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"Exact" classical electron dynamic approach for a free-electron laser amplifier
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%e have calculated the gain of a free-electron laser in the smaH-gain-per-pass limit by using the single-
particle model. The electron equations of motion reduce to that of a simple pendulum. As operating levels
increase, the theory predicts that by varying the amount of detuning, gain enhancement should occur. In
addition, we calculate the electron energy and phase distributions at the output of the amplifier assuming the
electrons entering are monoenergetic and have a uniform phase distribution. Above a certain operating level,
the theory predicts and explains for the first time the occurrence of discontinuities in both distribution
functions. The effect of these discontinuities in storage-ring high-power applications is not yet known.

I. INTRODUCTION

[sin(vL(/h, )/&]',

where

)=a&,/&o, (1-p cos8) —1,

(1.2)

(1.3)

and where L =XX, is the magnet length. The frac-
tional linewidth is

If relativistic electrons are sent along the s
axis of a circularly polarized dc magnetic field
of period X„ the electrons follow nearly helical
orbits. Spontaneous radiation is emitted mainly
in the forward direction in a narrow cone of mean
angle' '(e)-1/y, where y=(1-p') '7' and 8 is
the observation angle measured from the s axis.
The radiation is circularly polarized. A spectral
analysis of this radiation"' shows a series of emit-
ted frequencies at lu&, (l being an integer), where

&o, =v /(1- pc cose), (1.1)

where +,= 2vc/X, and cp, is the relativistic in-
cident z component of the electron velocity.

If the pitch angle of the helical orbit is suf-
ficiently small, then the radiation is primarily
in a narrow (1= 1) fundamental frequency line.
The spontaneous line-shape factor is given by
(/= 1)

The fundamental interaction is Compton scatter-
ing.

Madey and his collaborators have demonstrated
stimulated amplification of this spontaneous ra-
diation at 10.6 l'm (y moc'-24 MeV, ~,=3.2 cm,
L = 5.2 m). py enclosing the device in a stable
mirror oscillator, ' they have observed laser ac-
tion at 3.4 i"m (yomc'-43 MeV). This produced
about 15 x 10' W/cm' power density in the resonant
cavity. For forward-stimulated scattering under
these conditions, p, =1 —1/(2y,') -1, (1.1) reduces
to

A, =—A. /2yos,

where v~ =ck, and'm, =ck,. Due to the tunability
and possibly high-power outputs, this device
is attracting widespread interest.

One of us (W.B.C) has recently written a papers
which reviews in some detaB the history of the
free-electron laser, together with analogous de-
vices including the theories (both quantum mechan-
ical and classical), as well as some of the experi-
mental work. The present work follows the ap-
proach used in Ref. 6 and its advantage over a
prior approach' should be self-evident. The prob-
lem is treated completely classically. This work
is limited to the situation when the gain per pass
is small and the single-particle 'picture is valid.

iRo/rp [=2K /L=2/N,
and the total power radiated is given by

p= eel'ocy'o Bo'/6vm'

(1.4)

(1.5)

H. ELECTRON MOTION AS A PENDULUM

A. Electromagnetic Gelds

ra =e'/4vcomcs= 2.6 x 10"' m. (1.6)

(we use mks units throughout). Bo is the dc mag-
netic field strength. This power is seen to be
proportional to r 0, the classical electron radius,
given by

As electrons enter the laser cavity, they are
influenced by the radiation and static magnetic
fields. We assume the electromagnetic fields
consist of a circularly polarized dc magnetic
field of period ~, and h backscattered "signal" field
of frequency co, =ck,. In a frame of reference
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8, =(X'+it)&)/v 2 . (2.2)

In terms of the true dc magnetic field, we have
the relations

A; = Bo/k&(1+ po)
= Bo/k—,= Bo't&,/2t&,

&d, = Pock, = ck,/(1+ P 0),

(2.3)

(2.4a)

(2.4b)Xt = X (1+po) -2X

Relations (2.3) and (2.4) follow from the fact that
the motion of an electron in the presence of static
helical magnetic field should be identical to the
one in the presence of an equivalent electromag-
netic field. '

The amplitude of the scattered wave A, (t) is
slowly varying, so that

moving along the e axis at velocity poc -c, under
the Weizacker-Williams approximation"' the dc
field looks like a plane electromagnetic wave. In
the lab frame, we take the incident and scattered
vector potentials to be

A~=e [A,e ""&'+tt" +A,(t)e ""t' ~t"]+c c ., . (2.1)

where

where

y'=ygl+ (eA, /mc)']= y', E, -

where

(2.12a)

k=0, +k~, +(d =(d -(0&

We see from (2.9) that the interference between
the incident and scattered wave sets up a travel-
ing wave in the z direction with phase velocity

p~ =v~/c = L&o/ck = (k, —k, )/(k, + k, )™1, (2.11)

since k, » kt by (1.7}. Comparison of (2.8) and
(2.9) shows that (eA~/mc)' acts like an effective
"bunching force" on the electron's z momentum
component. Depending on the initial phase of an
entering electron, some will be speeded up and
some slowed down, causing an electron-density
fluctuation. An initially monoenergetic electron
beam will become spread in energy. The tendency
is for the energy gained by the beam to cancel
the energy lost. Net gain of the electromagnetic
wave will be achieved if more electrons are slowed
down than speeded up in traversing the interaction
region.

From (2.1) and (2.V) we easily see that

8. Electron equations of motion

(2.5)
y'. =-1/(1 p'.)—

If we let

A)A. = (AI((A. (e'«"

(2.12b)

(2.13)

The Hamiltonian describing the system is given
by

where from now on we let A. , = (At~ andA, = ~A, (

for simplicity; then (2.9) becomes

(2.6)

Since x and y are cyclic, we conclude P, is a con-
stant of the motion. Further, since transverse
momentum spreads are negligible, we let P, = 0.
From the Hamiltonian equations of motion, we
obtain" immediately (before letting P,= 0),

P, = —eA~(e, t)/mcy, P, =P,/mcy, (2.V)

8& dp, wc' 8 eA, =—(mcyp, ),dt 2y Bz mc dt

(2.8)

I'eA,
&& 2A, A, cosl +

~

Il, mc (2.1 4)

where

f:kz —k(dt+ $0+ p ~ (2.15)

%e see that f is the phase of the bunching poten-
tial and g, represents the initial phase of an elec-
tron entering at z = t = 0 relative to the interfer-
ence phase.

From (2.6) it follows that

where by (2.1), dy e
p ~ E

dt mc (2.16a)

1 eA~ 2 elAgl ~ e in conjunction with (2.V) and E = BA,/st to obtai-n

+I
&el' I

&mc (2.9)

X[A)A et&as-&) alt)+A Age t&t)e salt)]--
s + i s.

dy e - BA, 1 s eA, & '
dt mc ~ Bt 2y st mc) (2.16b)

We may combine (2.16b} to eliminate dy/dt from
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dP,
2A,.APc(1 -P,P ) sing .

dt mey
(2.1V)

If we use (2.15), we see that

(2.8). If we also use (2.14) together with the ap-
proximation (2.5), we obtain

0 = k(s —p I v) + L, ~ (2.25)

tion describes the slow evolution of the electron's
z motion. Electrons do not evolve significantly
in the transverse direction.

In dimensionless variables

—=kcP, —L&o=kc[P,(t) —P ] .df
(2.18)

Vfe define
Thus dg/dt measures the deviation of the elec-
tron velocity from the "bunching"-wave phase
velocity or the "detuning. " Furthermore, we
see that

d'f
~ dP,

cN cN
(2.19)

is proportional to the z component of the electron
acceleration. Combining (2.19) and (2.1V) and
using the fact that P (t) -P -1, we may rewrite
(2.17) ase, e

(2.2V)

which is proportional to the deviation of the in-
cident-beam velocity from the bunching-wave vel-
ocity. We shall use the term resonance or syn-
chronism to correspond to the case p =0. In this
case there will be no gain, as we shall see.

Much physical insight may be gained from a
study of the pendulum equation. A first integral.
yields

d'f
tS , =-0'sir+ (2.20)

—s' cosf = E -=——a' cosg
2 d~~ 2

(2.28)

where

Ae = 2(ek, /m)'(A&A, /y'y', ),
which is approximately linearly dependent on the
magnitude of the dc magnetic field as well as the
scattered field amplitude.

It is convenient to introduce a dimensionless
time w by

(2.21)

v = ct/I, , (2.22)

6 = QI/c

Thus (2.20) becomes

d'f . 8V= -~'sing -=

8$

(2.23)

the well-known pendulum equation. In the limit
of infinitesimal gain, c is substantially constant
(to one part in 10e for Stanford operating para-
meters). However, as energy is transferred to
the electromagnetic wave, A', (t) increases and
consequently, a grows. In the early Stanford ex-
periments, gain was about V%%ue which means that
c changed by about V%%ue during the amplification
process. Neglecting this change is the most seri-
ous approximation in (2.24), and future experi-
ments will probably demonstrate even more gain.
The point of the approach presented here is to
emphasize the essential physics of the gain pro-
cess and the electron dynamics in the free-elec-
tron laser. As noted in Ref. 6, the pendulum equa-

as well as a dimensionless operating-field-strength
parameter

'= 2k& 1 —+ sin'2 (2.29)

where

2
g

~ l/2
+ sin'~ = +- .

24 2 2g 2
(2.20)

"Closed" or bound orbits occur for 0 & k & 1, while
"open" orbits occur when k&1. In Fig. 2, we
sketch the "phase-space" diagram of the orbits
for one period in the g direction. The critical
orbit corresponds to k=1, viz. ,

where p. is given by (2.2V) and fe is the initial
electron phase relative to the bunching field. The
first term is the analog of the pendulum potential
energy. It should be emphasized that E is not
the electron's energy. dg/dv measures the elec-
tron-velocity deviation from the bunching-wave
phase velocity, while P measures the electron
phase relative to the bunching field. The pendu-
lum energy E is evaluated in terms of p, and f,
in (2.28). From Fig. 1 we see that for physical
motion to occur, E& -c'. For -a'&E, &(', bound
pendulum orbits occur. In this case, electrons
(in the moving frame) oscillate stably in phase
from fixed -f, to +g, about g = 2ng, where n is an
integer. For E,& e', the electrons ride over the
wave crests, as a pendulum overshoots the top.

Further physical insight may be gained from a
"phase-space" plot of df/dw vs g. For this let
us rewrite (2.28)
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Jl

Ei

li

FIG. 1. Effective poten-
tial, V&z=g2cosg, for el-
ectron motion from the
simple pendulum model.

—= +2% cos—
dT 2' (2.31)

GO'

(1 k 2 sjn2c}~ I2
0

(2.34)

The parameters y, and fo (for a given field oper-
ating level e) determine the orbit in phase space
for a given electron. [These are the two initial
conditions for the solution of (2.24).]

As seen from Fig. 2 and (2.30), when g & 2q we
obtain only open orbits for which dC/dt&0. As
dt;/dr increases, by (2.26), electrons gain energy
from the field, and as df/dr decreases they lose
energy to the field. A similar argument ap-
plies when p, &-2c and all orbits are open.
This corresponds to the small-signal regime (p/
2e)~»1, or by (2.30) km»1. When (p, /2a)~&1, we
see in Fig. 2, as well as (2.30), that some orbits
are open and some closed, depending on the initial
electron phase p0.

—= 2k& dn(m, 1/k), (2.35}

ii d(
Ct7

// (r/ri&h&l X
-w Qk Jg/

k2&l

is the elliptic integral of the first kind. From
(2.32) it follows that

C. Solutions of the equations of motion

Case 1: k'&1 open orbits. Except for the case
p, =O, there will always be some open orbits.
From (2.29), we see that if p&0, the exact solu-
tion is

2g1

sin-,'f = sn(w, 1/k),
where snso is the Jacobi elliptic function and

ta kcv+F(=,'fo, 1'/k)—,

where

(2.32)

(2.33)

FIG. 2. Phase-space plot of electron orbits. Each
contour corresponds to a constant value" of the "energy"
E. The closed "orbits" have values of k2& 1 g.arge-sig-
nal regime) while open orbits have values of k2 & 1
(small-signal regime).
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where

dn'zv =—1 —k 'sn2u (2.36)

sin~ f = k sn(u, k), (2.37)

For y, (0 and k'& 1 the signs of (2.32) and (2.35)
are reversed.

Case 2: k'&1 closed orbits. In this case the
solution of (2.29) is

wavelengths. An important result of this work
is to show how self-bunching can occur. s'

By energy conservation, the energy lost by the
electron beam is assumed to amplify the radiation
density. Gain (Q} in a section of the electron beam
of volume V is taken to be the fractional increase
in the radiation energy in that volume, and is giv-
en by

where

u = cT +E($ ,ok)

and

p, = sin '(sin-,'g, /k} .

(2.38)

(2.39)

(2.46)8 =~e'(b'(0)& —&r(I)&)
~Z ] yz, I&, I'V

where n, is the electron density and e, ~E, ~
is the

scattered energy density. V is the beam volume.
Since

Also

= 2k@ cn(u, k),df

where

cn Q= 1 - sn Q

Note that

d (0) = 2k& cn(u„k) = p,df

where

(2.40)

(2.41)

(2.42)

E )2 -=2co'fA [2

(&~(0)& —&~(1)&Q.
2g P~ IA, I2

By (2.12) and (2.26),

y(~)
(E) (kL d

2P y2 gg 1 dpi
kL d7' 2kLP dpi '

(2.47)

(2.48)

(2.49)

uo=E(po, k) . (2.43)
But P -P0-1, z -yo, k=k, +k, -k„and by (1.7)
and (2.4b)

D. Gain and saturation k, =- k, /4y,', (2.50)

In contrast to techniques used in Ref. 7 to obtain
the gain and saturation which involved the solution
of the Maxwell equations coupled to the collision-
less Boltzman equation, here we calculate the
electron-energy loss and equate it to the field
gain, a much simpler procedure as we shall see.
The realization that the electron-beam dynamics
is not seriously affected by Coulomb repulsion,
or collective effects, which wiB be shown in a
forthcoming paper, allows the use of a simpler
single-particle description of the free-electron
laser.

The average energy lost per electron in travers-
ing the magnet from r= 0 to 1 (at the end of the
magnet) is

(2.44)

where we average over all initial phases, assumed
uniformly distributed initially; i.e.,

(2.45)

This phase average is appropriate for any short-
wavelength laser, since it is impossible to pre-
pare an electron beam "prebunched" at optical

so that

y(v) 1 dg 1 df ~

y (E)'I' 2k, L dv' 2k L d7'

(2.51)

For the Stanford experiments (1/2k, L)(df/dr) &&&1.

Thus

9 mn, y,(E)' ~'

4m ~OP, A2

1
2~ ~ 1 —

2~ d)0.

(2.52)

Case 1: (2a/11)«1 (small signal). In this case
the integration may be done analytically. ' The
result is

mm, y (E)'i. a d sin—'g
)2g O', IA, I' 4k, L, dp p

This result is plotted for & =0.1 in Fig. 3, normal-
ized to unity at p = 2.6, the detuning for maximum
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I.O

O.S

0,8

%q) 0.6

0.5

0.4

the maximum smaQ-signal gain.
Case 2: 2e/p, ~ 1 (saturation regime}. If we

write (2.52) with this normalization, we obtain

where the saturation function S is given by

4 k 1
0.675 a' 2m

O.R

0. l
"-, ' 2k' -' 2k' d

(2.55)

gain. The plot was done by carrying out the in-
tegration of (2.52) using the exact solutions which
agree with (2.5$), as weQ as other published re-
sults e- The normalization factor is

0.675mn, y, (E)'/' a4

2&0@2IA., )
2 4k) L (2.54)

FIG. 3. Gain-saturation S plotted vs electron-velocity
detuning p, , for pump parameter a=0.1, 2, 3, 4, 5.
Above threshold, the maximum gai. n is shifted to high-
er values of p.

These are shown in Fig. 3 for &=2, 3, 4, and 5.
We note that as we pump harder, the gain de-
creases for a given detuning p, but some gain
may be recovered by varying the detuning.

In Fig. 4 we plot contours of constant saturation
8 versus detuning p and power level (a/w). ' These
are in agreement with Ref. 9. The present cal-
culation detected the error in Ref. V. The p. here
corresponds to the variable pi, of Ref, . 7 and (a/
v)s to vR. In contrast to Ref. 7, the contours are
not symmetric about the p, =2.6 line. The asym-
metry in Fig. 4 is due to the shift in maximum .

gain with p. shown in Fig. 3, which did not show

up in the earlier more difficult calculation.

III. EVOLUTION OF THE ELECTRON-ENERGY

DISTRIBUTION FUNCTION

The future prospects of a working storage-ring
free-electron laser depend upon the behavior of the
energy distribution of the electron beam after a single
pass through the laser cavity. One-defines the elec-
tron-beam-energy distribution function at time v as
the probability that'the electron energy wiQ be be-
tween mc'y and ntc*(y+ dy), i.e. ,

where

y(7', 00) =yo~&/I 1-2
( 1 dt 'I|i/a

~l2

M, I, a( (3.2}

p I I I I I I I I

0.2 0.4 06 -08 I.O l.2 1,4 I,S l,8
Vfe assume initially all electrons are monoener-
getic and distributed uniformly in phase. If we
let

FIG. 4. Contours of constant gain (S) vs detuning and
pump parameter (s/w)t=&R of Hefs. 7 and 9. The shift
in the maximum gain vs detuning of Fig. 3 gives the
asymmetry shown above and not found in these refer-
ences. we obtain
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(3.4)

n, ' 5(g)K, I dg/df I

n,
2 ~ df go&l

where for fixed y/y, we sum over all values of

~
dg/dl,

~

' evaluated at each f = f,„ for which

="
i
—'il

4k]L (y~ j d&0 d&
(3.7)

or

" iildfo 2[1 —(1/2k)L)df/dT]~~~ 2k)L dl'0 ),dTj

—(~, ~. )
y~ 2k) L d7' (3 5) «&on&~

(3.8)
where (-v&f,„&w). Or, given y/y, we find all
roots f,„for which

where

—(7', f~) =2k(L 1—

By (3.3), it follows that

(3.6)
.y~ & 2k&L ]

(3.9)

which is propor'tional to the energy deviation of the
beam from its initial value.

Case I: k'& 1. By (2.35) it follows that

1 d &df& sing, snso cnw 1 f 1 g sin(0 1 g 1
~

—
~

= ——snu) cnu)+ ' dnu)—
2cdt;0 (kdT) P 4k k k~ —1 2 'k P k (2 'k,s& —

~ kE ~,— — 0 + El-a, ——

(3.10)

where

E(kk)=f (1-, k*siii'k)'™dv.
0

(3.11)

Case 2 k'& 1.
1 d df p, sing

where

x [cnu —snu dnukI(l'0)], (3.12a)

and

kI(t;, ) —= , E(po, k) — tan —0 E($0, k)—1

(3.12b)

(t), = sin '(sing, /k) . (3.13)

n, I'y~ 't '
fz(5y, r)= ' ( s

~
(sin'~ p7 —(5y)') '~', (3.14).~y I, y )

where

b y = c'ys/p2k, L-. , (3.15)

Hence up to order (e/p)', an initially mono-
energetic electron beam interacting with the ra-
diation fields A, and A, will have an equal num-
ber of electrons losing energy to the field A.„as

lf we use in the small signal regimee (2c/p)'«1
to the lowest order in (s/p)', we obtain

well as an equal number gaining energy from it.
This balance condition is reflected in the sym-
metrical behavior of fe(5y, &) as a function of 5y
[Eq. (3.14)]. One can say that, up to order (a/p, )',
no net gain has been achieved.

An extension of the small-signal calculation to
order (c/p)' shows that the behavior of fe(5y, &)

as a function of 5y is no longer symmetrical. '
The asymmetry in fs (5y, 7') implies a net gain has
resulted from the interaction process. A plot of
the exact fe(5y, r = 1}from (3.8) for c =0.1 and p
=2.6 is shown in Fig. 5. The asymmetry, which
is not visible in Fig. 5, can be understood by
looking at Fig. 6. The only contributions to the
exact fe(5y, v) are the two intercepts of the line
y/ys with the function dg/d7. These two roots,
which enter in the denominator of Eq. (3.8) are
slightly asymmetric about $0= 0 and give rise to
a net nonzero gain.

Figure 7 shows a plot of fe for a = 0.5, p = 2.6
(maximum small-signal gain) begins to show
slightly more asymmetry toward negative 5y, in-
dicating more electrons lose energy than gain en-
ergy. The approximate analytic expression (3.14)
is the dotted curve from Ref. 6, and the solid
curve is the exact solution. A slight deviation is
beginning to show up for this value of the pump
parameter c.

As soon as p becomes less than 2&, both open-
and closed-type orbits occur. As may be seen
by a comparison of (3.10) (k'& 1}and (3.12) (k' & 1),
one sees there must be a discontinuity in the dis-
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10—
40—

28—
40

24—

20—

l6-

12—

I I I I I I I I I

W -0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 I I I I I I I

-I.2 -0.8 -0.4 0 0.4 0.8 I.2

FIG. 5. Output electron-energy distribution function
is plotted vs the electron-energy change for e = 0.1 and
p= 2.6 (small-signal maximum gain). An initial 6 func-
tion centered at 5y= 0 is split into two 6 functions. The
slight asymmetry (not visible here) is responsible for
the gain.

FIG. 7. Energy distribution vs 6p (electron-energy
gain or loss) for a=0.5, @=2.6 (smaQ signal). The
agreement between the approximate analytical small-
signal calculation (solid curve) and the exact calcula-
tion (dotted curve) is still very good. The asymmetry
is not yet detectible on the above scale.

I.305

I.304-

I.303

I.302

l.301

I.300

I.299

I.298

I.297

t.296
-3.0 -2.0

I

-I.O
I

0
I

I.O

I

2.0
I

3.0

FIG. 6. Plot of dt;/dv' vs initial phase f(I for a=0.1,
@=2.6. For a fixed d f /d7, two values of f 0 coritribute
to the electron-energy distribution function.

tribution function when k goes through the value
1. Figure 8 shows this clearly. With p, = 2.7 (for
maximum gain), we plot f~ for 2c = 2.6 (k' & 1) plot-
ted as the solid line which shows the discontinuity
(located at 6y = -0.75), while for 2c = 2.8, (k' &1)
plotted as dots show no discontinuity. The asym-
metry in the 6 functions is now clearly visible,
and saturation is beginning to set in.

In addition to the discontinuities which arise
when k changes from open to closed orbits, there
are others. In Fig. 9 we plot the energy distri-
bution for the case.&=5, p, =3 which shows ad-
ditional discontinuities. These arise at 5y --0.6
and 6y-+0.05 because the number roots which
contribute to the energy distribution function
change from 2 to 4 at 6y- -0.6 and from 4 to 2 at
Dy-0.05. The discontinuity at 5&-0.15 is due to
k changing from less than to greater than 1. This
may be clearly seen from Fig. 10, where we plot
df/d~ aside from a multiplicative constant at the
output v'= 1 vs f, The f,.'s for which df/d7' is a
fixed value determine the points which contribute
to the energy distribution. For some ranges of
dl'/d7', there are four roots, while for some ranges
there are two. At these points discontinuities oc-
cur. In Fig. 6, where k was always greater than
1, there were always exactly two roots for fixed
y~/y (or fixed dL/dr) so no such discontinuities
arise.

The steep rise in df/d7 at $, -2.5 in-Fig. 10
may easily be explained by reference to Fig. 11.
There we follow two electron orbits with p. =3
and with an initial fo 2 5plotte- d-as. a solid (k
«1) and an open square (k&1). At the output (v=1)
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FIG, 8. Electron-energy distribution function vs B p
for a case in which 0 & 1 for all f 0 (solid curve) and for
a case in which k2 can be less than 1 (dotted curve). The
latter case shows a discontinuity when k2 changes from
less than 1 to greater than 1, as predicted by the the-
ory.

FIG. 9. Energy distribution function vs By for e= 5
and p= 3. For B y &-0.6 and & 0.05 there are two roots
that contribute to the distribution function while for
—0.6 &By &+0.05 there are four. The discontinuity at
6 y=—-0.13 is due to k changing from less than 1 to
greater than l.

they both end up near each other (f -8) in phase
space. In this region, Fig. 10 shows df/dv is a
slowly varying function of &0. %e next follow two
electrons with p. = 3 and, . initially near g —= +2.5.
One (k'( 1) is plotted as a solid triangle and ends
up at v = 1 at dt;/d7'= =8.5, while the other (k') 1)
is plotted as a solid circle and ends up at ~= 1
with dt;/d7' +10 Th-ey a.re thus far apart in phase
space, although their initial conditions were ap-
proximately the same. In the limit as k- 1, they
must end up at the same point in phase space and
hence the abrupt rise.

IV. EVOLUTION OF THE ELECTRON PHASE DISTRIBUTION

FUNCTION

The pendulum equation allows one in principle
to determine the position of an electron at the exit
of the interaction region given the initial condi-
tions. We have assumed that the electrons are
initially monenergetic and that their phases are
uniformly distributed. Following the definition
of the energy distribution, the electron phase
distribution function is

(4.1)

where

(4.2)

The phase distribution is equivalent to a s-po-

l.O- I
I'

0.8-

0.6-

0.2

0.0

-0.2

-0$

-0.6

-0.8
I

-I.O
I

3.0
I

-2;0 I.O

I i

-3.0 0.0 2.0

FIG. 10. Plot of dg/dv vs t'0 for a=5 and p=3 at the
output. For some fixed values of dg/dv', there are two
values of f 0, while for other values of d|; /dv there are
four values of f0, which contribute to and explain other
energy distribution function discontinuities when k can
be less than 1.
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I

IO"

4»

Let

8, -=8(v, l,) =-g(v, t;,) p,v .

k= sin-,'(8- 8c),
dk

i

dk
de d80

(4.10)

(4.11)

therefore,

-4"
(4.12)

-8-

-IO I I.O

Note that at t=O, ~, =-g„so that

FIG. 11. Orbits for bvo electrons with initial t; -—2.5
(soM square and open squa, which end up at v =1
near. each other in phase space, as opposed to two elec-
trons with initial g +2.5 (solid circle and solid tri-
angle), which at v=1 end up at dt;/dv +9 and —8,
respectively. This accounts for the steep portion of
the curare in Fig. 10 near t; o=—g.5.

y&o, o)=" jodo)so=", ' (4.13)

80+r

f~(e, r)dc

which is uniform. To check normalization at 7',

we see that

sition distribution within a wavelength of light in
the electron beam. Each section of the electron
beam at intervals of one radiation wavelength,
evolve identically in phase space. Note that at
v'= 0,

Q jg dg=g

8(0, &,)'= &0,

so that

f~(8, 0)= n,/2v,

which is uniform. Also note that

(4 3)

(4 4)

(4.5)

, or

~n 6(k)
2v I d80/dfo I

n I
fp(8o ~)—

(4.15)

(4.16)

Let g = 8- 8(v, L,) -=8 —8„'therefore, which is seen to be equivalent to (4.V). Thus we
want the values of f,„for fixed -m& 8& m for which

n, 6(g)f (, )=2'„4 I@/d~ ), (4.6)
k= sin-,'(8- 8,) =0 .

or by (4.10),

(4.1Va)

1

Z (4 V)
~ 1 1 j.sln2l' Cosy t; t—ana i11(4 1'Vb)

cosy' + sing g tang p T

That is, for fixed 0 we solve for the fo„roots of

g(v, l,)= 8- i1v' . (4.8)

Because of the multivalued nature of (4.8) [see
(2.32) and (2.3V)], we consider another equivalent
phase distribution function

The roots of (4.8) and (4.1V) (i.e., 8= 8,) are
equal modulo 2v. And since we only need (dt;/df, )
for g= 0 or &=0, the modulo 2m cancels. Thus
the hvo distributions are indistinguishable.

Case 2: k~&1. From (2.32), we want roots
(f,„)for fixed 8 for which

fp(8, &)=2' 6 sin(
2

'
I cos

1r -f
(4.9)

where

sn(au, 1/k) —cn(10, 1/k) tan~1 p,V

cn(tc, 1/k)+ sn(av, 1/k) tan —,
' i1v

These roots are used to evaluate

(4.18)
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FIG, 12. Plot of the phase distribution function vs the phase 8 for the small-signal (a=0.1, p,=2.6) maximum-
gain case.

(4.19)

to be used in (4.16).
Case 2: k'&1. By (2.3V), we need root's of

k sn(u, k) —dn(u, k) tan-,' p,vtan —,'8=
dn(u, k)+ k sn(u, k) tan —', pr

By 2.37 e obtain-( )w
If

Dff

(4.20)

(4.21)

for use in (4.16).
In Fig. 12 we plot f~(8, v =1) for the small-sig-

nal maximum-gain case (a = 0.1, p, = 2.6). It agrees
with the approximate analytic result of Ref. 6 to
4-5 significant figures. At v=0, it is normalized
to unity and is uniform. Figure 13 for &=0.5,
p, =2.6 is essentially the same, with larger amp-
litude variations. (Note change in vertical scale. )
In Fig. 14 we have plotted (4.20), viE. , 8 vs L„'
both from the exact solutions (dotted curve) and
from the approximate analytical results of Ref. 6
(solid curve) for @=0.5 and p = 2.6. In the small-
signal regime, 8 is a monotonically increasing
(approximately linear) function of fo So, for e.ach
8 there is only one f,„to contribute to f~(8, r = 1).
Again, Fig. 13 was plotted from exact root, fo
for fixed 8 obtained in Fig. 14 for the same i and
p (open orbits).

We again note by comparison with (4.19) and
(4.21), discontinuities in f~ will occur when we go
from open to closed orbits. This occurs near
8=0 in Fig. 15 for m=2. 0, p, =3.0. In Fig. l6 we

l

I. I6-

I. I2—

I.08

I.04

I.OO

0.96

0.92

0.88—

0.84—
I I

-2

FIG. 13. Plot of pose distribution vs phase for e
=0.5 and p=2.6. Note change in vertical scale fram
Fig. 12.

have plotted 8 vs f„and we see that the change
in the number of roots f~ for fixed 8 changes near
8= -1 and 8= -1.3, accounting for these two dis-
continuities in f&(8, r= 1) in Fig. 15. Similar re-
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I
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I I I I

-4 -5 -2 -I 0 I 2
FIG. 14. Plot of final phase vs initial phase for e

= 0.5 and @=2.6. Solid curve is approximate analytical
result and dotted curve is exact result.

marks apply to Figs. 1V and 18 for a=3, p, = 3.9.
The nice "sinusoidal"-type distributions for weak
field (small «) develop spikes at higher operating
levels, @s seen in Fig. 1V.

V. CONCLUSIONS

Although discontinuities are present in both the
energy and phase distributions, they have no ap-
parent effect on the gain-saturation calculation.

It is apparent from Fig. 3, that the saturation
mechanism is different from an ordinary laser
since, as we pump harder, an increase in gain
may stBl be achieved by varying the detuning by

9

FIG. 16. Final phase vs initial phase. The discon-
tinuous change in the number of roots from 1 to 3 of
f 0 for fixed 8 at 8~- jL and -1.3 is clearly evident.

virtue of the asymmetry developed in the electron
energy distribution function.

Gain has been calculated using a narra energy
electron distribution and a uniform phase distri-
bution (the so-caoed small-cavity limit). Since
the use of storage rings is envisioned for future
applicationg, the effect of the energy and phase
discontinuities as well as the effects of space
charge and losses due to synchrontron radiation
must be carefully considered.

In typical operation with smaD-cavity losses,
the laser--cavity fieMs should grow until the elec-
trons evolve into the closed-orbit region and sat=

l80

I60—

5—

l40—

I20-

IOO-

CL 80-

I

-2

FIG. 15. Phase distribution function vs 8 for a=2.0
and p=3.0. DiscontinuOy near 8=0 is due to k changing
from less than 1 to greater than 1. The discontinuities
near 8=——1 and —1.3 are due to changes in number of
roots {see Fig. 16).

40-

20

0—
I

-3

FIG. 17. Electron-output phase distribution vs 8 for
&=3 and p= 3.9. Number of 'roots changes at 8 —1.0,
whGe 0 changes from less than 1 to greater than 1 at 8
AJ ~ ]
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]4 0—

0

I I

4

FIG. 18. Final phase vs initial phase for e = 3.0 and
@=3.9. The abrupt changes in the number of roots
which contribute to the phase distribution at 8~-1.0 is
evident. The discontinuities of 8 vs f () are due to the
computer picking the principal values of (4.17b) or
(4.20).

uration occurs. We therefore expect that a real-
istic description of -a free-electron-laser oscil-
lator would require-analysis of the closed orbit
region as presented here. -The pendulum phase-
space approach seems to be ve~ useful in ob-
taining physical insight into the physics of the
free-electron laser.

Finally, we wish to emphasize the importance
of the "bunched'-' electron beam produced by the

free-electron laser. This analysis shows how an
external laser may be used in combination with
a static periodic magnetic field (or incoming mic-
rowave field) to modulate coherently a relativistic
electron beam at optical wavelengths. Such a beam
may be used to drive a high-gainoptical klystron";
other application and the importance of such a
beam are reviewed in Ref. 11. The dispersive
effects of energy spread in a relativistic electron
beam are suppressed because all particles travel
at approximately speed c. This allows transport
of optical information by the electron beam over
reasonable distances. " A scattering process,
sensitive to electrons, which is resonant at the
modulation frequency, may be enhanced under
the proper conditions and made proportional to
the square of the electron Quz" Such an effect
mill be an observation of a collective scattering
process which depends on the shape of the electron
wave packet.
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