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A quantitative treatment is carried out for the exact operator expressions derived in a previous paper. The
formalism of the dressed atom and the concept of level crossings (anticrossings) are used throughout and
provide a basis for the quantitative investigation of the resonant three- and four-photon ionization of cesium.
The numerical results obtained within this framework are in excellent agreement with experimental

observations.

I. INTRODUCTION

Perturbation techniques have been widely used
in problems dealing with multiple interactions of
radiation fields with atomic systems.! Within this
framework the transition amplitude corresponding
to a definite process is represented by an infinite
series in powers of the electric field strength. The
successive terms of this series represent the
higher-order contributions to the process under
consideration.

For moderate intensity one usually retains only
the lowest-order term of this series. As an ex-
ample, the lowest-order contribution to N-photon
absorption is given by the term of the series con-
taining exactly N destruction operators of photons.
It has been shown in a previous paper,? herein
referred to as I, that this lowest-order term
cannot give a realistic description of any absorp-
tion mechanism which involves very intense ra-
diation sources and/or resonant processes. In
these cases, one must consider all the higher-
order contributions to the process under consid-
eration. It has been shown in I how the whole per-
turbation series could be exactly summed. Being
expressed in terms of continued fractions, the
transition amplitudes we have obtained show a
rapid convergence at the same time that the per-
turbation series diverges. In this paper, we con-
sider one of the two circumstances where such
expressions for the transition amplitude are to
be used, that is, the case of resonant multiphoton
absorption induced by radiation fields of moderate
intensity.

Extensive use of the results presented in I will
be made throughout this paper. The operator ex-
pressions derived there will be given an expanded
analytical treatment which yields an expression
for the time-dependent transition probability.

The projector technique®~? is used to isolate the
resonances inside the continued fractions.

The formalism of the dressed atom as discussed
in Ref. 3 has been utilized. It allows giving a

consistent description of resonant multiphoton
processes. It is shown that the concept of level
anticrossing proposed there also holds at optical
frequencies when the coupling of the resonant
level with the ground state predominates.. An
example of this case is the three-photon ionization
of cesium in an intense field.

In general, we are faced with the alternate
situation where the continuum plays the most
important role. This comes from the fact that
the coupling of the resonant level with the ground
state is of higher order. The energy levels con-
cerned with the resonance give rise to a level
crossing. Such a phenomenon is illustrated by
four-photon ionization of cesium in which there
is a three=photon resonance with an intermediate
bound state.

The coupling of bound states with the continuum
produces an important damping effect which plays
a central role in the calculation of the ionization
yield. We neglect free-free couplings.

Throughout this paper the occupation number
representation is used for the field. Within the
intensity range involved here this model for the
field is very close to that of an ideal laser. This
comes from the fact that for the values of the
photon occupation number we consider, the con-
tributions coming from the wings of the Poisson
distribution are negligible compared to those
centered around its maximum. In other words
the Poisson distribution “tends to a 6 function.”

With regard to the temporal pulse shape, we
consider only the case of an adiabatic square
pulse. :

In order to make a comparison with existing
experimental data, the theory is applied to the
case of three- an« four-photon ionization of
cesium. The bound-bound oscillator strengths
have been taken from the literature while the
bound-free ones have been calculated in the
Coulombic model.

Most of the results presented in Sec. OI refer
to one of the two components of the hyperfine
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structure of the ground state. The ones dealing
with the other component are obtained through
a translation in the photon energy scale.

The principal results obtained in I are sum-
marized in Sec. II where the projector technique
is used in the derivation of the resonant transi-
tion probability. It is shown how any resonant
multiphoton transition can be treated by a three-
level model. Some approximate formulas giving
the value of the poles and the transition probability
are derived. The aim of these formulas is to
provide a basis for the discussion of the numerical
results presented in Sec. II.

The numerical results of Sec. III supply enough
information for a good understanding of the res-
onance mechanism. The ensemble of results pre-
sented there are obtained without introducing the
approximations of Sec. II. Three- and four-photon
ionization are treated on the same footing.

The energy levels of the dressed atom are first
presented. Then the value of the poles are used
to calculate the probability. For three-photon
ionization, the intensity values are chosen to
be larger than the ones usually utilized. This is
to enlarge the anticrossing area.

II. THEORETICAL BACKGROUND

A. Projector technique

To calculate the transition probabilities, one
needs the matrix elements of the time evolution
operator U(t) with respect to the eigenstates of
H,, the free Hamijltonian of the system. These
matrix elements have been calculated in I within
the framework of the resolvent formalism.?™®

For the sake of completeness, the most salient
results are summarized below. All the quantities
appearing in this section have been already de~
fined in I,

The time evolution operator is given by

Ue)= %f G (2)dz 2.1a)
where

G(R)=1/(z=H,-V), (2.1b)
and

z2=E-il, : (2.1c)

The integral of Eq. (2.1a) can be readily per-
formed by the residue theorem once the poles of
G(z) are known. This gives rise to the difficult
problem of the determination of the poles of G(z).
In addition, for resonant processes we are faced
with the problem coming from the particular
structure of G(z). Thus it was shown in I that
the series representing this operator could be
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expressed in terms of continued fractions.

In the presence of a resonance one or several
denominators in the continued fractions vanish.
This gives rise to serious complications in the
search for the poles. Such a difficulty can be
tackled by using a projector technique which
yields equivalent expressions where the resonant
terms are isolated. Using the notation of Refs.

3 and 4, let P and @ be the projection operators-
onto and outside of the subspace € spanned by
some particular eigenstates of H,. The projection
of G(z) onto € is

G(2)=PG(z)P. (2.2)

From Eq. (2.1b) and owing to the obvious relation
P+Q=1, it has been shown?®"® that G(2) is given by

Gle)=[z-H,-R(2)]™, (2.3)

where R(2) is the projection of the operator

- Q Q Q oo
R(z)—V+Vz_H0V+Vz_ OVZ_H0V+ ,

(2.4)
onto the subspace €, that is,
R(@)=PR()P. ' 2.5)

It was found in I that the diagonal matrix elements
of the operator R(z) are to be calculated from

R@)=V'T,AT,+V T,BT,, (2.6a)

whereas the nondiagonal matrix elements con-
necting two states energetically separated by a
multiple N of the photon energy are to be calcu-
lated from

R@)=V'T, AT +V T AT, (2.6b)
where '

A=[Q/z -H)IV", (2.72)

B=(Q/(z-Hy)V", (2.70)

Ty =1/(1-AT,B-BT,A), © (2.8a)

7,=1/(1-A7B), (2.80)

7o =1/(1 = BT,A), (2.8¢)
and

V=V"+V". (2.8d)

In Eq. (2.6b), the operator R(z) or its conjugate
is to be used according to whether the state on
the left-hand side of this operator is reached by
the absorption or the emission of N photons from
the state lying on the right-hand side.

B. Ionization

We proceed now to the derivation of the reso-
nant ionization probability.
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In general, a resonance can occur when the
energy separation between two atomic levels is
approximately equal to an integer multiple m of
the photon energy. In the scheme of the dressed
atom, the resonance is said to be produced by the
crossing (anticrossing) of two (intensity-depen-
dent) energy levels. For brevity, such a reso-
nance will be called an mth order resonance. In
this section it is shown that such a concept pro-
vides a realistic description of any resonant
multiphoton absorption process taking place at
optical frequencies.

Let |g,n), |f,n~N), and |k, n—m) be the
initial, final, and resonant states, respectively.
The atomic states are denoted by g,f,%,... and
the radiation states are characterized by their
occupation number.

In the cases we consider, the atomic spectrum
is not limited to g, f, and z. It is only assumed
that the other states do not produce additional
resonances. In the reduced notation where | a),
| 8y, and | ¢) stand for |g,n), |f,n~N), and
|7,n -m), respectively, we have to calculate
Gp.(2). This task can be accomplished by inverting
the 3 X 3-matrix [z —H,-R(2)].

The determination of the complex poles is very
tedious and the calculation of the probability in-
volves unessential manipulations of high-order
bound-free matrix elements of R(z).

For these reasons, we prefer to use an alternate
method which is based upon the well-known unitary
property of U().5*” One readily finds that the
probability for the atom to be ionized at time £ is

| Upa@)|2=1= | Uge®)l 2= [ U, ()| 2, (2.9)

which accounts for probability conservation.

In calculating the ionization probability by using
Eq. (2.9) one has to consider only the bound-
bound matrix elements of G(z). The whole con-
tribution of the continuum is taken into account
within the matrix elements of G(2) by integration
(see Appendix B).

It can be easily shown that the relevant matrix
elements of G(z) occurring in Eq. (2.9) are given
by

Gaa(z) = [z -E; —Bcc(z)] /{[z - E, —Eaa(‘z)]
X [z -E; "E_cc(z)]

—_Qac(z)_@_ca(z)} ’ (2.10?.)

Gca(z) =1__2, ca(z)/{[z - Ea -—R;“(Z )]
x [z -E, —ﬁcc(z)] _ﬁac(z)ﬁ ca(z)}’ ’

(2.10p)

where

| 6)(3]

Z~E, "Rbb(z)dEbR(z) )

B(:)=R()+R() [

(2.10c)

The density of states is taken into account
through a suitable normalization of the wave
functions of the continuum. The important con-
sequence of the integration is that, in contrast
to what happens in the case of bound-bound transi-
tions taking place between infinitely sharp levels,
the poles a and ¢ depart from the real axis. In
other words, the coupling of the states Ia) and
| ¢) with the continuum gives rise to a broadening
(intensity dependent) of these levels. This is easily
shown by noting that the integral occurring in
Eq. (2.10c) can be calculated to a good approxima-
tion by using the identity

lim 1 =@ L
no>oE=Ey =Ry, =i  E—Ey—Ry,

+im0(E - Ey = Ryp) , (2.11)

where the principal-part integral is evaluated
at E~Ry.

In Eq. (2.11) it is supposed that R,, is real.
In general, R,, is complex. This is due to inte-
grations over the continuum variables of states
containing different numbers of photons. It is
clear that since these complex quantities appear
in the successive denominators of the continued
fractions of R(z), they are of higher order com-
pared to the one calculated from Eqgs. (2.10c) and
(2.11). Thus in a first approximation they are

- not taken into account and the complex part of

R(z) is derived from Eq. (2.10c) by assuming
that R,, is a function of a real variable.

From Eq. (2.9), one sees that the mechanism
of resonant ionization is discussed in terms of
the behavior of a two-level system with intensity-
dependent losses.® The number of ions created is
equal to the depletion of the populations of the
levels a and ¢ caused by the coupling of these
states with the continuum. As will be shown in
Sec. III this number increases with time and tends
to N, the number of atoms contained in the inter-
action volume at time £=0. In spite of its ap-
parent simplicity, Eq. (2.9) gives rise to serious
computational difficulties. The reason is that the

. transition probability under consideration is

given by the difference between quantities which
are very near to each other, -i.e., |Uy,|2+|U,|?
=~1, The results are found to be very sensitive
to the value of the matrix elements of R(z). Only
the accurate quantitative treatment of Sec. III
makes it possible to find a reliable enough result
for the transition probability.

We proceed now with the derivation of formulas



which will be useful for the discussion of the
numerical results.

The equations giving the real and imaginary
parts of the poles in the anticrossing region are
straightforwardly derived from Egs. (2.10a) and

(2.10b). They are found to be /
(E - E)(E=-E,) = (T = Tgp)(T = Tgp) = (A2, + T2) =0, -
(2.12a)
L =[To(E-E,)+ T (B~ E,)/QE-E, - E,),
(2.12p)
where
Ay(E, T')=Re[R 44(2)], (2.13a)
Ty;(E, T)=Im[R ;;(2)], (2.13b)
and
E((E,T)=E; +Ay(E,T). (2.13¢)

Equations (2.12) and (2.13) show that the only
accurate determination of the complex energies
of thedressed atom can be made numerically.
Nevertheless, in the limit where A;;(E, T')
~ 84;(E;, T'y;) and T'yy(E, T')~ T'y,(E;, T'yy), Eq.
(2.12a) simplifies and becomes a fourth-order
equation in E. As is shown in Appendix A there
are only two solutions, which are given by

E*= %(Ea + E‘c)i (Dﬁc"'Qﬁc)l/‘i

X [3+3De/ (D2 + Q2 )2 12 (2.14a)
and
D% = J(Tye + Tgp) 7 (D2, + Q2 )V4
X [%"‘ %Dac/(Dﬁc + Qﬁc)ﬂzjw ’ (2'14b)

where D, and @,. are defined by Eqs. (A8a) and
(A8b).
Owing to Egs. (2.10) one readily finds

E* =B = 80 =i(T* =T%) iges ot

V== 5 50 =1
LE-E '%.—i(r- =T20) -im=: o T
T - il =T g
(2.15a)
U, @)= y o 2;}::(%22_ ) gmiE't =Tt
b 2%4:;&‘;5 —~) emiETE g T
(2.15b)
where
Aj;=Ay(E*, T, (2.15¢)
I%,=T,(E* T*). (2.15d)
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From Egs. (2.9) and (2.15) the ionization probabil-
ity can be put in the form

Pl)=1-a' e - q et

cos(E* - E™ )t
YWE*-E P+ =T")
sin(E* - E™)t

+2<C

)
(2.16)
where
@t = ?;iiA; ;;};*(21:{*21_‘-)2 y (2.17a)
Cr= oo+ BeaBoa+V o¥oe + Toalcas  (2.1T0)
Co=Q¥oot Bealca =V o = ToaBia-  (2.17¢)
In Egs. (2.17) £, and v, are defined by
Qe=E*-E, -, (2.18a)
and
yi,=T*=T%,. (2.18b)

Apart from a difference in notation, it can be
shown that the above expressions are in agree-
ment with the ones obtained by Beers and Arm-
strong® in the case of two-photon ionization.

Before ending this section it should be noted that
the group of formulas we have derived are useful
because they give much information about the be-
havior of the probability., Nevertheless they are
not used in the quantitative discussion of Sec. IIL
The reason is that the value of the probability is
very sensitive to the precision utilized in the cal-
culation of the quantities appearing in the
formulas.

II. NUMERICAL RESULTS
A. General considerations

This section is devoted to a careful quantitative
analysis of the operator expressions found in I.
To allow ample space for the numerical results,
the computational techniques used will be only
mentioned or briefly described when necessary.
No approximations like the ones discussed in
Sec. II are invoked in carrying out the present

‘numerical analysis so as to obtain the most ac-

curate results for each particular basis of atomic
states considered. The atomic model involved in
the following discussion is set up from a finite
number of discrete levels and a single continuum.
The theory is illustrated by the three- and four-
photon ionization of the cesium atom. The advan-
tage of working with an alkali atom is that the in-
tensity of the radiation field required for multiple
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FIG. 1. Spectra of the Cs atom utilized for the cal-
culation of (a) three- and (b) four-photon ionization.

absorption is low enough to make our atomic model
relevant, At such intensities it is found that those
contributions of the continued fraction accounting
for high-order absorption and emission of photons
in the continuum are not significant. Thus, in

this case, sufficient accuracy is obtained with this
single continuum approximation (SCA). Regarding

the discrete spectrum, the number of levels enter-

ing into the calculation is determined by the wave-
length of the light. This is exemplified in Fig. 1
where the spectra of the Cs atom used for three-
and four-photon ionization are shown. These
resonant situations are chosen because they have
been experimentally investigated.®™!!

The resonant level for three-photon ionization is
the 9D, whereas the one providing the main con-
tributions to the resonance for four-photon ion-
ization is the 6Fy,.

One observes in Fig. 1(a) that only the 9D and
6P doublets have been retained in the calculations.
The other levels are far enough to give negligible
contributions to the shift of the ground state and
to the transition amplitude. ‘

A slightly different situation occurs in Fig. 1(b)
where the 5D and 6D doublets are located on both
sides of the two-photon virtual level. They intro-
duce contributions of the same order of magnitude
and thus they must both be included in the calcula-
tions. The 4F doublet is also included since the
calculations of R,, involves F levels (as a con-
sequence of the projector technique, the 6F
doublet is excluded from the ensemble of states
entering into this calculation). The bound-bound
oscillator strengths have been taken from the

literature.!? The values not reported in the lit-
erature have been computed by using the Coulomb
approximation, i.e., (6D, - 6F,,)~ 0.13;

(6D; s, ~ 6F, )~ 0.011; (6D, — 6F, )~ 0.23.

To perform all the relevant integrals over the
continuum, the required bound-free matrix ele-
ments have been obtained from a Coulombic
model. This we believe is justified for the high-
energy levels. Thus, from the energy of the 6F
state, an effective nuclear charge Z, is determined
and is used to evaluate the electronic wave func-
tions. The value of the photoionization cross sec~
tion of the 6F state calculated by this method is
1.01X107*® cm®. It is very near to 1.4 X 10718,
the value obtained by Aymar'® from a more
sophisticated potential model.

One must note that, in our case, the quantum-
defect method does not provide better results.
The knowledge of the cesium spectrum regarding
the G states is not sufficient for the calculation
of a reliable value of the quantum defect of these
states., From the only 5G and 6G states whose
energies are known, one observes that the quantum
defect is very small and does not vary slowly
with the principal quantum number %(lg/ ks
=1.6).

Obviously, more realistic oscillator strengths
derived from a reliable model potential could
improve our results. But the agreement observed
between our Coulombic oscillator strength and
other experimental and theoretical data reinforces
our confidence in the parameters we use,

One must note that the position of the poles of
G(2) does not depend on the dimension of €. This
obvious property is very useful because the
poles can be calculated by considering suitable
two-dimensional subspaces.

In every case the poles are determined with the
help of standard iterative techniques based on the
changes in sign of the energy-dependent functions.
Thus the value of the energy is known up to an
arbitrary degree of accuracy.

The behavior of the energy levels of the dressed
atom is illustrated in Fig. 2 for resonant three-
photon ionization of cesium. The wavelength of the
radiation is such that the energy separation be-
tween the 9D, ,, state and the ground state is ap-
proximately equal to the energy of two photons in
the absence of a level shift (static detuning). The
photon energy E, corresponding to the exact reso-
nance is 14414,45 cm™! for the component of the
hyperfine structure of the ground state we have
chosen. To show the anticrossing which takes
place in this third-order process without resorting
to a prohibitive expansion of the scales, the
values of the intensity are somewhat larger than
the ones usually involved in the experiments.
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FIG. 2. Energy of the dressed atom as a function of
the intensity for the second-order resonance on the
9Dg/; level in a three-photon ionization of Cs. The
dashed lines give the distance between the poles at the

anticrossing point which is determined by the asymp-
totes of the hyperbolas.

The unperturbed energy of the ground state is
chosen to be the origin of the energy scale. The
pairs of curves correspond to particular resonant
situations obtained by varying the frequency
of the radiation.

The three pairs of curves represent the energy
levels when the photon energy is successively
increased by 0.5, 1.5, and 2.5 cm™! from this
initial value. For this two-photon resonance the
initial detuning is twice the above photon energy
jumps.

The most salient feature of the curves presented
in Fig, 2 is that the energy levels in every pair do
not cross each other. In considering the different
solutions of Egs. (2.14) (see Appendix A), it can
be shown that this property holds as long as
(Tag = Tl < 4R ,|% Near the resonance E, and
E exhibit linear variations with regard to the
intensity. At low intensity the corresponding
curves are the asymptotes for the hyperbola
representing the energy E* and E~ .2

This is illustrated in Fig. 2 where a linear
scale for the energy has been adopted to have an
expanded representation of the phenomenon. The
difference E* — E~ which is found to be minimum
for the intensity correspondmg to the crossing
between the asymptotes, i.e., E E =0, plays

a central role in the expression of the probability.
One can see, for example, from the approximate
expression of Eq. (2.16) that the probability is
inversely proportional to powers of this quantity.
Therefore, the smaller is the difference E* - E~,
the greater is the enhancement of the transition
probability.

Such an interpretation of resonance in terms of
the crossing (anticrossing) of levels describes the
role played by the damping of the resonance curve
produced by the intensity-dependent coupling of
the resonant state with the ground state and with
the continuum.

The difference E* — E” taken at the anticrossing
point provides the value of the damping coming
from the ground state. Such a damping is impor-
tant at the early stage of the process, i.e., for
very short time. In this case the damping caused
by time-dependent exponentials is not appreciable.
For the time intervals involved here (few nano-
seconds) the effect of the exponentials is very
sensitive. In fact, the behavior of the resonant-
ionization processes under consideration is es-
sentially governed by these exponentials. The
broadening of the resonance curves comes from
the damping they provide as long as the coupling
of the resonant level with the ground state is
small (moderate intensity).

Calculations have been performed at low in-
tensity. The anticrossing point has been located
from the examination of curves analogous to the
ones shown in Fig, 2. We have found that at
1=10" W/cm? the anticrossing point (dynamic
resonance) is shifted by 5.107% cm™*,

From the discussion of Appendix A, a crossing
or an anticrossing appears according to whether
the coupling between the ground state and the
resonant state is smaller or larger than the
coupling of this resonant state with the continuum.
Since at optical frequencies these couplings are
of high order, the situation can change as the
intensity is varied and a crossing (anticrossing)
can evolve towards an anticrossing (crossing).
This phenomenon is not observed in three-photon
ionization since the two competing couplings are
of second order. Thus the levels will always show
an anticrossing. But such changes can be observed
in four-photon ionization, for example.

We have represented in Fig. 3 the real part of
the energy of the dressed atom for resonant four-
photon ionization of Cs.

Within the range of intensity values considered,
we are concerned with a 6F;,-65, crossing. It
is found that for intensity values greater than
1.1 X102 W/em? this crossing becomes an anti-
crossing. The photon energy giving rise to the
static resonance is 9443.254 cm™'. The photon
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FIG. 3. Energy of the dressed atom as a function of
the intensity for the third-order resonance on the
6 F5/, level in a four-photon ionization of Cs. As in
Fig. 2, the energy of the ground state is chosen to be
the origin of the energy scale.

energies corresponding to the three pairs of
curves are such that the crossing takes place at
I=10% 5 X108, and 10° W/cm?, respectively. As
is shown in Figs. 1 the relative position of the
first virtual level (one-photon) and the nearest
(6P) atomic levels is inverted. Therefore, the
sign of the shift of the ground state is changed
with regard to that which is found in three-photon
ionization. In the representation of Fig. 3 where
the unperturbed energy of the ground state is
taken as the origin of the energy, the crossing
is found to take place in the lower half-plane.

To make a comparison between theory and ex-
periment,'® the intensity values are taken within
the range 10° to 10° W/cm?. These values are
relatively low compared to the ones utilized in
Fig. 2. This explains the differences shown by
the curves presented in Figs. 2 and 3. In partic-
ular, the anticrossing of Fig. 2 is replaced by a
crossing. This is principally due to the small-
ness of the coupling of the 6F state with the
ground state. From the curves shown in Fig. 3,
it is clear that for such a resonance,'* the posi-

_tion of the crossing point is principally governed
by the behavior of the ground state with regard
to the intensity and the photon energy.

B. Calculation of the probability

From the knowledge of the poles of G(z) it is
possible to calculate the transition probability.
This is numerically done for resonant three- and
four-photon ionization of Cs.

Since the quantity we calculate is the probability
that a single atom is ionized at the end of the
pulse, the number of ions thus created is N, times
this probability, if N, is the number of atoms
present in the interaction volume at £=0. Be-~
fore discussing the numerical results, we briefly
indicate how the calculations have been handled.

As before the convergence of the continued
fractions has been checked at each step of the cal-
culation. The subspace previously defined con-
tains all the quasiresonant atomic states, each of
them being associated with the nearest field state.
This precaution allows the avoidance of possible
quasiresonances which could give rise to difficul-
ties in the calculation of the continued fractions
when the intensity is varied. The alternative to
this procedure is to increase the size of the
matrices involved in the c¢alculations. On the
other hand, the computational expressions for
the transition probability are somewhat lengthened
compared with the ones shown in Eq. (2.16).

To simplify the discussion, only the case of an
adiabatic square pulse is considered.'® Within
this approximation, one deals with a single-mode
field. The introduction of more realistic pulse
shape into the calculations needs a special treat-
ment which will be examined later.’* Concerning
the time dependence, "it is found that the oscillatory
character of the probability predicted by Eq.
(2.16) doesn’t appear in the results presented here.
The reason is that, in the examples under consid-
eration, the damping arising from the coupling
of the resonant level with the continuum is strong
enough to avoid any significant oscillation of the
probability. This property is exhibited in Figs. 4
and 5 which represent the time variation of the
probability for three- and four-photon ionization,
respectively. The curves which are drawn for
some typical values of the photon energy are re-
markably smooth. Starting from zero, they quick-
ly increase and then they tend to unity (saturation).
One observes that the saturation regime is rapidly
reached at high intensity and for small static
detuning. This explains, for example, the rapid
variations of the curves of Fig. 4 which corre-
spond to an intensity value (2.8 X 10° W cm™2)
which is somewhat larger than the ones usually
used in three-photon processes induced by nano-
second pulses.

The dispersion curves for three-photon ioniza-
tion are shown in Fig. 6 for the intensity values
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FIG. 4. Three-photon ionization probability as a
function of time for three values of the photon energy

(I=2.8 x10° W/cm?, dynamic resonance at E,=14413.05
-1
cm™ ),

previously utilized. Obviously, the important
distortions of the maxima are due to the satura-
tion. To reduce its effect the interaction time is
shortened and chosen to be 10 nsec. The energy
interval where such a flattening takes place in-
creases with the intensity.

At the same time, the shift and the width of the
resonance curves become more and more im-
portant. It is to be noted that the variations of
the width are more rapid than the ones shown

1073

944353
104 E
944350 ]
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9443.40 1
107 ]
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0 20 40 60 80

FIG. 5. Four-photon ionization probability of Cs as
a function of time for four near-resonant photon en-
ergies (I=5 x108 W/cm?, dynamic resonance at E,
=9443.565 cm™ }). C
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FIG. 6. Three-photon ionization dispersion curves of
Cs. The number beside the curves denotes the intensity
in W/cm?. Interaction time is 10 nsec and the arrow
gives the position of the static resonance on the 9Dy,
level (E,=14414.45 cm™!).
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FIG. 7. Four-photon ionization probability of Cs as
a function of the photon energy. The intensity is
written beside the curves. The interaction time 7 is
50 nsec and the arrow indicates the position of the static
resonance on the 6 Fg/, level (Ep=9443.254 cm™ ).
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by the shift. Thus, in contrast to the shift whose
variation is approximately linear with regard to
the intensity, the width of the resonance curves
is given by a more complicated law,

The resonance curves for four-photon ionization
of cesium are shown in Fig. 7. The intensity
values and the interaction time (50 nsec) are
chosen to be those usually utilized in nanosecond
experiments.!® Under these circumstances the
calculations are performed far from the satura-
tion condition. One finds that the maxima are
well resolved for the two components of the 6F
doublet.

As before, the effect of the intensity is to shift
and to broaden the resonance curves. The shift
is again linear in intensity, its magnitude is in
excellent agreement with the experimental values
shown in Fig. 10(b) of Ref. 10 and with those of
Ref, 11 which are reported in Fig. 8. The slight
discrepancy which is observed at high intensity
comes from spatial effects which take place in
the interaction volume near saturation. This
particular aspect of the problem will be examined
later.

To limit the size of the figure, the wings of the
curves of Fig. 7 have been truncated. Since in
most cases we are interested in the position and
the amplitude of the resonance peaks they have
been plotted in Figs. 9 and 10 against the reso-
nance detuning for three typical interaction times.
The dashed lines indicate the corresponding value
of the intensity which is to be read on the right-
hand-side scale. These curves are interesting
because they are drawn for a wide range of
values of the detuning and the intensity. On the
other hand, they are independent of the origin of

3
A (ch) T T T
2} i
1 - -
I(GW/cm?)
0 05 1 15

FIG. 8. Shift of the resonance peak for four-photon
ionization of Cs as a function of the intensity. The full
line represents the results obtained from the present
work. The experimental data are those of Ref. 10 (tri-
angles) and Ref. 11 (crosses).
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FIG. 9. Maximum probability as a function of the
resonance detuning for three-photon ionization of Cs.
The amplitude of the peaks (full lines) are to be read on
the left-hand-side scale. The dashed line gives the
value of the resonance detuning as a function of the in-
tensity whose value is to be read on the right-hand-side
scale. The number above the curves is the interaction
time.

the energy scale. Thus, they can be invoked in
any discussion dealing with the hyperfine struc-
ture of the ground state. For example, one ob-
serves in Fig. 9 that at I =10” W/cm? the detuning
of the resonance is about 10°2 ¢cm™, In the photon
scale, this corresponds to a variation of the
photon energy of 5X107® cm™! because we are
faced with a second-order resonance. In taking
into account the hyperfine structure of the ground
state, one finds that two resonance.conditions can be
fulfilled. Assuming that the resonances take place
between undisplaced levels (static resonances),
one finds that the photon energies must be
14414.295 and 14414.450 cm™!, Since the reso-
nances are shifted towards small photon energies
(see Fig. 6), two (dynamic) resonances can be
observed at ESY =14414.290 cm™! and E?
=14414.445 cm™?, '

In comparing with the éxperimental results of

‘Ref. 9, one sees that the first resonance lies

within the experimental error bars. In addition,
from an interpolation of the curves of Fig. 9 one
finds that the maximum probability for a pulse
duration of 40 nsec is equal to 0.35. This value
is in good agreement with the experimental one,
but owing to the experimental uncertainty, the
only reasonable conclusion which can be drawn
is: both experiment and theory predict that for
this intensity value the saturation regime is not
reached whereas more than 10% of atoms have
been ionized. This discussion emphasizes the
usefulness of the curves of Figs. 9 and 10.

The last remark which can be formulated about
the results presented in this section refers to the-
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FIG. 10. Maximum probability as a function of the
resonance detuning for four-photon ionization of Cs
(full lines and left-hand-side scale). As in Fig. 9, the
dashed line gives the value of the detuning as a function
of the intensity (right-hand-side scale).

behavior of the probability near resonance. From
Eq. (2.16), the probability which is inversely
proportional to the square of the distance between
the poles (E* - E”) seems to be essentially
governed by such denominators. In fact, the
mechanism is somewhat more complicated. It
can be shown from Eq. (2.14b) that I'* have a
resonant structure, their maxima being centered
at the anticrossing point. Therefore, in Eq. (2.16)
the damping originated by the time-dependent ex-
ponentials becomes more and more important

as the resonance is tuned, i.e., as the difference
E* - E” becomes small. These effects combine
themselves and one observes that for the inter-
action times we consider the enhancement pro-
vided by the resonant denominators is seriously
limited by the damping coming from the expo-
nentials.

This is illustrated in Fig. 11 where the quan-
tities | E* = E”| and I'* have been plotted against
the photon energy for three-photon ionization.

As was previously mentioned, I'* shows a max-~
imum at the anticrossing point, i.e., when
| E* = E7| is minimum.

The last comparison which is to be made be-
tween the theory and the experiments deals with
the variation of the probability as a function of
the intensity. It is that variation which is most
thoroughly studied in the experiments.

In Fig. 12, the value of the probability for
four-~photon ionization is plotted against the
intensity for some typical photon energies. These
energies are located on both sides of 9443.25 cm™!
which corresponds to a resonance on the 6F;,
level in the absence of level shifts (static res-
onance).

As was found in hydrogen'® each of the curves
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FIG. 11. Plot of T (full line and left-side scale) and
| E* = E=| (dashed line and right-side scale) as func-
tions of the photon energy.

10-1: ¥ T ¥ lIlIlI T T T Illlll T v T T 1T
E P(t) ]
r— -
- .
o 4
10-2_— —
C 9445.50 ]
i 9443.50 9443 |
1073 -
2 9438.25 3
107 =
L ]
i I(w/cm?)
10'5 i 1 llllll 1 1l lnuL 1 Ll 11l
10° 10° 10" 10"

FIG. 12. Resonant four-photon ionization of Cs vs

the intensity (7=50 nsec). The numbers beside the
curves indicate the photon energy in em™ !,
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show a resonance peak for a well-defined value

of the intensity. In experiments, the valleys of
the curves are not observed. The reason is to be
found in the spatial effects which take place in the
interaction volume. These effects come from the
geometry of the beam. All the regions of the
interaction volume “do not see” the same inten-
sity. Therefore, the small elementary cells of
the focal volume are successively submitted to
resonance conditions as the intensity varies. The
consequence of such a phenomenon is that the

- experimental curves do not show any decreasing
part. Thus for the sake of clarity only the as-
cending branches of the curves have been re-
ported in Fig. 12.

We see that the slopes of the curves depart
from 4, the.value they take far from resonance.
On the other hand, for negative detunings, the
variations of the probability are more rapid than
the ones observed in the zone of positive de-
tunings. This property appears more clearly by
calculating the ratio of the increase of the prob-
ability over the corresponding intensity interval,
i.e., by calculating the order of nonlinearity
K =[dlogP(t)]/(@logl) (Ref. 10). Figure 13 shows
the variation of K as a function of the resonance
detuning for this four-photon ionization process.
Owing to the experimental situation the curve is
drawn for a well-defined value of the probability
(and thus the ion number) which is chosen to be
far from the saturation [P(¢)=1073 for ¢ =50 nsec].
The agreement between the experimental (Fig. 7
of Ref. 10) and theoretical results is highly sat-
isfactory. As was previously observed in hy-
drogen'® and in the cesium atom,!” the order of
nonlinearity exhibits important variations near
resonance. In the present case, the curves are

30
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FIG. 13. Order of nonlinearity for four-photon ioniza-
tion of Cs vs the resonance detuning as calculated from
the present work (full line) (r=50 nsec). The crosses
represent the experimental data of Ref. 10.

strongly asymmetric as we cross the static res-
onance. The important point to be noted is the
rapid and important variation of the order of
nonlinearity for small resonance detuning. Thus
within a small energy interval the lowest value of
K is about 2 whereas its upper bound is greater
than 30. This is the consequence of the particular
behavior of the poles of G(2) in the crossing region
predicted by our theory. To see this we have rep-
resented in Fig. 14, the energy of the dressed atom
as a function of the intensity for two photon ener-
gies lying on both sides of the one giving rise to
the static resonance, namely, 9443.082 and
9443.418 cm™t,

From the discussion of the preceding section,
we know that the behavior of the probability is
essentially governed by the quantity E* — E”, i.e.,
the distance between the poles, Thus, from the
variations of this distance with regard to the
intensity, it is possible to get some insight
into the rate of growth of the probability near the
crossing point. For example, in Fig. 14 one
sees that the relation AB/A’B’>AC/A’C’ holds
for any value of the intensity near the one corre-
sponding to the crossing. Therefore, the most
important variations of the probability will take
place in the crossing area, i.e., in the region of
negative detuning. This is in agreement with
what is found in terms of the accurate calcula-
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FIG. 14. Energy of the dressed atom corresponding
to equal resonance detunings of opposite signs in the
case of four-photon ionization of Cs.
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tion whose results are summarized in Fig. 13.
Roughly speaking, the change in the variation of
the probability is due to the sudden disappearance
of the dynamic resonance as one crosses the
static resonance. It is clear that the greater the
angle between the curves representing the energy
levels giving rise to the crossing, the greater

are the variations of the probability. As a con-
sequence, the asymmetry is expected to be im-~
portant for atoms in which the ground state is
strongly coupled with the other states. The cesium
atom provides such an example. The experimental
verification of such a behavior reinforces our
confidence in the reliability of the present numer-
ical application of the theory presented in I.

IV. CONCLUSION

The aim of this paper was to present a quanti-
tative analysis of resonant-ionization processes
induced by radiation fields of moderate intensity.
It demonstrates how the operator expressions
for the transition probability, which we obtained
in a previous paper, can be used.

Within the dressed-atom formalism, the pro-
jector technique allowed the elimination of the
resonances in the continued fractions, which is
the principal source of difficulties in such a
calculation.

Three- and four-photon ionization of cesium
are discussed at length in Sec. III.

The method used for the determination of the
probability shows the role played by the satura-
tion effects. As was shown in the experiments,
this saturation depends on the intensity, the inter-
action time and the resonance detuning. The
calculations have been performed for a wide range
of variation of these quantities. '

The position and the amplitude of the resonance
peaks have been calculated when the intensity and
the photon energy are varied. As a result of
accurate calculations it was found that within
the range of intensity values 10"-10'° W/cm?, the
shift of the resonance shows linear variations
with respect to the intensity. In contrast to
what happens with their shifts, the amplitudes
of the peaks are very sensitive to higher-order
effects. In fact, we have observed that the shift
of the resonance is essentially governed by that
of the ground state. The crossing (anticrossing)
point moves on the straight line representing the
energy of the ground state.

In spite of the usual uncertainty on the value of
the oscillator strengths and on the experimental
measurements, the agreement between theory
and experiment is shown to be remarkably good
throughout this paper. The reason for such

agreement is believed to be the exact treatment
of the perturbation series in I and in the accurate
numerical exploitation of the results obtained
from there.

Nevertheless, the numerical results can be
improved by replacing the adiabatic square pulse
by a more realistic pulse shape and by calculating
the number of ions produced in the whole inter-
actions volume, These effects which can be taken
into account from a simple generalization of the
results presented here will be discussed later.

The statistical model for the single-mode field
adopted here is that of an ideal laser field. The
reason is that most of the nanosecond experiments
have been performed by using radiation sources
which are well represented by this model.

The last important remark which can be made
is that the standard concept of a time-independent
cross section which has been intensively invoked
in the past decade must be replaced by that of
a time-dependent probability or time-dependent
absorption coefficient. From a discussion like
the one presented here, the notion of a time-
independent transition rate can be seen to be in-
adequate. The transition probability becomes a
complicated function of time which shows damped
Rabi oscillations.

The advantage deriving from the added complica~
tion is that we have a realistic model which
permits a consistent discussion of any multi-
photon process.
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APPENDIX A

By using Egs. (2.12), one finds that the real
part of the poles are given by the solutions of the
equation

(E- Ea)(E - Ec) —f_iacﬁ ca
+(E=E)E - E)A4E- 5(E,+ E)T}
x(raa - Fcc)2=0’ (A1)

where all the quantities have been already defined
in Egs. (2.13a)—(2.13c). In general, Eq. (Al) is
written in terms of complicated functions of E but
at low intensity it can be reduced to a fourth-~
order equation if E; (E,T)~ Ey(E;, T1;), [yy(E, T)
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- 1"; (E;', I‘“), and Rac(E, F)"Rac(E:” I‘M).
By introducing the functions

F(E)=1+(Tpe = T, P /4[E - HE, +E)E, (A2a)
and

G(E)=R ;R oo/ (E- E)(E-E,). (A2b)
Equation (A1) reads

F(E)-G(E)=0. (A3)

In other words the solutions of Eq. (A1) are
given by the crossing of the curves representing
the functions F(E) and G(E). It is straightforward
to show that these curves have only two crossing
points. Thus Eq. (Al) has only two solutions.

To get approximate values for the complex
poles it is preferable to start from

(2 =2,)(2 =2;) =R 4R . =0, (A4)
where

2g=F,=iTy, (A5a)

2,=E,-il,,. (A5Db)

Owing to the obvious relation
e (az + b2)1/4 [ a ]1/2
(a+ib)2= B 1+ W )

. a V2
+1 |:1 - m] , (A6)
the solutions of Eq. (A4) are found to be
2 = 4[E + B, = (T + Too )] & (1L/VZ ) (D2, + Q2

x{[1+ m]wn[l-m]w},

(A7)

J

e-(r,,,,+rcc)t

where

Dyo= 1B~ E,P - 1(Tus—Teof +RuR s (AB2)
and

Quo==3(Eqs = E;)(Tss = Too) - (A8b)

At the crossing (anticrossing) point (E, = E,) the
above expressions simplify. It is useful to know
in this case the analytic expression of the tran-
sition probability we derive now.

(i) (raa - rcc)2 < 4B_acl_zca .
From Eq. (2.14b) one readily verifies that

[ =T =4(T+T,,). (A9)
On the other hand,

A*=A", (A10)

Dye=R 4oR o = [2(Taa = Tee) (a11)
and |

Qac=0. (A12)
By using Eqgs. (2.14a) and (2.18), one has

E* - E" =2(D,,)2, (A13)

Q =% (D, )2, (a14)
and

Voo =Yeo™ 2(Taa = Toc) - (A15)

Therefore, the expression of the transition prob-
ability reduces to

Pult)=1 = g T F (ReeBon (oo = Too) cOS[AR oo oo = (Tag = T 12
= (Tag = Teo)[4R 4o R o = (To = Lol ** SIn[4R 0B oo = (Tua = TooP 22} 1(A16)
(ii) (To = Too’ > 4R 4o R g - From Egs. (2.14a) and (2.18) one finds
In this case one finds E'-E =0, (A20)
A*=A", v (A17) =0, (A21)
Dye =[2(Tyg = Too)l? ~RyeReys (A18) and
and Vo= 5(Taq = Too)£ (Dgo)2 . (A22)
Qu=0. (A19) The transition probability is given by
e~(Taa* Teo ¢
Pult) =1~ Ty o im iy \~ “BeR o+ (Caa= oo’ cOSB(Foq = ool = 4Ros Roo ]!/
= (Cag = Too)[(Ta = Too)? = 4R 1o R o] S10B[(Tgg = Ty, F = 4R o B oo 18} . (A23)
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APPENDIX B

In what follows we give an illustration of the
calculations whose results are reported in this
paper. The simple example of one-photon bound-
bound transition is considered. The generaliza-
tion to N-photon processes is straightforward.

It will be shown how the whole contribution of
the continuum is taken into account.

The matrix G(z) accounting for this one-photon
process is given by
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where the energies of the system atom plus field
are given in terms of the atomic energies E, and
E, by

(B2a)
(B2b)

The expressions for the matrix elements of R(z)
occurring in Eq. (B1) can be found from Eqgs.
(2.6) and (2.7). In focusing our attention on R,,
and Ry, one finds that

E,=E, +nw,

E,=E,+(n-1)w.

Ry (2) =(0| (V' TL AT, AT+ V™) @), (B3a)
c)- [ E-Ee—Raul®)  —Rau®) ) " ey By@) =Bl RAT,+V'T,BT)ID),  (B3a)
=Ry, (2) E - E, - Eyy(2) which, by virtue of Eq. (2.7), become
Ry =(2n=1| V' —— 0 1_ — I A 11 ~A 11 —|1,%)
l~Ay—= g B-Bi—g—x4 -4y~ 38 -A1—73B
+(@,n=1v" T — 11,7, (B4a)
Az P -Brpal
. , 1 1
Ry=(2,n=1|V s 0 A T——l2n-1)
1—21_2."53—31_5.“ZK 1—Z1_K-Q-EB
- 1 1
+(2,n-1|V" - - B : l2,n-1), (B4b)
1';{1-2--%3' i-B.A4 1'51-3”---2{;{
where the standard notation has been adopted for A=da, (B6)
the states of the system. Let d be the dipole oper- B-da
ator, one defines R
and
d"=[Q/(E-H§ -nw)]d, (B5)
alny=vn|n-1y, B7)

where @ is the projector outside the two-dimen-

sional space spanned by the states |a) and | b)

and H § is the free-energy operator for the atom.
Owing to the relations

alny=ve+1|n+ty,

Eq. (B4) can be written, in the dipole approxima-
tion, as

1 ez

Ry =(n—1)0V<2|d

- 1 - - 1 e
-l g - - T o e

1)

(B8a)

1 - 1
x 1 z 1
- n + 1
LR vy sy ryy U R R A vy ey - o vrey
wvm<2|d - : : BN
- n _ n=1
Al vy i LT S LA vy sy ey Sl
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1 -2
Ryy=(m—-1)2|d i T a
-(n - ~2 1 _(y— =2 -3
R v ey il S G ) SERE
x L |2
- -1
1-nd 1- (n+1)3"---3""an
+n(2|d - 1 - i
- . 1_ -1
1=+ W gt " T et
1
X - v T —[2).
- - n-1 n-2
1-(n-1)d == 2)3™2 °"3"'3d (B8b)
r
It is clear from Eqgs. (B8) that it is not neces- 0 d, 0 0
sary to calculate separately all the continued d 0 d. d
fractions appearing in the expressions of R,, and d=| 23 T4 (B10)
Ry This is due to the fact that the same contin- 0 dy, 0 O
ued fraction appears many times. This general 0 d 0 0
42

property exhibited by the ensemble of expressions
discussed so far is in intensively used to shorten
the needed computer time. To determine the
place where the integration over the continuum
variables must be performed, we consider a
continuum discretized with two states. This is
an artifact. It is understood that the integral over
the continuum is symbolized everywhere by the
sum over these two states. We choose a particular
set of atomic states. |1) and |2) are the two dis-
crete states already mentioned whereas the
continuum is discretized by the states |3) and | 4)
in such a way that the only allowed transitions
are | 1)—|2) and | 2)—(|3), | 4).

In this case Egs. (B8a) and (B8b) reduce to

Ry, =‘/7—’a21 ’ (B9a)
Ryp=n(2|d 1 22,
. 1-na'21_na.sm —a 3

‘ (B9b)

where, for shortness, » has been subtracted from
all the superscripts and the depletion of the pho-~
tons has been neglected, i.e., n>1,

The particularly simple form of Egs. (B9) is a
consequence of the projector @.

In the basis we consider, the dipole operator is
represented by the matrix

By using Eq. (B5) it is a simple matter to calcu-
late R,, as given by Eq. (B9b). Limiting our-
selves to a single interaction in Eq. (B9b) one has

Ry, =n(2|d72D"'d| 2), (B11)
where D™! is the inverse of the matrix
D=1-~nd~?d", (B12)
By introducing the completeness relation
4
> laxil=1 (B13)
i=1

in Eq. (B11) one sees how the continuum indices
of D”! and d are to be integrated.

The same discussion holds for the continuum
indices appearing in the expression of the matrix
elements of D™!, To see this we consider the
diagonal matrix element D). One easily finds
that

D3} =1/[1-n@"%d"%),,]. (B14)

As before it is clear that an integration over the
inner continuum indices of the product of matrices
d°?d™% is to be done. As a general rule one must
integrate over the inner repeated continuum in-
dices appearing at every stage of iteration in the
continued fractions.
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