =(V2/v, )k v

(2.35)

so that (2.35) is recognized as

and the variables x, y, a, and ~~ are defined by

z =-x —iA*y, x —= ~/kvo, y =—Ao/kvo, A~ —= A/Ao.

(2.33)

Finally, Xo is a constant frequency to be chosen
for convenience, typically of the order of the col-
sision frequency. The variable x is chosen because
in the free-particle limit (R depends on m and k on-
ly through x,

6t(x, y) i), , —21m P(z) i)„,- —2&we " . (2.34)

Also, y may be interpreted as a measure of the rela-
tive importance of collisions (through A,) and free
streaming (through kv, ). Hence y- 0 corresponds to
the free-particle limit while y- ~ corresponds to the
collisional or hydrodynamic limit. To suggest a nat-
ural choice for Xo we first consider the hydrody-
namic limit of A.,

G(k, &o)= (-iver —A+ik v) ' (2.27)
limA. (x, y) =()„M,tj),) =A, (2.36)

to give

(1,G)S,(k, (o}=2Re1
A(1 G) ' (2.28)

(2.29)

St —= kvDS, (k, &o},

where v, is the thermal velocity, vo= (2/Pm)'~',
P —= (k»T) '. Then equations (2.28) and (2.29)
may be written in the form

te(e, y}=aRe) . qe
—)),

e()
ii+ I+y (2.30)

(G~, M,G)
'=(G*, GI (i-, G}~.

It is convenient to introduce a dimensionless form
of S,(k, &o},

The optimized model and the usual Gross-Jackson
model therefore agree in the hydrodynamic limit.
It may be noted that in kinetic modeling there is
the freedom to choose an ordering among the com-
plete set of functions. Thus when the N —1 sub-
space is chosen, the specific function P» defining
&& must be one of the remaining members of the
complete set, but is otherwise arbitrary. Usually,
the ordering is selected according to the magnitude
of the diagonal matrix element M, or the or-
der of the polynomial defining g»; here, however,
the limit value of X is determined automatically.
Since this value is also a measure of the collision
operator in the collisional (hydrodynamic) limit,
it is a natural value to choose for Xp to define the
dimensionless quantity A*,
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~0=- l»m~(~, ~) I. (2.3 I)

It is further possible to recognize that the first
Enskog approximation to the self-diffusion coef-
ficient is then

Ci

where y is the friction constant. The exact self-
structure factor may be calculated directly from
the known Green's function for the Fokker-Planck
equation,

D=(Pmkq) ~ (2.3&) S,(k, ~) =2Re j &f e""'expl t+,(1 —e~')
I

0 ~ my my'
so that, for example, the variable y becomes

y =vo/2Dk, (2.39)

III. TESTS OF THE OPTIMIZATION SCHEME

In this section the self-structure factor is cal-
culated from two idealized kinetic equations for
which accurate results for S,(k, u)) are available.
In this way the N =2 Gross- Jackson kinetic model
and its optimization may be compared and the ex-
tent of improvement'on optimization assessed. The
first case is the Fokker-Planck equation, for which
S,(k, &o) may be calculated exactly. The second ex-
ample is the hard-sphere Boltzmann-Lorentz- En-
skog equation, for which S,(k, e) is known from an
N =35 kinetic model.

A. Fokker-Planck equation

The collision operator M, for a fluid described
by a Fokker-Planck equation is given by

Mg MFp,Irp y(2v 0+@ v' +o) s
2 2

(3.1}

It has been suggested that a variety of gases inter-
acting via different intermolecular potentials is
well described by a universal expression for $(x,y)
when the choice {2.39) is made. s Further comment
on this point will be made in Sec. IV.

To summarize, the self-scattering function is
described by Eq. (2.30). The usual N =2 Gross-
Jackson model (in this case, single relaxation
time model) corresponds to X*=-1. However,
the definition of X, given by (2.31), is in terms of
a matrix element of M, with respect to the func-
tion 6(k, ~) whose form varies with k and &o and
hence samples different portions of the spectrum
of M, for different values of these variables. For
small 0 and , . 6 behaves as a polynomial in v but
for large k and &, G behaves more like the free-
particle solution to the kinetic equation. This op-
timization scheme is essentially the same as that
suggested by Bess" for calculation of pressure-
broadened atomic line shapes. In the latter case
the "collision operator" describes collision-in-
duced transitions between internal atomic states
and the correlation function of interest is the atom-
ic-dipole autocorrelation function. Although no
calculations appear to have been done for this
case, the results given here suggest that the meth-
od would be useful for study of the correlation be-
tween Doppler and pressure broadening. '2

st(~, x) =»eA (&)/[i+ ~"0(& }9

(kvo)2 (6~,Mpp6)
2y [1+zA(~)+-'0'(z)) '

(3.3)

(3.4)

where use has been made of the fact that &0, as
defined by (2.3V) and (2.35), is equal to the friction
constant y. Substitution of {3.1) into (3.4) gives

(kv, )' (1,6')
[1+&4 (&) + 3.4'(&)1

'

The use of the identity

(1,6")= [2/(n -1)(kv,)'j

& [(1,6" 2) + (-ia& + X)(1,6" ')]
gives finally the equation for X~,

1 [1-z'+z(-,' - z'}y{g)]
3 [1+zan(z)+-, y'(z)J (3.6)

Since the right-hand side is a highly nonlinear
functional of &~ there is no assurance of a unique
solution for given x and y. However, uniqueness
is fixed by the condition that the real and imagin-
ary parts be continuously generated from the value
lim„. &*(x,y) =- 1. Solution to (3.6) is obtained
for each value of the pair x, y by iteration, typic-
ally with convergence to within 1% after four
iterations. As noted, both the usual and optimized
Gross- Jackson kinetic models agree in the' free-
particle (small y) and hydrodynamic (large y) lim-
its. The best test of kinetic modeling is, there-
fore, in the transition region corresponding here
to roughly 0.3 &y + 3. Figure 1 shows a compari-
son of the N = 2 Gross- Jackson kinetic model (X*
=- 1) calculation of tR(x, y) at y =1.25 with the
corresponding optimized and exact results. The
maximum error of the Gross-Jackson model is
about 12% at x =0 whereas the optimized model
has a maximum error of 2% at x =0. Figure 2
shows that this improvement is uniformly good for
all y with comparison of the calculated halfwidth

or

@(&,y) =2 && cos(xf) exp
I

—+-~(1—e "')
I .

tI' eo

~)

(3.2)

Now consider the calculation of ${x,y) for the
Fokker-Planck equation from the optimized N =2
Gross- Jackson kinetic model, (2.30) and (2.31),
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FIG. 2. Halfwidth at half maximum (z&y2) for the
Fokker-Planck model; exact solution (—), N=2 Gross-
Jackson model (-—), and optimized N=2 model (g).

0.20 GAO 0.60 080 I.OO
X

FIG. l. Self-structure factor (Rg, y) for the kokker-
Planck model; exact solution ( ), X=2 Gross-Jack-
son model (Q), and optimized ¹ 2 Model (g).

of St(x,y) at half maximum as a function of y.
Again the optimized calculation is a considerable
improvement over the usual N =2 kinetic model
results.

S. Hardwphere Boltzmann-Lorentz-Enskog equation
I

The Fokker-P1anck collision operator has only a
point spectrum at equally spaced intervals and sim-
ple eigenfunctions (Hermite polynomials). Gen-
erally, the collision operator for a fluid may be
expected to be considerably more complex, '3"4

with both discrete and continuous spectra, and
therefore more difficult to model. A more realis-
tic test of the kinetic modeling than the Fokker-
Planck equation is provided by the hard-sphere
Boltzmann-Enskog equation'5 (Boltzmann-Lorentz-
Enskog equation, for self-correlations}. Although
this is a rather idealized potential model, it ade-
quately represents many properties of simple

M [kz]=n go(o} dv~g(v2) J dQr g8(-r g)

(3.V)

&&[&(v) —&(v'}] (3 3)
Here g=- v2 —v is the relative velocity, g(o) is the
hard-sphere radial distribution function at hard-
sphere diameter o and v' is the scattered velocity
(see Appendix A for more explicit definition of the
notation). Substitution of Eq. (3.'1) into Eq. (2.31)
for &* gives

with

(kvo)~ (G+, MzG}
2a, [I+zp(z)+-,'p'(z)] (3 9)

dense atomic fluids when a suitable choice of hard-
sphere diameter is made, and the collision opera-
tor reflects most of the mathematical structure of
the operators for more general force laws. The
Boltzmann- Lorentz- Enskog collision operator re-
sults from retaining binary collision contributione
modified by a class of excluded volume effects in-
duced by the preserice of particles other than the
colliding pair. The form of the collision operator
is given by

(Gv, MvG) =«v'g(a) jdvCv, p(v)y(v, ) J d()v ((&( v i()(-i«v ik v-X)'-"
&&[(-i(y+ik v —A.) '- (-ia&+ik v' —&) '], (3.10)

Ah, (z )
[I +z P(z) +-,'P'(z)] (3.11)

and for hard spheres Eq. (2.3V} gives Xo
—4v2v

no' g(o')vo. This eight-dimensional integral may
be reduced to a two-dimensional integral; the de-
tails are provided for the step-potential model in
Appendix 8 and will not be repeated here. The cal-
culational form of X* is found to be

A~(z) = —Jt due"
W «I

X dsse
0

s2

.(u+ v2z)'- s'

I, , &u+~2z+s 't

4 $u+ +2z —s

(3.12)
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FIG. 3. R(x,y) for Boltzmann-Lorentz-Enskog hard-
sphere kinetic equation; N= 2 Gross-Jackson model (—),
optimized N = 2 model (-—), and N = 35 Gross Jackson
model ().

6.0-

The function Ah, (z) is readily evaluated by numeri-
cal integration (see Appendix 8) and an iterative
solution to (3.11}is again found to converge to
within 1%% after four. iterations. Figure 3 shows a
comparison of N =2 Gross- Jackson and optimized
kinetic models with a presumed convergent N =35
kinetic model, for y =1.46. The corresponding
percent errors of the N =2, N = 7, and optimized
N =2 models, relative to the Ã =35 model, are
shown in Fig. 4; the halfwidths at half maximum
are shown in Fig. 5. These results indicate that
the optimized N =2 model is a, significant improve-
ment over the usual N =2 model with good accur-
acy over the entire range of y values. Further-

FIG. 5. Halfwidth at half maximum for Boltzmann-
Lorentz-Enskog hard-sphere results; N = 35 Gross- Jack-
son model (—), ¹ 7 Gross-Jackson model (1), N=2
Gross-Jackson model (—-), and optimized N=2 model
(o).

more, computer time for calculation of (R(x, y} at
a given value of y is of the order of 1 min com-
pared with several, hours" for calculation of all
the matrix elements in the N =35 kinetic model.

Since the improvement over the usual N =2 mod-
el is entirely controlled by X* the differences are
better illustrated by plotting the real and imagin-
ary parts of this parameter. Figure 6 shows that
&$ decreases from -1 as the transition is made
from the hydrodynamic to free-particle limits.
Also, for large x, X* approaches -1 for ally, so
that variation of X* with x is greatest in the free-
particle region. Similarly, the imaginary part of
&* is zero for all x at sufficiently large y, but in-
creases with x as y decreases. As anticipated,
the variation of ~* with x and y is smooth, con-
firmirig the supposition that &* should be an easier
function to approximate than 8 itself.

I

IV. DILUTE GAS-STEP POTENTIAL

0
O

4.0-

2.0-

The Boltzmann- I orentz-Enskog collision opera-
tor just considered is independent of k, +. Further-
more, the temperature dependence of the matrix

1.0

x
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FIG. 4. Percent deviation from N = 35 model for
Boltzmann-Lorentz-Enskog hard-sphere results; N = 2
Gross-Jackson model (e), N = 7 Gross-Jackson model
(0), and optimized N = 2 model (—).

7-

FIG. 6. Real and imaginary parts of A, * for the
Boltzmann-Lorentz- Enskog kinetic model (optimized
N=2 case), for different values of y.



GROOME, DUFTY, AND LINDENFELD 19

elements of this operator may be simply removed
by proper normalization. Generally, the collision
operator for more realistic potentials, or more
accurate treatment of density effects, depends non-
trivially on all of these parameters. '" To illus-
trate this dependence and to show that the optimi-
zation scheme remains tractable for other poten-
tial models, the exact low-density collision opera-
tor for a fluid interacting via a step-potential in-
teraction is discussed in this section. ' The step
potential is defined by

0 for rq~~0'

V for r
where r~~ denotes the relative coordinate of the
pair of particles ij and Vo is a constant. The de-.

r

rivation of the collision operator is given in Appen-
dix A, with the result,

Mg M8y

M,y =Kg+ hM,

(4.2)

(4.3)

where M& is the Boltzmann-Lorentz operator for
the step potential,

Ms[h]=no' Jl dQdv2$(v, )r g8(-r" g)

x(8(4V /m -(r"' g) )[h(v) —h(v').]

+ 8((r' g)2 —4V0jm)[h(v) - h(v")]j

(4.4)

and ~ represents the dependence of k and ~,

ddd[d[=vv ~ dv~d(v~) f dQ (r )[d( .8r) -d(( 8dr) - drrVm)

x(1 —exp[i([0 Kv)-T "P[h(v'"}—h(v")]

—8(& g)e "0(I —exp[i((o kv-)T])[h(v) —h(v~)]] . (4.5)

The velocities v', v", v", and v~ correspond to
the four types of possible complete and partial
collisions 9: (i}v' is the scattered velocity for
specular collisions at the well edge [Fig. 7(a)]. (ii)
v" is the scattered velocity for partial penetrating
collisions [Fig. 7b)]. (iii) v"' is the scattered vel-
ocity for completed penetrating collisions [Fig.
V(b)]. (iv) v~ is the scattered velocity for partial
separating collisions [Fig. 7(e)]. The contribution
of collisions in Fig. 7(c) have been incorporated
into those of Fig. 7(e}. The remaining notation is
defined in Appendix A. The collision operator
(4.3} is the exact low-density form for all h and

The dependence on k and ~ is due to the finite
value of collision times 2" and T" associated with
the partial collisions defining v* and v". When
these times are small relative to the correspond-
ing times of the physical phenomena being studied
(e.g. , &uT «1, kvoT «1, etc.) the usual h-, [d-in-
dependent Boltzmann form (4.4) results. This and
other limits follow directly from Eqs. (4.3)-(4.5).

Hard-sphere limit: (PV0 ~ ~)

«I
J[g

(A) (B)

)vm M[d[=vv ~l,dg fdv~d[r, )r" gd( r d)-"
x[h(v) —h(v'")] =M [h].

(4.6)

The bar&sphere result M&, agrees with M&, Eq.
(3.8), in the low-density limit.

Boltzmann limit: (ko « 1, u+.0 « 1)

In this case the factors f and f", defined in Eq.
(A21), go to zero when space and time scales are
measured in units of and ~0', respectively.
Therefore, 4M 0 and

lim M, M~,
Ae«1

w/+~1
where Ms is defined by Eq. (4.4).

(C) (E)

FIG. 7. Collision dynamics for the repulsive step
potential at the potential radius: (a) the case r= 0',

g&0, (r.g)2&4V(}/m; (b) the case r=o', r"-g&0,
g)2&4V()/m; (c) the case r=o, r" g&0; (d) the case

r=o', r" g&0; (e) r=o, r g&0.
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High-frequency (short time) limit: (uT ~ )

In this limit f and f" go to 1 [in the sense that integration with respect to a smooth function of
(v, 8) vanishes in this limit]. Therefore,

I[)s M, [h(v)]=vvl f dvs4(vsl JldQr g[S( rg)[-S(4Vd'm —(r IT) )[h(v) —h(g')]

+ 8((r g )P —4Vp/m)[h(v ) —h(v")])

-8(r" g)e "p[h(v) —h(v~)]) . (4.7)

This operator represents the three types of colli-
sions that can occur instantaneously.

Thus all expected limits are v.erified.

A. Boltzmann limit

Consider first the effects of the PVp dependence
in M,~ without regard to the k and to dependence,
i.e., in the Boltzmann limit. It will be shown be-
low that for dilute gases the Boltzmann limit is
indeed accurate for calculation of [R(x,y}. Since

(kv~) (G~, MZG)
[I +z y(z) + -,'y'(z) J

(4.8)

with

PVp is a measure of the interaction energy relative
to thermal energy it is expected that collisional
narrowing of [R (x, y) should increase with increas-
ing PVp, for given k. Substitution of (4.4} into
(2.31) gives the equation determining &~ for this
case,

(Gs, MsG) =ss fdv 4(v) fdvl 4(vs) fdG(r g)lt( —rsrg).
& G(k, &a, v ){8(4Vp/m —(r g ) ) [G(k, (d, v ) —G(k, (0, v')]

+ 8((r g )2 - 4 Vp/m) [G(k, (d, v ) - G (k, (4), v"')]]. (4.9)

d4,p(z, P Vp)

[I+Z7(z)+-.'e'(z)1 '

A„(s, gV, ) = —f dss" f dssr'
v cl 0

xB(M, s, PV'„z),

S2
B(Q 4 S 4 P Vph Z )

(pp + /2 z) —s

(4.10}

E=O

C,qp(s, PVp) =a (2E + 1)8(s —PVp)

1

dq{P&(2[aq+ (1-a q)' P

0

x(1. —q) ] —1}
—Pg (2aPq —I )),

Cp(s PVp) =1. (4.11)

Here Q[ are the Legendre functions of the second

The eight-dimensional integrals in Eq. (4.9) may be
reduced to nested three-dimensional integrals.
The details are given in Appendix 8 with the re-
sulting expression for X*,

kind for complex argument and P& are the Legen-
dre polynomials. Also a2=- (1-PVp/sP). The l =0
term reproduces the hard-sphere result, Eq.
(3.12) (aside from the Enskog factor g). The cal-
culational effort to determine XP'p from (4.10) is not
significantly greater than that for the hard-sphere
case, and the computer time to calculate Ot(x, y)
for given y is still of the order of minutes. Typic-
a11y 3 to 10 terms in the $ sum are required. Fig-
ure 8 shows [R in the transition region for PVp
=1,2, 4, and . To emphasize the variation with
PVp, the variable F=X„/kvp has been held constant
rather than y [X„—= ][.p(PVp- ~)]. As expected, larg-
er PVp yields a narrower line shape. Figure 9
shows the effect of the optimization on A,* as a
function of PVp.

It has been observed that S,(k, v}, or [R(x,y), is
not sensitive to the intermolecular potential beyond
the differences reflected through the diffusion'co-
efficient. e This is rigorously true of the usual '

N =2 model since in that case X~ = —1 and [R (x,y)
has the universal form,

[R(x,y)]„&-2Re{p(x + iy)/[i +y Q(x + iy)]]. (4.12)

The potential form has been completely eliminated
from (4.12) by the choice of dimensionless vari-
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FIG. 8. R(x,y) for Boltzmann step-potential kinetic
equation for several values of the potential strength
p Vo, e + F= 1. 46.

able, y=vo/2Dk [Eq. (2.39)]. More generally, any
additional dependence of St(x, y) on the potential
must occur through A.*(x,y). Figure 10 is the same
plot of Xg as in Fig. 9 except with y as a variable
rather than F. Clearly, most of the PVO dependence
has been removed in this way, except at small y.
However, at smally, collisions are dominated by
free streaming so that the contribution to +(x,y)
from ~* is lessened. Consequently, it is expected

that 6i(x, y) is even less sensitive to variations in
potential parameters than ~*. Figure 11 shows
the halfwidths for PV0=1, 2, 4, and ~. While there
is not much variation with PVO there is a noticeable
trend for the halfwidths to approach a limiting form
(the broken curve in Fig. 11) defined by the half-
widths associated with (4.12). This may be under-
stood as follows. As PVO decreases, all matrix
elements of M~ tend toward zero; in particular,
Xp-0 as PVD 0. Therefore, decreasing PVO at
constant y requires decreasing 0 and it is then
easily verified that

lim ~~= —1
QVO» P

.8-

1.0

.8-

Pvo= 4

7-

6-

5-

O 6 4

Vo= 1

.2-

1.0 2.0 3.0 4Q

I 1 & I I
'

I I I I I I

.4 .8 1.2 1.6. 2.0 2.4

FIG. 9. Real part of A*{x,Z) =A, *g,y) for several
values of P Vo as a function of F =—A, Qkep (Boltzmann
step potential).

FIG. 11. Halfwidth at half maximum for @(x,y) from
the Boltzmann step-potential kinetic equation for P Vo
=1,2, 4, and. ~. The N=2 Gross-Jackson model is also
shown ( ~ ~ ) as the limiting case P Vo 0, Eq. (4.13).
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and consequently

Iim 6t(x y} I2) g ggt 2Re. ~
~

~

(I{)(x+ iy)
gy00 ' ' $+P x+$p ]

(4.13)

In Fig. 11, if both PVp and hard-core diameter
were varied in such a way as to maintain constant
collision frequency it may be expected that no sig-
nificant changes in the halfwidths would be observ-
ed. For the same reasons, no discernible differ-
ence between, e.g. , Lennard-Jones, hard sphere,
and step potential is expected as long as the po-
tential parameters all lead to collision frequencies
of comparable size.

B. Finite~llision-time effects

Quite generally, apart from hard-sphere systems,
the collision operator itself depends on k and rd.
This occurs for the step potential through the con-
tribution from AM, and arises as a consequence
of the fact that the centers of the colliding pair are
separated by a distance of the order of the scatter-
ing length and that finite times are required to
complete a collision. For large k and w the colli-
sional details over small space and time scales,
respectively, become important for the correct
determination of matrix elements of M, . However,
for a dilute gas these variations occur at such
large values of k and u that they would be very dif-
ficult to detect in the structure of 6t(x, y). To see
this, consider the order of magnitude of the k and
{p dependence of 4M from Eg (4.5}. The controll-
ing factors are 1 —exp[i(&o —k.v)&] and 1 —exp[i((d

'

—k. v)T "]. From Appendix A, T and T" are of the
order of magnitude of o/vp, the average collision
time. Thus the v and k dependence will be impor-
tant if aro/vp ~ 1 and ho + 1. Now consider the ord-
er of magnitude of the collision frequency ~0 in a

ically ~0 +~a'2~0, where ~2 i~ an
estimate of the cross section. The variables x and

y may be written

x = (d/hvp = ((do/vp)/ho,

y =Xp/hvp- (vp*)(1/ho),

where p*-=no3. Consider first the k dependence.
If ko'&1 then ySmp*. But for a dilute gas p*-10 2

soy &wx10, i.e., (R(x,y) is effectively indepen-
dent of the collisions regardless of their k depen-
dence. Similarly, from the above, x-((2)&/vp}(y/
vp*}. If {oo'/vp a1 and y is of the order of 1, then
xR (&p*) ', or x& v '&&10 . This. corresponds to a
region far out in the wings where {R(x,y) has de-
creased many orders of magnitude. %e conclude
then that while the k and e dependence of M, exists
and (as will be shown below) is important for the
determination of M, this dependence is not reflect-
ed in {R(x,y) for dilute gases. The collision fre-
quency is considerably larger for dense gases and
liquids, however, and these effects become more
significant for neutron scattering.

A convenient way to discuss the k and v depen-
dence of M,~ is to define the associated equilibrium
collision frequency, i.e., the contribution from the
terms involving only the unscattered velocity. in
Eqs. (4.4} and (4.5) [with h(v) =1]:

«(2;te, v)-=eve fdve p(vs) f do(v g)s(i g){)+e "e —e "e vs"p[i(te —iv v)(gv/ge)v g{). (4.14)

vs(v) =sv fdv g( )efdveve(v g)S(P 2)

and t,he frequency-dependent term is

p (k, te, v ) =sv fdvs P(ve)

(4.16)

x dgr g erg

x exp[i((d —k v )(2o/g')r" g].

(4.17)

These integrals may be readily reduced to

This may be written

v(k, ar, v) =(1+e "p)ve(v) —e "pp, (k, {o,v),

(4.15)

where ve(v) is the usual Boltzmann frequency

p(k, te, v)=-—ve' f dpeed siskgp(n
p

x [I —(I —in/p)e'~ "],
(4.19)

where $= v/vp vp: pe(v-=0) =2&mno'vp, and

n —(2o/vp)(&0 —k. v ) =(2okp/vpy)(x —k g). (4.20)

The integrals (4.18) and (4.19}have been computed
numerically to determine v(k, (2), v } as a function of
the dimensionless quantities n and (. Figure 12
shows the variation of the real and imaginary parts
of v(k, v, v) relative to the Boltzmann collision
frequency for PVp' —1 and several values of g. Fig-
ure 13 shows the same quantities at $ =1 for PVp
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tions arising from particles initially inside the
well, but on the opposite hemisphere [Fig. 7(c)].
As the frequency increases some of the completed
collisions transform to partial collisions, but ad-
ditionally the partial collisions of the types in
Figs. 7(c) and V(e) no longer cancel. Instead, the
partial collisions are counted as being among those
whose momentum has changed in a time &t- {d '.
Equivalently, more phase space contributes to the
number of particles changing momentum over a
short time interval since initially overlapping par-
ticles contribute. These additional collisions may
be estimated by counting the number of overlapping
particles escaping through a hemisphere per unit
time and area,

4v- e+"Ovs(v).

The factor e 0 comes from the decreased prob-
ability of overlap due to the repulsive potential
and &a(v) arises from the estimate that the rate of
collisions is equal to the rate at whi. ch overlaps
separate. Thus

I

Re[~{k,(o, v)/~, {v)]~, ,- I + e""0

10 12 14

(to-k v)
Vo

FIG. 12. Real and ixnaginary parts of the collision
frequency relative to the Boltzmann collision frequency
for several values of the relative velocity at P Vo= 1.

which is in substantial agreement with Fig. 13. The
velocity dependence of Fig. 12 simply reflects the
actual collision time decreases for increasing vel-
ocity so that the occurrence of partial collisions
occur at correspondingly higher frequencies.

V. DISCUSSION
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p&Q. 13. Bea]. part of the collision frequency relative
to the Bo}tzmann coll. is ion frequency for several values
of PVO at )=1.

=1,2, 3. The increase of v(k, to, v) over the Boltz-
mann value may be understood as follows. For
low frequencies, corresponding to dynamics on a
long-time scale, partial collisions of the type
shown in Fig. 7(b) do not occur since there has
been sufficient time to convert them to completed
collisions. Similarly, the partial collisions of the
type in Fig. V(e) vanish due to a cancellation, after
a time greater than a collision time, of contribu-

The optimization scheme discussed in Sec. II,
specifically Eqs. (2.30) and (2.31) for the self-cor-
relation function, is seen to provide substantial
improvement over lowest-order kinetic modeling
for several kinetic equations. Although the kinetic
equations considered here are relatively simple,
the collision operations (aside from the Fokker-
Planck operation) are quite complex mathematical-
ly and probably provide adequate tests of the
scheme under quite general conditions. It should
be clear that there is a great deal of flexibility
associated with the expansion (2.9) and choice of
reference collision operator. For example, in
discussion of mode-coupling corrections to the
collision operator one might choose 4M to consist
of only such terms, and evaluate the reference
fluid [i.e. , &~ in Eq. (2.11)]using the optimized
N =2 Gross- Jackson model with &* determined
without the mode-coupling effects. Other density
effects might be treated in this way using the Ens-
kog model as a refererice.

Although the discussion of Sec. II included the
modeling for S{k,tu), the calculations presented
here were limited to those for the self-structure
factor. The main difficulty for calculation of
S(k, &u) lies in the fact that the hydrodynamic sub-
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space is five dimensional for that case, and there
is considerably more algebraic complexity in the
expressions for &~. However, this is not a signifi-
cant problem beyond the fact that all hydrodynamic
matrix elements of Mmust be provided and for gen-
eral k- and +-dependent collision operators these
are known only for the Enskog operator. Even for
the step potential disucssed in Sec. IV the k and +
dependence is quite difficult to obtain. We hope to
discuss this problem elsewhere.

Regarding the results for the Boltzmann equation
for the step potential, perhaps the most significant
points are reflected in Fig. 11. Here it is clear
that much of the dependence of S,(k, &o) on the po-
tential may be removed by scaling k to &k' where
& is the self-diffusion coefficient. Consequently,
S,(k, (o} does not provide easy access to informa-
tion not already contained in &. However, as Fig.
11 shows, there is a measurable residual differ-
ence between the halfwidth scaled this way for
PVO —0 (dotted line) and PV0 ~ (solid line), so
that different potential models can be distinguished
beyond their associated self-diffusion coefficients
in so far as the potential strength, or more specif-
ically the collision rates, differ. Such differentia-
tion would be enhanced by the inclusion of the k
dependence of the collision operator. As indicated
in Sec. IV, however, at low density the k and v
dependence of the collision operator only affects
the shape of S,(k, (d} in the far wings. At higher
densities these modifications should become more
manif es t.
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APPENDIX A: LOW-DENSITY KINETIC EQUATION

The low-density kinetic equation may be obtained
directly from a cluster expansion of the collision
operator. The s cluster defines contributions to
the collision operator from a correlated or inter-
acting group of s particles with relative contribu-
tion of the order (no )' '. The cluster expansion,

' therefore, generates a formal series for the col-
lision operator in powers of the density. The ser-
ies is only formal since it is known that there are
divergent parts from each s cluster for s & 3 (in
three dimensions). However, there has been sub-
stantial study of the rearrangement of this series
necessary for the removal of these divergencies
and in all cases the contributions from s «3 are
unchanged arid still dominate at sufficiently low
density. While there is no rigorous proof of this

fact we shall assume here that the lowest. -order
cluster contribution does, in fact, define the low-
density limit of the collision operator, independ-
ent of any rearrangement of the higher-order
terms in the density expansion. There is one oth-
er point of caution, however, regarding the uni-
formity of this low-density limit with respect to
time. The coupling of macroscopic (hydrodynamic)
modes can yield contributions on a long time
scale not present in the low-order cluster expan-
sion. However, at low density these contributions
are very small and occur on a time scale much too
large to be observed by neutron or even light scat-
tering.

The cluster expansion for kinetic equations is
well described elsewhere, ~5 and the derivation
leading to the low-density kinetic equation will on-
ly be sketched briefly here. More detail will be
given to the reduction of the formal low-density
equation for the step potential to a form suitable
for calculation, to illustrate both the simplifica-
tions and care required in using discontinuous
potentials. Only the kinetic equation for self-
correlations will be considered.

A. Low4ensity kinetic equation

The self-structure factor S,(k, m) is defined in
terms of a correlation in a way similar to Eq.
(1.1) for S(k, ar),

S,(k, (d) }=2Re F,(k, a&),

F(dte) =f, d,
ee'"' fdFe'

x —„(~(r-q (t))~(q (0))& (»)

where q&(0) and g&(t) are the positions of particle 1
at times 0 and t, respectively, and N i.s the total
number of particles. The expression for F,(t), &u)

may be written

( te)F= xf dx, e"'" '(F„x), te

where x& denotes the position and momentum of
particle 1. Also, g "(x&, (d} is the first member of
a set of functions defined by

n'y")(x, ~ .x, ;(u) =- dt e'"' —-'

(N —s}t

X dXs i ~ ~ ~d+NPO~ q

(A3)

where po is the equilibrium canonical distribution
function. The time dependence of the 5 function
may be represented by

S(q&(-t)) = -'
e'SN(q, ),
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where ~„is the Liouville operator for the system.
Equation (A3) may then be written in the suggestive
form

ff'( '(x, ~ x, ;(8))=- U(x, ~ x,;&a)5(q, )

with the operators, U(xf ~ x,;(d), defined by

(A4)

W(:... , ; )=— (A5)

The col1ision operator may now be defined in terms
of the U operators as follows. The functions g

'

satisfy the Laplace transformed Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY}hierarchy of equa-
tions, the first one of which is

(-e»+et Vt)8"'-» fdec dte8" =8(Pt)8(t{t)

(A6)

Here ((])(P) is the Mmfwell-Boltzmann distribution
and 8&2 is defined by

f]„=[v,„V(r„)j (v, , v, ) (Av)

and V(rf2) is the intermolecular potential at sep-

U(x„... , x,;te}-=f die'"'U(x„. .. , x;,1},
0

xt
U(xf, ... , x„t)—=

(
— —

) (
dx„f dx„W(xf, ... ,xN;t),

"U '(xf, (0)4(xf,~) = 4 (pf) 5(qf).

(A9)

This equation may be written in the notation of the
text by defining

k(k, », vt}=8'Q, ) fd e"t}ttdt"(v, ;») {A}0}

so that Eqs. (Al) and (A2) become

S,(}'Q, (8)) =2Re(1, If)

and h satisfies the kinetic equation

(All)

arationr„=—q, —q,. This form of 8„assumes aeon-
tinuous (and differentiable) potential; however, the
derivation holds for discontinous potentials as well
with suitable modification of ~&2. The kinetic equa-
tion is a closed equation which follows from (A6)«( «(once P

2' is expressed in terms of )I) f'. This may
be done formally by considering equations (A4) for
s =1,2 and eliminating 5(qf) between them, i.e.,
ffg (xf 1 x2, (8)) = U(xf ex»e)U '(xf}&o)p "(xf8(o). (A8)

Substitution into (A6) then gives the desired kinetic
equation

(-i»vvt. vt)8 ' —f dxt8ttU(xt xt te}

(-i(8) +ik v-M, }If(k, &o, v) =1,
p

M [8]-=8 t(8t) fdt(t e 'e'
t e dx, dttU(xt xt te)U (xt,'te) 8(8t)e

' k(k', » vt).

(A12)

The results (A11)-(A13)are formally exact for liquids as well as gases. To obtain the explicit form
of I, for low density we need only the leading term in the cluster expansion of U(xf, x2;(8)) and

U(xf, &o),

U(x„»}=f die'"'»8Q, )e
0

r"
U(x„x,;&a) =) dt e'"'n2jP(P )(t)(P ) e ""»'e

(A14)

Here L(1) and L(12) are tbe one- and two-particle Liouville operators. Carrying out the integration
in (A14) and substitution into (A13} gives the low-density form of the collision operator

dk'
M [ll] — ltd Qtt) fdt}te t t dxt dtt8(8t )8(8t)e Il Q(1 1'te)Q jj (1 8'te)ll tll(k te vt)

geasi ty

(A15)

with

QQ(1, 2;(8)}=[ i(d+L (1, 2-)] f,

g (](1,2;(d )-=[-i&@+L&(1, 2)] f,

L(1,2}=-L()(1,2}—t]fm,

and L()(1, 2) is the two-particle Liouville operator
for noninteracting particles. Introducing relative
and center-of-mass coordinates

r= r2f =q2 —qf, R= (qf +qQ)

g=vf-Vfv V-=e)(vf +V,)

and using the identity

&„e(p,)~(p, )
"" '~ =~,'[& 8,]e(p,)~-(p,)""' '

then gives
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I [h)= P '(P ) f fdjdttdp ""e"''()'[()-() ]P(P )P(P )e "'"%'e'""e"' 'h(k' ro v)

=eh'(p) f dte' ' ~4 ef
-il( R»](.r/2Q-)

(2 )2
r R P28 8

)& (e &2)»-e o &2")$(I)&)p(I)2)e 2 'Q()' exp(ik' R-ik' r/2)h(k', &d, v&)

=eh'(pt) f dte"' fdp, de exp(ik v% —ik vt)( ieeik-)tv tp)v(e
."~e. t'"'")

0

xp(i), )p(p2)e '( i&()-+ikV ,'i-k —g)e ' ' 'h(k, &0, v,)
00 W

=n dte'"' dp2$(I)2)e
' '"' dr 8»"'/2( i&d+-ik V+g. V„)

0

)&(e "'e '-e o'e ")e ' (2-i&o+ik V —rik g)h(k, &d, v, );
d)0 ~t og

M, [h] =n dt 8»"' dp2 (I[)(p2)e
'"' ' dr g. V„e' '/2

)&(ee '"'e ~'- e I'&)'eev«))8»"'r 'Q '(k v)h(k &d v

00 ' w

+e dte' dpp'(p )e' "'(t'(k ~lfdve'" '(e "''-e t'e '"') "' '()'h(k te v ) (A)6)
0

where

Q()(k, &d) =(-i(d+ik V —Rik. g) ',

L0(r, g) =g.V„,

L(r, g) =g. V„- (2/vn)[V, V'(v)] V,.
Also V and g are the center of mass and relative
velocibes, respectively. The results (A15) or
(A16) apply for an arbitrary central potential; hov])-

ever, the form (A16) makes no explicit reference
to the force law except through e" ' and is therefore
convenient for the discussion of discontinuous po-
tentials.

S. Reduction of N, (k, w) for the step potentis1

To simplify Eq. (A16) consider the case of a step
potential. This may be defined as the limit of a
continuous potentials.

Vo, r &a ——,c1

v(e, r) = —(v2/e)(r o —2e), -o —2e & r «2+ re

0, r &0'+ &e

as & 0. Now the r integration in the second term
of M, above is

r
a+a /2 ~Q

dVV2»k r/2( WV&r) -X» T()» WV«-)),

fy~6 / 2

~0

&& e "' 'Q, '(k, &o)h(k, &d, v, ).
The integrand is bounded and well behaved as & 0
so the integra. l vanishes as &- 0 due to vanishing
domain of integration. Hence the second term of
~ does not contribute for a step potential. How-
ever, the first term does not vanish, due to the
presence of the &„which generates a singular in-
tegrand as & 0 by differentiating the discontinuous
potential. Thus

M, [h] =lim n dt8 dp2 2 8 dAr'g 2»Lr/2( W )V&rXt -Lo»-8»»V«))
dr

The free streaming part of M in (A17) may be written as

&& e ""/2 Q())(k, &0)h(k, &d, v&).

[h] eee f ~~ fdeep(dv v)ee vf dtt (v 2) [[e 'e ' ' '
( tetk -e(%())t hek(itg) ..]-[].]. -

0

(A16)

The difference of the two curly brackets is only nonzero and finite for an infinitesimal period of
time and therefore M,"doesn't contribute. A transformation r —r brings the time propagation for
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particle trajectories into the positive direction, i.e.,
OO

M,[h]=-no dte'"' dv, p(f/, )e '" v''dg(r g)e '"'/'

The first term represents collisions with particles initially nonioteracting, while the second repre-
sents particles initially overlapping.

Consider the contributions to (A19) from the two hemispheres, r g & 0 (M') and r g & 0 (M ). The
collision dynamics for r g & 0 are displayed in Figs. V(d) and V(e). The contribution of (A19) to~' is readily reduced to

44'[4]=-vv' J dv4(v ) fd()r gh(r g)[h(V)T)-v vvd 44(V I)v)].

The trajectories for r g&0 are shown in Figs. V(a}, V(b), and V(c). In the analysis of Figs. V(b)
and V(c), two time intervals must be used. For example, in the contribution to M represented by
Fig. V(b), the time integral is broken up into the ranges 0 & t & T" and 2'" &t & ~. Also, for the part
of M described by Fig. V(c), the vector r is transformed to the exit point r . The scattered velocity
gd", as a function of this new radial vector, is just g~ of Fig. V(b). Thus

(A19)

(A20)

M [h]=-vv' fdv, d(v, ) ][d()(r" g)8(-r" )))

x[8(4V,/m- (r g)2)h(V, g)

+9((r" g) 4V /m){f"(k, +, g, r)h(V, g')+ [1-f"(k,(0, g, r)]h(V, g"')}]

QQ~ g 8r ge "o k, w, g, &AV, g + I — k, m, g, x ggV,

f(k, &o, g, r) =1—exp[i(&o —k V+k g/2)T(g, r}],

f"(k, (4], g, r) =1- exp[i((o —k V+k g"/2}&"(g,r)].

Combining (A20) and (A21) gives the desired re»it,

Mgh] =Ms[h]+ &M[h],

where Ms is the Boltmmann limit form (h, (4)-0),

(A21)

M, [h]=- ' fd, d(, ) fd()(r ,)4(.
x {8(4Vgm - (r g )')[h(V, g ) - h(V, g )]+ 8(r" g )'- 4V,/m)[h(V, g"') —h(V, g )]]

(A22)

and

hM[h] =—vv~ fdvz 4(v4) dQ (r g) [4( r g)4((r g) -4r4/vv"). f'"(h, tv, dr)lh(g, g") —h(g, g'")]

—9(r F)e '"Of(k, ~, g, r) [h(V, g ) - h(V, g )]} (A23)

The scattered velocities in Fig. 7 are readily calculated from consideration of the two-body con-
servation laws and the geometry of the figure, with the results,
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g'=g-2rg(g r),

g" =g- rg(g r+a2},

g"' =g" —r"t"(i" r"—[(i"'r"}'+41'0/mg "']'"]
=g[1 —(2aga', }(g r+ a,}]

—2rg[g r" +am][l (ala&)(g r+'a
vkv A

gx' = g —rg (g. r —a,),

4~o. 2 -." 2 4~0 .
a& —1—,; a2 —(g r)—

mg ' mg

a'=(g r)'+
mg2 '

r =2
~g r ~/g, r "=2o gg, .

(A24)

FIG. 14. Geometry of step-potential collisions for
f ~ g( 0.

APPENDIX B: STEP-POTENTIAL MODEL

Equations (All), (A12), (A22), and (A23) define
the exact low-density kinetic theory of the self-
structure factor for step-potential interaction used
in Sec. IV.

In this section, the details of the reduction of the
matrix element (4.9}with the step-potential Boltz-
mann operator will be shown. The matrix element
ls

A,y
—[(kvo}2/2XO](G*, MsG) =A ( +Am,

n okv '
r(, =+ ~ dvg(v) f gv&g(v&) fd()(r g)6(-r g)(-(tv+it v ——'ik g-k) ~,

0

n okv
gvg(v) f dv~Q( &)fvdQ(r g)g(-r g)(-itv+ik V ——'ik g-l) '

0

x[8(4Vgm —(r g)')(-i(d+ik V —haik. g' —&) '

+8((r g)'- 4VO/m)(-i(d+ik y -haik g"'- A) I].

The contribution of A& will be evaluated first.
The integrals over v and v2 are transformed to
the V and g of Appendix A. In terms of the vari-
ables of (2.23} and the dimensionless velocities,

r

dU e-' I' + A U -' Z'+ k U
-'

dtr J. +V-~~'+U -~,
~CO

U =Wai/v„s = g/~2m„.

&) becomes

dsse ' dUe U- 0"s- 2s4n'

(S2)
where I' and J' do not depend on U and may be
equal to each other. Following the angular inte-
gration for s is the result

3 ~@2 . 3 ~2 1dUe ds. s e
0 2 (g5)

21' 2

x dP d8 sing cos8.
0 0

The collision hemisphere integration is trivial. A

few manipulations give,

The reduction of &2 is complicated by the coupl-
ing between the collision hemisphere and relative
velocity integrals. The geometry of the two possi-
ble collisions for A. 2 is shown in Fig. 14. Again
the dimensionless variables in (B2) are introduced
and the angular integration of U is performed us-
ing (B4). At this point, A2 is

OO 23' &/2
A2= „2 dUe dsse ' (U-5 s —+2z} ~ dP d8sin82 4&5 i'2

0 0

~cos8[8(pV0 —s2cos28)(U- k s'- v2e) '+8(s2 cos28 —W'0)(U- k s "—~2e) ']. (86)
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(U k.s' &2z)-&=pa, (U, z, s}P,(I s'},

)
21+1 (U

—CRD)
(87}

An analogous equation exists for s" and since s
=s'~=s', the && coefficients are equal for the two

types of collisions.

To proceed further, the denominators in (86) con-
taining scattered velocities are expanded in Leg-
endre polynomials, using (814),

The expansion of (87} is substituted into (86).
Next, the addition theorem,

8(& s') =Pi(& s}Pi(s s')

+2 ™
IPP(k s)PP(s s'}cosmQ

(l +m) I

(86)

is used, for example, to eliminate the anglebe-
tween s' and k in favor of the angle between s' and
s. The sum in (88}vanishes upon the Q integra-
tion, leaving,

eo

dUe" dse (U k. s-—&2z) ~ (21+1)P,(S s)2 2' 3/2

d8sin8cos8(P, (s s')+8(s2cos28- PVO)
I'U PPz 'I &/2

s

[Pi(s' s"') —Pr(s' s')]],

where the hard-sphere part has been explicitly
separated. From the formulas in (A24),

s s'=1 —2cos 8,) 2

s s"' =(2/a2)[1 —cos28

+cos8(cos 8 —PVO/e )'~2] —1,
a'=1- PVO/s2. (810)

The angular s integration is easily done using (814)

identifying X as the angle between s and k. The
hard-sphere part of (89) especially simplifies,
using

r/2
d8 sin8 (cos8)P&(1 —2 cos'8) =&5g, o. (811)

0

A transformation from 8 to g, defined by cos28
=1-qa2 is used to stretch the limits of the re-
maining angular integration in (89). The result is

~D

g7sgg 2 +a2g g P 2)+ j 2

s

f
dq(P, (2[aq+ (1-amq) (1-q) ~]2 —1)

0

-P, (2a'q-I}] .
Combining (85}and (812) leads. to (4.11). The hard-sphere limit is obtained by neglecting the
sum in (812). It may be verified by a I.aurent expansion in z of ($.11) and (3.12) that lim „Xh,(z)
=- l. It is also expected that the effects of collisions are negligible as pVO 0, and so Iimsr
=0. In this limit, (4.11)becomes

(812)

00 OO

III,m, A„(z, PVO) = — dl e ds se '
0

, —I. (11 +1)Qc(
l-p

(812)

which can be shown to be zero using
00 1

(z-X) '=Q (21+1)Pi(X)@i(z). dX
' —=2Qs(z).

g xl=p

(814)
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